| 研究生: |
張源炘 Chang, Yuan-Hsin |
|---|---|
| 論文名稱: |
以分子梳結合軟微影技術製備大面積金屬奈米線陣列及奈米通道 Fabrication of Aligned Metallic Nanowires and Nanochannels via Molecular Combing/Soft Lithography |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 表面改質 、無極電鍍法 、奈米線 |
| 外文關鍵詞: | surface modification, electroless plating, nanowire |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以分子梳結合微接觸壓印技術,進行實驗參數的探討,找出影響DNA奈米束陣列長短、方向性和整齊度的因素。由實驗結果得知,施加於PDMS印章上的壓力需控制於一適當範圍,才可使足夠的DNA溶液進入微米孔洞中且不會造成PDMS印章上微米孔洞的過度變形,形成DNA奈米束陣列。另外,增加DNA溶液的濃度、縮小微米孔洞中心間距以及增加掀起PDMS印章的速率,都有助於形成連續的長DNA奈米束陣列。本研究也提出以改良式滾輪法來拉伸DNA,藉以改善以手動進行導致方向性不易控制的問題。利用此整齊排列的DNA奈米束陣列,以無電鍍法(electroless plating)在DNA奈米束上還原金屬粒子(鈀、鈷),並以3-氨基丙基三甲氧基甲矽烷改質玻璃基板,減少金屬粒子還原在玻璃基板上的數量,可以快速製備大面積整齊排列的金屬奈米線。除此之外,此規則排列的奈米束陣列可以作為模版,以雙層複合印章(h-PDMS和184-PDMS)的方法製作奈米級的通道,相較於目前文獻上的技術,有成本較低、製備時間較短的優勢
In this study, an aligned and ordered DNA nanostrands array was fabricated via molecular combing/soft lithography technique. Different processing parameters such as center-to-center distance, applied pressure, peeling rate for PDMS mold and concentrations of DNA solutions were discussed. The DNA nanostrands array was subsequently used as the template for metallization and fabrication of nanochannels. The results showed that proper applied pressure is required to generate the ordered DNA nanostrands. Moreover, shorter center-to-center distance, higher concentration of DNA solution and fast peeling rates for PDMS mold will facilitate fabricating long DNA nanostrands. A roller technique was proposed to provide better control over generating DNA nanostrands. As to metallization of DNA nanostrands, palladium nanowires and hybrid metallic nanowires (palladium and cobalt) on the modified glass substrate were obtained through electroless plating process. Proper activation time (less than 5 min) and reduction time (~30 seconds) in conjunction with suface modification of substrate is necessary to minimize the number of metallic particles growing on the substrate. For fabrication of nanochannels, a two-stamp technique was adopted and nanochannels with deep arounds 3 nm were obtained. This provides a powerful alternative to fabricate long and aligned nanochannels for nanofluidic studies and applications.
1. 李思毅、李佳穎、曾俊元, 奈米材料的製程及其潛在應用, in 物理雙月刊. 2004.
2. 王世敏、許祖勛、傳晶, "奈米材料原理與製備 ": 五南. (2004).
3. 丁志明, 方冠榮, 吳季珍, 周維揚, 胡裕民, 翁鴻山, 陳東煌, 傅昭銘, 馮榮豐, 黃榮俊, 黃耀輝, 張鼎張, 劉全璞, 蔡振章, and 蕭璦莉
謝達斌, "奈米科技-基礎、應用與實作": 高立圖書有限公司 (2008 ).
4. Guan, J.J. and Lee, J., "Generating highly ordered DNA nanostrand arrays", Proceedings of the National Academy of Sciences of the United States of America, 102, 18321-18325, (2005).
5. Ito, Y. and Fukusaki, E., "DNA as a ‘Nanomaterial’", Journal of Molecular Catalysis. B, Enzymatic, 28, 155-166, (2004).
6. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P., "Molecular Biology of the Cell". (2002).
7. Butler, J.M., "Forensic DNA Typing: Biology and Technology Behind STR Markers ": Academic Press. (2001).
8. Endres, R.G., Cox, D.L., and Singh, R.R.P., "Colloquium: The quest for high-conductance DNA", Reviews of Modern Physics, 76, 195-214, (2004).
9. Zheng, H.Z., Zhang, Z.L., and Pang, D.W., "“分子梳”研究進展", 分析科學學報, 22, 108-112, (2006).
10. Mel'nikov, S.M., Sergeyev, V.G., and Yoshikawa, K., "Transition of Double-Stranded DNA Chains between Random Coil and Compact Globule States Induced by Cooperative Binding of Cationic Surfactant", Journal of the American Chemical Society, 117, 9951-9956, (1995).
11. Yoshikawa, K., "Controlling the higher-order structure of giant DNA molecules", Advanced Drug Delivery Reviews, 52, 235-244, (2001).
12. Kwak, K.J., Kudo, H., and Fujihira, M., "Imaging stretched single DNA molecules by pulsed-force-mode atomic force microscopy", Ultramicroscopy, 97, 249-255, (2003).
13. Li, B., Zhang, Y., Hu, J., and Li, M., "Fabricating protein nanopatterns on a single DNA molecule with Dip-pen nanolithography", Ultramicroscopy, 105, 312-315, (2005).
14. Morii, T., Mizuno, R., Haruta, H., and Okada, T., "An AFM study of the elasticity of DNA molecules", Thin Solid Films, 464-465, 456-458, (2004).
15. Nyamjav, D. and Ivanisevic, A., "Alignment of Long DNA Molecules on Templates Generated via Dip-Pen Nanolithography", Advanced Materials, 15, 1805-1809, (2003).
16. Chen, Y.-F., Blab, G.A., and Meiners, J.-C. Stretching sub-micron DNA fragments with optical tweezers. San Diego, CA, United States: SPIE, Bellingham WA, WA 98227-0010, United States. 2007.
17. Reihani, N., Bosanac, L., Hansen, T.M., and Oddershede, L.B. Stretching short DNA tethers using optical tweezers. San Diego, CA, United States: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States. 2006.
18. Salomo, M., Kegler, K., Gutsche, C., Reinmuth, J., Skokow, W., Kremer, F., Hahn, U., and Struhalla, M., "The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers", Colloid and Polymer Science, 284, 1325-1331, (2006).
19. Chiou, C.-H., Huang, Y.-Y., Chiang, M.-H., Lee, H.-H., and Lee, G.-B. 3-D magnetic tweezers for investigation of mechanical properties of single DNA molecules. Istanbul, Turkey: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States. 2006.
20. Zlatanova, J. and Leuba, S.H., "Magnetic tweezers: A sensitive tool to study DNA and chromatin at the single-molecule level", Biochemistry and Cell Biology, 81, 151-159, (2003).
21. Kim, J.H., Shi, W.-X., and Larson, R.G., "Methods of stretching DNA molecules using flow fields", Langmuir, 23, 755-764, (2007).
22. Wang, J. and Lu, C., "Single molecule λ-DNA stretching studied by microfluidics and single particle tracking", Journal of Applied Physics, 102, 074703, (2007).
23. Bensimon, A., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F., and Bensimon, D., "Alignment and sensitive detection of DNA by a moving interface", Science, 265, 2096-2098, (1994).
24. Bensimon, D., Simon, A.J., Croquette, V., and Bensimon, A., "Stretching DNA with a receding meniscus: experiments and models", Physical Review Letters, 74, 4754, (1995).
25. Allemand, J.F., Bensimon, D., Jullien, L., and Bensimon, A., "pH-Dependent Specific Binding and Combing of DNA", Biophysical Journal, 73, 2064, (1997).
26. Benight, A.S. and Wartell, R.M., "Influence of base-pair changes and cooperativity parameters on the melting curves of short DNAs", Biopolymers, 22, 1409-25, (1983).
27. Stein, V.M., Bond, J.P., Capp, M.W., Anderson, C.F., and Record, M.T., "Importance of coulombic end effects on cation accumulation near oligoelectrolyte B-DNA: a demonstration using 23Na NMR", Biophysical Journal, 68, 1063-1072, (1995).
28. Yokota, H., Johnson, F., Lu, H., Robinson, R.M., Belu, A.M., Garrison, M.D., Ratner, B.D., Trask, B.J., Miller, D.L., and Journals, O., "A new method for straightening DNA molecules for optical restriction mapping", Nucleic Acids Research, 25, 1064-1070,
29. Yokota, H., Sunwoo, J., Sarikaya, M., van den Engh, G., and Aebersold, R., "Spin-stretching of DNA and protein molecules for detection by fluorescence and atomic force microscopy", Anal Chem, 71, 4418-4422, (1999).
30. Otobe, K., Ohtani, T., and Journals, O., "Behavior of DNA fibers stretched by precise meniscus motion control", Nucleic Acids Research, 29, e109, (2001).
31. Nakao, H., Gad, M., Sugiyama, S., Otobe, K., and Ohtani, T., "Transfer-printing of highly aligned DNA nanowires", Journal of the American Chemical Society, 125, 7162-7163, (2003).
32. Guan, J.J., Yu, B., and Lee, L.J., "Forming highly ordered arrays of functionalized polymer nanowires by dewetting on micropillars", Advanced Materials, 19, 1212-+, (2007).
33. Bjork, P., Herland, A., Scheblykin, I.G., and Inganas, O., "Single molecular imaging and spectroscopy of conjugated polyelectrolytes decorated on stretched aligned DNA", Nano Letters, 5, 1948-1953, (2005).
34. Bjork, P., Holmstrom, S., and Inganas, O., "Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer", Small, 2, 1068-1074, (2006).
35. Cui, S., Liu, Y., Yang, Z., and Wei, X., "Construction of silver nanowires on DNA template by an electrochemical technique", Materials and Design, 28, 722-725, (2007).
36. Ijiro, K., Matsuo, Y., and Hashimoto, Y., "DNA-Based Silver Nanowires Fabricated by Electroless Plating", Molecular Crystals and Liquid Crystals, 445, 207-211, (2006).
37. Braun, E., Eichen, Y., Sivan, U., and Ben-Yoseph, G., "DNA-templatedassembly andelectrode attachment of a conducting silver wire", NATURE, 391, 775, (1998).
38. Sun, L., Wei, G., Song, Y., Liu, Z., Wang, L., and Li, Z., "Fabrication of silver nanoparticles ring templated by plasmid DNA", Applied Surface Science, 252, 4969-4974, (2006).
39. Park, S.H., Prior, M.W., LaBean, T.H., and Finkelstein, G., "Optimized fabrication and electrical analysis of silver nanowires templated on DNA molecules", Applied Physics Letters, 89, 033901, (2006).
40. Richter, J., Mertig, M., Pompe, W., Monch, I., and Schackert, H.K., "Construction of highly conductive nanowires on a DNA template", Applied Physics Letters, 78, 536-538, (2001).
41. Lund, J., Dong, J., Deng, Z., Mao, C., and Parviz, B. DNA networks as templates for bottom-up assembly of metal nanowires. Nagoya, Japan: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States. 2005.
42. Zhaoxiang, D. and Chengde, M., "DNA-Templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays [J]", Nano Letters, 3, 1545-1548, (2003).
43. Lund, J., Dong, J., Deng, Z., Mao, C., and Parviz, B.A., "Electrical conduction in 7 nm wires constructed on lambda-DNA", Nanotechnology, 17, 2752-2757, (2006).
44. Richter, J., Seidel, R., Kirsch, R., Mertig, M., Pompe, W., Plaschke, J., and Schackert, H.K., "Nanoscale Palladium Metallization of DNA", Advanced Materials, 12, 507-510, (2000).
45. Mertig, M., Colombi Ciacchi, L., Seidel, R., Pompe, W., and De Vita, A., "DNA as a Selective Metallization Template", Nano Lett., 2, 841-844, (2002).
46. Ford, W.E., Harnack, O., Yasuda, A., and Wessels, J.M., "Platinated DNA as precursors to templated chains of metal nanoparticles", Advanced materials(Weinheim), 13, 1793-1797, (2001).
47. Seidel, R., Mertig, M., and Pompe, W., "Scanning force microscopy of DNA metallization", Surface and Interface Analysis, 33, 151-154, (2002).
48. Seidel, R., Ciacchi, L.C., Weigel, M., Pompe, W., and Mertig, M., "Synthesis of Platinum Cluster Chains on DNA Templates: Conditions for a Template-Controlled Cluster Growth", Journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces, & biophysical chemistry, 108, 10801-10811, (2004).
49. Fernando Patolsky, Y.W.O.L.I.W., "Au-Nanoparticle Nanowires Based on DNA and Polylysine Templates", Angewandte Chemie International Edition, 41, 2323-2327, (2002).
50. Kim, H.J., Roh, Y., and Hong, B., "Controlled gold nanoparticle assembly on DNA molecule as template for nanowire formation", Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 24, 1327-1331, (2006).
51. Manning, B., Di Salvo, A., Stanca, S., Ongaro, A., and Fitzmaurice, D., "DNA-templated assembly of nanoscale wires and switches (Invited Paper)", Proceedings of SPIE, 5824, 93, (2005).
52. Braun, G., Inagaki, K., Estabrook, R.A., Wood, D.K., Levy, E., Cleland, A.N., Strouse, G.F., and Reich, N.O., "Gold Nanoparticle Decoration of DNA on Silicon", Science, 302, 1382, (2003).
53. Nakao, H., Shiigi, H., Yamamoto, Y., Tokonami, S., Nagaoka, T., Sugiyama, S., and Ohtani, T., "Highly ordered assemblies of Au nanoparticles organized on DNA", Nano Letters, 3, 1391-1394, (2003).
54. Alivisatos, A.P., Johnsson, K.P., Peng, X., Wilson, T.E., Loweth, C.J., Bruchez, M.P., and Schultz, P.G., "Organization of 'nanocrystal molecules' using DNA", Nature, 382, 609-611, (1996).
55. Harnack, O., Ford, W.E., Yasuda, A., and Wessels, J.M., "Tris (hydroxymethyl) phosphine-capped gold particles templated by DNA as nanowire precursors", Nano Lett, 2, 919–923, (2002).
56. Gaa, C. and Ata, T., "DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure", Applied Physics Letters, 78, (2001).
57. Monson, C.F. and Woolley, A.T., "DNA-templated construction of copper nanowires", Nano Lett, 3, (2003).
58. Kudo, H. and Fujihira, M., "DNA-templated copper nanowire fabrication by a two-step process involving electroless metallization", Nanotechnology, IEEE Transactions on, 5, 90-92, (2006).
59. Gu, Q., Cheng, C., and Haynie, D.T., "Cobalt metallization of DNA: Toward magnetic nanowires", Nanotechnology, 16, 1358-1363, (2005).
60. Gu, Q., Cheng, C., Suryanarayanan, S., Dai, K., and Haynie, D.T., "DNA-templated fabrication of nickel nanocluster chains", Physica E: Low-dimensional Systems and Nanostructures, 33, 92-98, (2006).
61. Becerril, H.A., Ludtke, P., Willardson, B.M., and Woolley, A.T., "DNA-Templated Nickel Nanostructures and Protein Assemblies", Langmuir, 22, 10140-10144, (2006).
62. Rath, S., Sarangi, S.N., and Sahu, S.N., "Biocatalytic growth of semiconductor nanowires", Journal of Applied Physics, 101, 074306, (2007).
63. Dittmer, W.U. and Simmel, F.C., "Chains of semiconductor nanoparticles templated on DNA", Applied Physics Letters, 85, 633-635, (2004).
64. Dong, L., Hollis, T., Connolly, B.A., Wright, N.G., Horrocks, B.R., and Houlton, A., "DNA-Templated Semiconductor Nanoparticle Chains and Wires*", Adv. Mater, 19, 1748-1751, (2007).
65. Becerril, H.A., Stoltenberg, R.M., Monson, C.F., and Woolley, A.T., "Ionic surface masking for low background in single-and double-stranded DNA-templated silver and copper nanorods", J. Mater. Chem, 14, 611-616, (2004).
66. Quake, S.R. and Scherer, A., "From Micro-to Nanofabrication with Soft Materials", Science, 290, 1536, (2000).
67. Ford, W.E., Wessels, J., Harnack, O., and Yasuda, A., Metallization of nucleic acids via metal nanoparticles produced ex-situ. 2005, Google Patents.
68. Chen, J.M., Liao, S.W., and Tsai, Y.C., "Electrochemical synthesis of polypyrrole within PMMA nanochannels produced by AFM mechanical lithography", Synthetic Metals, 155, 11-17, (2005).
69. Hirooka, M., Yanagisawa, Y., Kanki, T., Tanaka, H., and Kawai, T., "Fabrication of sub-50 nm (La, Ba) MnO ferromagnetic nanochannels by atomic force microscopy lithography and their electrical properties", Applied Physics Letters, 89, 163113, (2006).
70. Pellegrino, L., Yanagisawa, Y., Ishikawa, M., Matsumoto, T., Tanaka, H., and Kawai, T., "Fe3Mn4 nanochannels fabricated by AFM local-oxidation nanolithography using Mo/poly (methyl methacrylate) nanomasks", Advanced materials(Weinheim), 18, 3099-3104, (2006).
71. Watt, F., Bettiol, A.A., van Kan, J.A., Teo, E.J., and Breese, M.B.H., "Ion beam lithography and nanofabrication: a review", Int. J. Nanosci, 4, 269–286, (2005).
72. Choi, S.-W., Kim, Y., Cheong, I.W., and Kim, J.-H., "Fabrication of poly(L-lactide)-block-poly(ethylene glycol)-block-poly(L- lactide) triblock copolymer thin films with nanochannels: An AFM study", Macromolecular Rapid Communications, 29, 175-180, (2008).
73. Liu, G. and Ding, J., "Diblock thin films with densely hexagonally packed nanochannels", Chemical Engineering & Technology, 21, 211-213, (1998).
74. Liu, G., Ding, J., Hashimoto, T., and Winnik, F.M.A., "Diblock thin films with regularly packed nanochannels", American Chemical Society, Polymer Priprints, Division of Polymer Chemistry, 40, 982-983, (1999).
75. Kovarik, M.L. and Jacobson, S.C., "Attoliter-Scale Dispensing in Nanofluidic Channels", Anal. Chem., 79, 1655-1660, (2007).
76. Jung, H.C., Lu, W., Wang, S., Lee, L.J., and Hu, X., "Etching of Pyrex glass substrates by inductively coupled plasma reactive ion etching for micro/nanofluidic devices", Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 24, 3162-3164, (2006).
77. O'Brien Ii, M.J., Bisong, P., Ista, L.K., Rabinovich, E.M., Garcia, A.L., Sibbett, S.S., Lopez, G.P., and Brueck, S.R.J., "Fabrication of an integrated nanofluidic chip using interferometric lithography", Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 21, 2941-2945, (2003).
78. Bau, H.H., Sinha, S., Kim, B., and Riegelman, M. Fabrication of nanofluidic devices and the study of fluid transport through them. Philadelphia, PA, United States: International Society for Optical Engineering, Bellingham, WA 98227-0010, United States. 2005.
79. Kutchoukov, V.G., Pakula, L., Parikesit, G.O.F., Garini, Y., Nanver, L.K., and Bossche, A., "Fabrication of nanofluidic devices in glass with polysilicon electrodes", Sensors and Actuators, A: Physical, 123-124, 602-607, (2005).
80. Kutchoukov, V.G., Laugere, F., Van Der Vlist, W., Pakula, L., Garini, Y., and Bossche, A., "Fabrication of nanofluidic devices using glass-to-glass anodic bonding", Sensors and Actuators, A: Physical, 114, 521-527, (2004).
81. Muller-Buschbaum, P., Bauer, E., Maurer, E., Schlogl, K., Roth, S.V., and Gehrke, R., "Route to create large-area ordered polymeric nanochannel arrays", Applied Physics Letters, 88, 083114, (2006).
82. Huh, D., Mills, K.L., Zhu, X., Burns, M.A., Thouless, M.D., and Takayama, S., "Tuneable elastomeric nanochannels for nanofluidic manipulation", Nat Mater, 6, 424-428, (2007).
83. Haneveld, J., Jansen, H., Berenschot, E., Tas, N., and Elwenspoek, M., "Wet anisotropic etching for fluidic 1D nanochannels", J. Micromech. Microeng, 13, S62-S66, (2003).
84. Becerril, H.A. and Woolley, A.T., "DNA shadow nanotithography", Small, 3, 1534-1538, (2007).
85. Cao, H., "Fabrication of 10 nm enclosed nanofluidic channels", Applied Physics Letters, 81, 174, (2002).
86. Ilic, B., Czaplewski, D., Zalalutdinov, M., Schmidt, B., and Craighead, H.G., "Fabrication of flexible polymer tubes for micro and nanofluidic applications", Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 20, 2459-2465, (2002).
87. de Boer, M.J., Tjerkstra, R.W., Berenschot, J.W., Jansen, H.V.A.J.H.V., Burger, G.J.A.B.G.J., Gardeniers, J.G.E.A.G.J.G.E., Elwenspoek, M.A.E.M., and van den Berg, A.A.v.d.B.A., "Micromachining of buried micro channels in silicon", Microelectromechanical Systems, Journal of, 9, 94-103, (2000).
88. Guo, L.J., Cheng, X., and Chou, C.F., "Fabrication of Size-Controllable Nanofluidic Channels by Nanoimprinting and Its Application for DNA Stretching", Nano Lett., 4, 69-73, (2004).
89. Yang, B. and Pang, S.W., "Multiple level nanochannels fabricated using reversal UV nanoimprint", Journal of Vacuum Science & Technology B, 24, 2984-2987, (2006).
90. Perry, J.L. and Kandlikar, S.G., "Review of fabrication of nanochannels for single phase liquid flow", Microfluidics and Nanofluidics, 2, 185-193, (2006).
91. Chou, S.Y., "Imprint of sub-25 nm vias and trenches in polymers", Applied Physics Letters, 67, 3114, (1995).
92. 黃靖婷, "探討製作預填分離膠質之DNA分析晶片", (2006).
93. Howland, R. and Benatar, L., "A practical guide to scanning probe microscopy", (1997).
94. Bustamante, C., Vesenka, J., Tang, C.L., Rees, W., Guthold, M., and Keller, R., "CIRCULAR DNA-MOLECULES IMAGED IN AIR BY SCANNING FORCE MICROSCOPY", Biochemistry, 31, 22-26, (1992).
95. Hansma, H.G., Vesenka, J., Siegerist, C., Kelderman, G., Morrett, H., Sinsheimer, R.L., Elings, V., Bustamante, C., and Hansma, P.K., "REPRODUCIBLE IMAGING AND DISSECTION OF PLASMID DNA UNDER LIQUID WITH THE ATOMIC FORCE MICROSCOPE", Science, 256, 1180-1184, (1992).
96. Vesenka, J., Guthold, M., Tang, C.L., Keller, D., Delaine, E., and Bustamante, C., "SUBSTRATE PREPARATION FOR RELIABLE IMAGING OF DNA-MOLECULES WITH THE SCANNING FORCE MICROSCOPE", Ultramicroscopy, 42, 1243-1249, (1992).
97. Balladur, V., Theretz, A., and Mandrand, B., "Determination of the Main Forces Driving DNA Oligonucleotide Adsorption onto Aminated Silica Wafers", Journal of Colloid and Interface Science, 194, 408-418, (1997).
98. Lyubchenko, Y.L., Gall, A.A., Shlyakhtenko, L.S., Harrington, R.E., Jacobs, B.L., Oden, P.I., and Lindsay, S.M., "ATOMIC FORCE MICROSCOPY IMAGING OF DOUBLE-STRANDED DNA AND RNA", Journal of Biomolecular Structure & Dynamics, 10, 589-606, (1992).
99. Lyubchenko, Y., Shlyakhtenko, L., Harrington, R., Oden, P., and Lindsay, S., "ATOMIC FORCE MICROSCOPY OF LONG DNA - IMAGING IN AIR AND UNDER WATER", Proceedings of the National Academy of Sciences of the United States of America, 90, 2137-2140, (1993).
100. Bezanilla, M., Manne, S., Laney, D.E., Lyubchenko, Y.L., and Hansma, H.G., "ADSORPTION OF DNA TO MICA, SILYLATED MICE, AND MINERALS - CHARACTERIZATION BY ATOMIC-FORCE MICROSCOPY", Langmuir, 11, 655-659, (1995).
101. Flink, S., van Veggel, F., and Reinhoudt, D.N., "Functionalization of self-assembled monolayers on glass and oxidized silicon wafers by surface reactions", Journal of Physical Organic Chemistry, 14, 407-415, (2001).
102. Bierbaum, K., Grunze, M., Baski, A.A., Chi, L.F., Schrepp, W., and Fuchs, H., "Growth of Self-Assembled n-Alkyltrichlorosilane Films on Si (100) Investigated by Atomic Force Microscopy", Langmuir, 11, 2143-2150, (1995).
103. Silberzan, P., Leger, L., Ausserre, D., and Benattar, J.J., "Silanation of silica surfaces. A new method of constructing pure or mixed monolayers", Langmuir, 7, 1647-1651, (1991).
104. Vallant, T., Brunner, H., Mayer, U., Hoffmann, H., Leitner, T., Resch, R., and Friedbacher, G., "Formation of self-assembled octadecylsiloxane monolayers on mica and silicon surfaces studied by atomic force microscopy and infrared spectroscopy", J. Phys. Chem. B, 102, 7190-7197, (1998).
105. Wasserman, S.R., Tao, Y.T., and Whitesides, G.M., "Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates", Langmuir, 5, 1074-1087, (1989).
106. Brunner, H., Gibson, C.A., Mayer, U., and Hoffmann, H., "MONOLAYER FORMATION OF ORGANOSILANE COMPOUNDS ON HYDROXYLIC SURFACES", Mikrochimica acta. Supplementum(1966), 14, 625-626, (1997).
107. Rozlosnik, N., Gerstenberg, M.C., and Larsen, N.B., "Effect of Solvents and Concentration on the Formation of a Self-Assembled Monolayer of Octadecylsiloxane on Silicon (001)", Langmuir, 19, 1182-1188, (2003).
108. Kind, H., Bittner, A.M., Cavalleri, O., Kern, K., and Greber, T., "Electroless Deposition of Metal Nanoislands on Aminothiolate-Functionalized Au (111) Electrodes", J. Phys. Chem. B, 102, 7582, (1998).
109. Duguid, J., Bloomfield, V.A., Benevides, J., and Thomas, G.J., "RAMAN SPECTRAL STUDIES OF NUCLEIC-ACIDS .44. RAMAN-SPECTROSCOPY OF DNA-METAL COMPLEXES .1. INTERACTIONS AND CONFORMATIONAL EFFECTS OF THE DIVALENT-CATIONS - MG, CA, SR, BA, MN, CO, NI, CU, PD, AND CD", Biophysical Journal, 65, 1916-1928, (1993).
110. Deng, Z. and Mao, C., "Molecular Lithography with DNA Nanostructures", Angewandte Chemie International Edition, 43, 4068-4070, (2004).
111. Odom, T.W., Love, J.C., Wolfe, D.B., Paul, K.E., and Whitesides, G.M., "Improved pattern transfer in soft lithography using composite stamps", Langmuir, 18, 5314-5320, (2002).
112. Schmid, H. and Michel, B., "Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography", Macromolecules, 33, 3042-3049, (2000).
113. Gates, B.D. and Whitesides, G.M., "Replication of Vertical Features Smaller than 2 nm by Soft Lithography", J. Am. Chem. Soc, 125, 14986-14987, (2003).
114. Hua, F., Sun, Y., Gaur, A., Meitl, M.A., Bilhaut, L., Rotkina, L., Wang, J., Geil, P., Shim, M., and Rogers, J.A., "Polymer imprint lithography with molecular-scale resolution", Nano Lett, 4, 2467–2471, (2004).
115. Hua, F., Gaur, A., Sun, Y., Word, M., Jin, N., Adesida, I., Shim, M., Shim, A., and Rogers, J.A., "Processing dependent behavior of soft imprint lithography on the 1-10-nm scale", Nanotechnology, IEEE Transactions on, 5, 301-308, (2006).
116. Marinova, K.G., Christova, D., Tcholakova, S., Efremov, E., and Denkov, N.D., "Hydrophobization of glass surface by adsorption of poly (dimethylsiloxane)", Langmuir, 21, 11729-11737, (2005).
117. Asberg, P., Nilsson, K.P.R., and Inganas, O., "Surface Energy Modified Chips for Detection of Conformational States and Enzymatic Activity in Biomolecules", Langmuir, 22, 2205-2211, (2006).
118. Thibault, C., Severac, C., Mingotaud, A.F., Vieu, C., and Mauzac, M., "Poly (dimethylsiloxane) Contamination in Microcontact Printing and Its Influence on Patterning Oligonucleotides", Langmuir, 23, 10706-10714, (2007).