簡易檢索 / 詳目顯示

研究生: 王美琪
Wang, Mei-Qi
論文名稱: 溶膠-凝膠燃燒合成法製備螢光粉體之應用及研究
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 70
中文關鍵詞: 螢光粉溶膠-凝膠燃燒合成
外文關鍵詞: phosphor, gel, sol, solution combustion
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以溶膠-凝膠燃燒合成法合成Zn2SiO4:Mn,探討此種方法於螢光粉體的合成應用及所合成粉體的螢光性質,並與傳統的固相反應法做比較。
      於燃燒合成法的部分,依照矽酸乙酯水解成溶膠、凝膠的狀態,可將反應狀態區分為兩種。不同反應狀態所造成的燃燒過程亦不相同,以下將會探討反應狀態不同對產物的影響,包含了燃燒溫度、產物型態、結晶性、螢光強度,以及煅燒溫度和活化劑離子濃度對螢光強度的影響,並從實驗結果中掌握製程的參數,合成高螢光強度的粉體,與固相反應比較後將會發現溶膠-凝膠燃燒合成法的獨特之處。
      採用溶膠-凝膠燃燒合成法僅需要添加3mol%的Mn離子1200℃煅燒即可得到最高的螢光效率,1000℃煅燒時可得到純矽酸鋅晶相,而固相反應法需要添加4 mol%的Mn離子才能得到最高螢光性質,在1200℃煅燒才能有純矽酸鋅的晶相。

      In this thesis, the solution combustion is used to prepared Zn2SiO4:Mn phosphor.
      In the solution combustion process, because of the different gelation process of TEOS-gel or sol,the reactant can be divided into two different states. The different state induces different reaction process.How reactant state influence combustion product will be discussed, including of firing temperature, morphology, crystallinity and luminescent intensity. Besides, the effect of the calcining temperature and the concentration of activator are also discussed in this thesis. According to the experimental results, process parameters can be well understood. Comparing high luminescent phosphor with traditional solid state synthesis method will show it’s unique difference and homogeneity of the solution combustion.
      In the solution combustion, the highest luminescent intensity can be achieved after calcining at 1200℃ with 3mol% Mn doped. At 1000℃,pure willemite crystal peaks appear in XRD analysis. In solid state method,the highest luminescent intensity can be achieved after calcining at 1200℃ with 4mol% Mn doped. But for solid state method pure willemite crystal peaks only appear in XRD analysis at 1200℃.

    摘要 ……………………………………………………………I Abstract ………………………………………………………II 總目錄 …………………………………………………………III 表目錄 …………………………………………………………VI 圖目錄 ………………………………………………………… VII 第一章、 緒論 ……………………………………………………1 1-1. 前言 ………………………………………………………1 1-2. Zn2SiO4:Mn簡介 …………………………………………2 第二章、 理論基礎和文獻回顧 ………………………………3 2-1. 發光原理 …………………………………………………3 2-2. 能量轉移機構 ……………………………………………3 2-3. 史托克位移 ………………………………………………4 2-4. 影響螢光效率的因素 ……………………………………5 2-4-1. 主體晶格效應 …………………………………………5 2-4-2. 濃度淬滅效應 …………………………………………6 2-4-3. 熱消滅 …………………………………………………7 2-4-4. 毒化 …………………………………………………7 2-5. 螢光材料的分類 ……………………………………… 8 2-5-1. 螢光材料的種類 ……………………………………8 2-5-2. 螢光體的設計 …………………………………………10 2-6. 螢光粉體的合成方法 ……………………………… 11 2-7. 實驗相關變因 ……………………………………………17 第三章、 實驗方法 ………………………………………… 18 3-1. 研究動機 …………………………………………………18 3-2. 藥品 ………………………………………………………18 3-3. 實驗步驟 …………………………………………………19 3-3-1. 溶膠-凝膠燃燒合成法 ………………………… 19 3-3-2. 固相反應法 …………………………………… 22 3-4. 分析儀器及設備 ……………………………………… 23 第四章、 實驗結果與討論 ………………………………… 27 4-1. 溶膠-凝膠燃燒合成法 ………………………………… 27 4-1-1. 溶劑對燃燒合成法的影響 ………………………27 4-1-2. TEOS膠質化過程對溶膠-凝膠燃燒合成法的影響..28 A. 膠質化的過程 …………………………………… 28 B. 燃燒現象 ………………………………………… 29 C. 引燃後產物性質 ………………………………… 32 D. 煅燒後成品性質 ………………………………… 32 4-1-3. 結晶度對螢光性質的影響 .….………………………33 4-1-4. 活化劑離子濃度對螢光效率的影響 ……………… 34 4-2. 固相反應法 ………………………………………………34 4-3. 綜合討論 ………………………………………………… 36 第五章、結論 ………………………………………………… 40 第六章、後續研究建議 ……………………………………… 41 第七章、參考文獻 …………………………………………… 67

    1、劉大鵬,”液晶電視(LCD_TV)發展現況與展望”, 2001
    2、拓墣產業研究所,”2002年光電產業與市場巡戈”, 2002
    3、高弘毅,光電科技,48-50期,88(2003)
    4、林忠成,”矽酸鋅的合成與相變化”, 1994
    5、http://www.webmineral.com/data/Willemite.shtml.
    6、L. S. Rohwer, A. M. Srivastava, Inter., 37(2003)
    7、X. Quyang, A. H. Kitai, T. Xiao, J. Appl. Phys., 79, 3229(1996)
    8、T. Xiao, G. Liu, M. Adams, and A.H. Kitai, Can. J. Phys., 74, 132(1996)
    9、D. Cavouras, Appl. Phys. A, 521,67(1998)
    10、CRC Press, “Phosphor handbook”,1999
    11、Saunders College Pub., ”Principles of Instrumental Analysis”, 5eh,ed.,1998
    12、劉如熹、紀喨勝,”紫外光發光二極體用螢光粉介紹”,2003
    13、G. Blasse, B. C. Grabmaier,” Luminescence Material”, 1994
    14、P. Atkins, L. Jones, ”Chemistry molecules, Matter, and Change”, 3th.ed, 1997
    15、劉如熹、王健源,”白光發光二極體製作技術”, 2001
    16、 S. Cottin, ”Lanthanides and Actinides”,1900
    17、R. C. Ropp, ”Luminescence and the solid state”, 1991
    18、R. Morimo, K. Matae, Mater. Res. Bull., 24,175(1989)
    19、J. Lin, Mater. Sci. Enger., B64, 73(1999)
    20、P. K. Sharma, R. Nass, H. Schmidt, Optical Mater., 10, 161(1997)
    21、R. Morimo, R. Mochinaga, Mater. Res. Bull., 29,751(1989)
    22、Y. C. Kang, S. B. Park, Mater. Res. Bull. , 35,1143(2000)
    23、Y. C. Kang, M. A. Lim, J. Electro. Soc. ,150, H7(2003)
    24、L. Xie, A. Ncormack, J. Solid State Chem, 83,282(1989)
    25、J. Subrahmanyam, M. Vijayakumar, J. Mater. Sci., 27, 6249(1997)
    26、A. G. Merzhanov, I. P. Borovinakaya, Combust. Sci. Technol., 10, 195(1975)
    27、J. McKittrick, L. E. Shea, Displays, 19, 162(1999)
    28、陳興, 工業材料,162, 133(2000)
    29、A. M. Srivastava, C. R. Ronda, Interface, 12, n2, 48(2003)
    30、周明龍,”氮化鋁粉體表面改質及抗濕技術開發”,2001
    31、T. Tani, L. Madler, Part. Part. Syst. Charact. , 19,354(2002)
    32、M.H. Grant, “Encyclopedia of Chemical Technology”, 4th ed,21,
    387(1998)
    33、B. Cho, J. Eur. Cerm. Soc., 20, 1043(2000)
    34、C. Barthou, J. Benoit, Electrochem. Soc., 141, n2, 524(1994)
    35、C. Kittel, ”Introduction to Solid Physics”,1996
    36、M. Hilert ,Acta Metall, 13, 227(1965)
    37、R. N. Bhargava, D. Gallagher, Phys. Rev. Lett. , 72, 416(1994)
    38、H. Song, B. Chen, Appl. Phys. Lett., 81, 1776(2002)
    39、R. Schmechel, M. Kennedy, J. Appl. Phys., 89, 1679(2003)
    40、J. A. Nelson, E. L. Brant, Chem. Mater.,15, 688(2003)
    41、E. T. Goldburt, R. N. Bhargava, J. Lumin., 72-74, 190(1997)
    42、E. van der Kolk, P. Dorenbos, J. Lumin., 87, 1246(2000)

    下載圖示 校內:立即公開
    校外:2004-07-14公開
    QR CODE