| 研究生: |
黃琪文 Huang, Chi-Wen |
|---|---|
| 論文名稱: |
臺灣南部河川與底泥中內分泌干擾活性及有機磷阻燃劑之檢測 Detection of Endocrine Disrupting Activities and Organophosphorus Flame Retardants in Rivers and Sediments from Southern Taiwan Using Bioassays and Instrumental Analysis |
| 指導教授: |
周佩欣
Chou, Pei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 河川 、內分泌干擾物質 、有機磷阻燃劑 、基因重組酵母菌試驗法 、液相層析串聯式質譜儀 |
| 外文關鍵詞: | Rivers, Endocrine disrupting compounds, Organophosphorus flame retardants, Genetic recombinant yeast test, Liquid chromatography tandem mass spectrometer |
| 相關次數: | 點閱:158 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著檢測技術的提升,越來越多存在於環境中的內分泌干擾物質得以被檢測到,這些物質於微量濃度下便足以對河川生物的生殖系統等造成負面影響,進而透過生物鏈對人類健康產生危害。近年來,由於有機鹵化阻燃劑被禁用,有機磷阻燃劑被廣泛的添加在產品中,此類化合物亦曾被報導具有內分泌干擾活性,其環境濃度亦有上升之趨勢。
為了了解臺灣水體環境中內分泌干擾活性分布與有機磷阻燃劑濃度,本研究利用基因重組酵母菌檢測臺灣南部三條河川水體、懸浮固體與其底泥之內分泌干擾活性,包含類(抗)雌激素活性、類(抗)糖皮質激素活性、類(抗)甲狀腺激素活性、類(抗)鹽皮質激素活性與類(抗)孕激素活性,並搭配液相層析串聯式質譜儀檢測樣本中之有機磷阻燃劑濃度。
有機磷阻燃劑的內分泌干擾活性試驗結果顯示六種有機磷阻燃劑,包括Tributyl phosphate (TnBP)、2-Ethylhexyl diphenyl phosphate (EHDPhP)、Triphenyl phosphate (TPhP)與Tris(1,3-dichloropropan-2-yl) phosphate (TDCPP)具有明顯的抗鹽皮質激素活性,Tris(2-ethylhexyl) phosphate (TEHP) 皆表現出抗雌激素及抗糖皮質激素活性。在所有環境樣本中,抗鹽皮質激素活性為測得頻率最高之內分泌干擾活性,水相樣本的當量濃度在5.3-1107.5 μg Spironolactone equivalent (SPL-EQ)/L間,懸浮固相樣本則在9.0-112.2 μg SPL-EQ/L間,而底泥樣本則有19.1-3607.0 μg SPL-EQ/g的當量濃度,測得之第二高頻率為抗糖皮質激素活性,乾季水相樣本當量濃度範圍為1.8-45.3 μg Tetrachlorobisphenol A (TeCBPA)-EQ/L,懸浮固相樣本為3.0-44.8 μg TeCBPA-EQ/L,而底泥樣本為3.8-16.2 μg TeCBPA-EQ/g。
液相層析串聯式質譜儀的分析結果顯示,儘管有機磷阻燃劑的極性皆不高,但多數的物質還是傾向分布在水相樣本當中,這或許是因為其不容易與物質產生鍵結的特性導致。其中,TCPP在水相 (14.1-492.3 ng/L)、懸浮固相 (13.0-223.1 ng/L)與底泥 (26.2-155.8 ng/g)樣本中為主要測得之OPFRs,而TCEP則在所有濕季的懸浮固相 (17.6-147.4 ng/L)與底泥 (22.2-159.0 ng/g)樣本中測得。
With the improvement of detection technology, more and more endocrine disrupting compounds (EDCs) have been detected in the environment. EDCs may cause adverse effects on the reproductive systems of aquatic organisms at low concentrations, and may also harm human health through the food chain concentration. Some EDCs, such as organophosphorus flame retardants (OPFRs), are widely added into products and detected in the environment since halogenated flame retardants (HFRs) had been banned in recent years. Thus, in order to monitor the distribution of endocrine disrupting activity and OPFRs concentrations in the aquatic environment of Taiwan, this study used recombinant yeasts to detect different endocrine disrupting activities of river water, suspended solids and sediments from three rivers located in southern Taiwan, including (anti-)estrogenic activities, (anti-)glucocorticoid activities, (anti-)mineralocorticoid activities, (anti-)progesterone activities and (anti-)thyroid hormone activities. Liquid chromatography tandem mass spectrometer (LC-MS/MS) was also used to investigate the environmental concentrations of OPFRs.
Bioassay results showed that six OPFRs, including tributyl phosphate (TnBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-ethylhexyl) phosphate (TEHP), 2-ethylhexyl diphenyl phosphate (EHDPhP), triphenyl phosphate (TPhP), and tris(1,3-dichloropropan-2-yl) phosphate (TDCPP) exhibited anti-estrogenic and anti-glucocorticoid activities. Anti-mineralocorticoid activities were the most frequently measured endocrine disrupting activity in environmental samples. The equivalent concentrations of the water phase and suspended solid phase samples were between 5.3 to 1107.5 and 9.0 to 112.2 μg Spironolactone equivalent (SPL-EQ)/L, respectively, and the concentrations of sediment samples were between 19.1 to 3607.0 μg SPL-EQ/g. Anti-glucocorticoid activities were also frequently found in environmental samples, and the equivalent concentrations of the dry season water phase and suspended solid phase samples ranged from 1.8 to 45.3 and 3.0 to 44.8 μg Tetrachlorobisphenol A (TeCBPA)-EQ/L, respectively, while the concentrations of sediment samples were 3.8-16.2 μg TeCBPA-EQ/g.
LC-MS/MS results showed that most of the OPFRs tended to be distributed in the water phase samples. Among them, TCPP was the most dominant OPFR detected in water phase (14.1-492.3 ng/L), suspended solid phase (13.0-223.1 ng/L) and sediment (26.2-155.8 ng/g) samples in both seasons, while TCEP was only detected in all suspended solids (17.6-147.4 ng/L) and sediment (22.2-159.0 ng/g) samples in wet season. In addition, the total OPFR concentrations of wet season samples were higher than those of dry season samples.
Abbott, S. R. (1980). Practical aspects of normal-phase chromatography. Journal of Chromatographic Science, 18(10), 540-550.
Andersen, M. L., A Bittencourt, L., Antunes, I., & Tufik, S. (2006). Effects of progesterone on sleep: a possible pharmacological treatment for sleep-breathing disorders? Current Medicinal Chemistry, 13(29), 3575-3582.
Arnold, S. F., Robinson, M. K., Notides, A. C., Guillette Jr, L. J., & McLachlan, J. A. (1996). A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens. Environmental Health Perspectives, 104(5), 544-548.
Ballard, P. L., & Ballard, R. A. (1995). Scientific basis and therapeutic regimens for use of antenatal glucocorticoids. American Journal of Obstetrics and Gynecology, 173(1), 254-262.
Bartalena, L., Bogazzi, F., & Martino, E. (1996). Adverse effects of thyroid hormone preparations and antithyroid drugs. Drug Safety, 15(1), 53-63.
Bechi, N., Ietta, F., Romagnoli, R., Focardi, S., Corsi, I., Buffi, C., & Paulesu, L. (2006). Estrogen-like response to p-nonylphenol in human first trimester placenta and BeWo choriocarcinoma cells. Toxicological Sciences, 93(1), 75-81.
Booth, R. E., Johnson, J. P., & Stockand, J. D. (2002). Aldosterone. Advances in Physiology Education, 26(1), 8-20.
Céspedes, R., Petrovic, M., Raldúa, D., Saura, Ú., Piña, B., Lacorte, S., Viana, P., & Barceló, D. (2004). Integrated procedure for determination of endocrine-disrupting activity in surface waters and sediments by use of the biological technique recombinant yeast assay and chemical analysis by LC–ESI-MS. Analytical and Bioanalytical Chemistry, 378(3), 697-708.
Cadepond, P., F, Ulmann, M., PhD, A, & Baulieu, M., PhD, E-E. (1997). RU486 (mifepristone): mechanisms of action and clinical uses. Annual Review of Medicine, 48(1), 129-156.
Cheng, S. Y., Leonard, J. L., & Davis, P. J. (2010). Molecular aspects of thyroid hormone actions. Endocrine Reviews, 31(2), 139-170.
Corvol, P., Claire, M., Oblin, M. E., Geering, K., & Rossier, B. (1981). Mechanism of the antimineralocorticoid effects of spirolactones. Kidney International, 20(1), 1-6.
Cristale, J., Garcia Vazquez, A., Barata, C., & Lacorte, S. (2013). Priority and emerging flame retardants in rivers: occurrence in water and sediment, Daphnia magna toxicity and risk assessment. Environmental International, 59, 232-243.
Dongré, A. R., Eng, J. K., & Yates III, J. R. (1997). Emerging tandem-mass-spectrometry techniques for the rapid identification of proteins. Trends in biotechnology, 15(10), 418-425.
Duncan, M., & Duncan, G. (1979). An in vivo study of the action of antiglucocorticoids on thymus weight ratio, antibody titre and the adrenal-pituitary-hypothalamus axis. Journal of Steroid Biochemistry, 10(3), 245-259.
Folmar, L. C., Hemmer, M. J., Denslow, N. D., Kroll, K., Chen, J., Cheek, A., Richman, H., Meredith, H., & Grau, E. G. (2002). A comparison of the estrogenic potencies of estradiol, ethynylestradiol, diethylstilbestrol, nonylphenol and methoxychlor in vivo and in vitro. Aquatic Toxicology, 60(1-2), 101-110.
Giulivo, M., Capri, E., Kalogianni, E., Milacic, R., Majone, B., Ferrari, F., Eljarrat, E., & Barcelo, D. (2017). Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins. Science of the Total Environment, 586, 782-791.
Gorga, M., Insa, S., Petrovic, M., & Barcelo, D. (2015). Occurrence and spatial distribution of EDCs and related compounds in waters and sediments of Iberian rivers. Science of the Total Environment, 503-504, 69-86.
Guiochon, G. (2007). Monolithic columns in high-performance liquid chromatography. Journal of Chromatography A, 1168(1-2), 101-168; discussion 100.
Ito-Harashima, S., Shiizaki, K., Kawanishi, M., Kakiuchi, K., Onishi, K., Yamaji, R., & Yagi, T. (2015). Construction of sensitive reporter assay yeasts for comprehensive detection of ligand activities of human corticosteroid receptors through inactivation of CWP and PDR genes. Journal of Pharmacological and Toxicological Methods, 74, 41-52.
Karger, B. L., & Giese, R. W. (1978). Reversed phase liquid chromatography and its application to biochemistry. Analytical Chemistry, 50(12), 1048A-1073A.
Kitamura, S., Kato, T., Iida, M., Jinno, N., Suzuki, T., Ohta, S., Fujimoto, N., Hanada, H., Kashiwagi, K., & Kashiwagi, A. (2005). Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life Sciences, 76(14), 1589-1601.
Klein, I., & Ojamaa, K. (2001). Thyroid hormone and the cardiovascular system. New England Journal of Medicine, 344(7), 501-509.
Krivoshiev, B. V., Dardenne, F., Covaci, A., Blust, R., & Husson, S. J. (2016). Assessing in-vitro estrogenic effects of currently-used flame retardants. Toxicology in Vitro, 33, 153-162.
Kwon, B., Shin, H., Moon, H. B., Ji, K., & Kim, K. T. (2016). Effects of tris(2-butoxyethyl) phosphate exposure on endocrine systems and reproduction of zebrafish (Danio rerio). Environmental Pollution, 214, 568-574.
Lebel, M. H., Freij, B. J., Syrogiannopoulos, G. A., Chrane, D. F., Hoyt, M. J., Stewart, S. M., Kennard, B. D., Olsen, K. D., & McCracken Jr, G. H. (1988). Dexamethasone therapy for bacterial meningitis. New England Journal of Medicine, 319(15), 964-971.
Lee, S., Cho, H. J., Choi, W., & Moon, H. B. (2018). Organophosphate flame retardants (OPFRs) in water and sediment: Occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea. Marine Pollution Bulletin, 130, 105-112.
Lerner, L. J., & Jordan, V. C. (1990). Development of antiestrogens and their use in breast cancer: eighth Cain memorial award lecture. Cancer Research, 50(14), 4177-4189.
Ma, Y., Xie, Z., Lohmann, R., Mi, W., & Gao, G. (2017). Organophosphate ester flame retardants and plasticizers in ocean sediments from the North Pacific to the Arctic Ocean. Environmental science & technology, 51(7), 3809-3815.
Malarvannan, G., Belpaire, C., Geeraerts, C., Eulaers, I., Neels, H., & Covaci, A. (2015). Organophosphorus flame retardants in the European eel in Flanders, Belgium: Occurrence, fate and human health risk. Environmental Research, 140, 604-610.
Marklund, A., Andersson, B., & Haglund, P. (2005). Traffic as a source of organophosphorus flame retardants and plasticizers in snow. Environmental science & technology, 39(10), 3555-3562.
Matthews, J., Celius, T., Halgren, R., & Zacharewski, T. (2000). Differential estrogen receptor binding of estrogenic substances: a species comparison. Journal of Steroid Biochemistry & Molecular Biology, 74(4), 223-234.
Miksicek, R. J. (1994). Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. Journal of Steroid Biochemistry & Molecular Biology 49(2-3), 153-160.
Pecci, A., Alvarez, L. D., Veleiro, A. S., Ceballos, N. R., Lantos, C. P., & Burton, G. (2009). New lead compounds in the search for pure antiglucocorticoids and the dissociation of antiglucocorticoid effects. Journal of Steroid Biochemistry & Molecular Biology, 113(3-5), 155-162.
Reyes, A. J., Leary, W. P., Crippa, G., Maranhao, M. F., & Hernandez-Hernandez, R. (2005). The aldosterone antagonist and facultative diuretic eplerenone: a critical review. European Journal of Internal Medicine, 16(1), 3-11.
Rouledge, E. J., & Sumpter, J. P. (1996). Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry, 15 (3), 241-248.
Schang, G., Robaire, B., & Hales, B. F. (2016). Organophosphate Flame Retardants Act as Endocrine-Disrupting Chemicals in MA-10 Mouse Tumor Leydig Cells. Toxicological Sciences, 150(2), 499-509.
Shiizaki, K., Asai, S., Ebata, S., Kawanishi, M., & Yagi, T. (2010). Establishment of yeast reporter assay systems to detect ligands of thyroid hormone receptors alpha and beta. Toxicology in Vitro, 24(2), 638-644.
Soto, A. M., Sonnenschein, C., Chung, K. L., Fernandez, M. F., Olea, N., & Serrano, F. O. (1995). The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environmental Health Perspectives, 103(suppl 7), 113-122.
Stark, A. R., Carlo, W. A., Tyson, J. E., Papile, L.-A., Wright, L. L., Shankaran, S., Donovan, E. F., Oh, W., Bauer, C. R., & Saha, S. (2001). Adverse effects of early dexamethasone treatment in extremely-low-birth-weight infants. New England Journal of Medicine, 344(2), 95-101.
Valavaara, R., Pyrhönen, S., Heikkinen, M., Rissanen, P., Blanco, G., Thölix, E., Nordman, E., Taskinen, P., Holsti, L., & Hajba, A. (1988). Toremifene, a new antiestrogenic compound, for treatment of advanced breast cancer. Phase II study. European Journal of Cancer and Clinical Oncology, 24(4), 785-790.
Van den Belt, K., Verheyen, R., & Witters, H. (2003). Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens. Ecotoxicology and Environmental Safety, 56(2), 271-281.
Wolschke, H., Suhring, R., Xie, Z., & Ebinghaus, R. (2015). Organophosphorus flame retardants and plasticizers in the aquatic environment: A case study of the Elbe River, Germany. Environmental Pollution, 206, 488-493.
Yamasaki, K., Takeyoshi, M., Yakabe, Y., Sawaki, M., Imatanaka, N., & Takatsuki, M. (2002). Comparison of reporter gene assay and immature rat uterotrophic assay of twenty-three chemicals. Toxicology, 170(1-2), 21-30.
Yu, P. L., Lin, H. W., Wang, S. W., & Wang, P. S. (2011). Effects of nonylphenol on the production of progesterone on the rats granulosa cells. Journal of Cellular Biochemistry, 112(9), 2627-2636.
Zacharewski, T. (1997). In Vitro Bioassays for Assessing Estrogenic Substances. Environmental science & technology, 31 (3), 613-623.
Zhang, Q., Lu, M., Dong, X., Wang, C., Zhang, C., Liu, W., & Zhao, M. (2014). Potential estrogenic effects of phosphorus-containing flame retardants. Environmental science & technology, 48(12), 6995-7001.
Zhang, Q., Wang, J., Zhu, J., Liu, J., & Zhao, M. (2017). Potential glucocorticoid and mineralocorticoid effects of nine organophosphate flame retardants. Environmental science & technology, 51(10), 5803-5810.
Zhang, Z., & Teng, C. T. (2000). Estrogen receptor-related receptor alpha 1 interacts with coactivator and constitutively activates the estrogen response elements of the human lactoferrin gene. Journal of Biological Chemistry, 275(27), 20837-20846.
行政院環保署. (2005). 環境資源資料庫「河川流域污染量」.
行政院環保署. (2019). 環保署環境保護統計年報「重要河川污染指標概況」.
李振華. (2017). 室內粉塵中內分泌干擾活性, 磷系阻燃劑, 溴化阻燃劑, 與多環芳香烴之檢測. 成功大學環境工程學系碩士學位論文, 1-107.
林依鈴. (2012). 臺灣環境水體中類雌激素/類雄激素物質之流布. 成功大學環境工程學系碩士學位論文, 1-123.
施文庭. (2018). 臺灣南部泳池中內分泌干擾活性及有機磷阻燃劑之檢測. 成功大學環境工程學系碩士學位論文, 1-117.
陳勁廷. (2016). 使用生物試驗法與儀器分析檢測臺灣河川和高雄港底泥中之內分泌干擾物質. 成功大學環境工程學系碩士學位論文, 1-128.
陳建勳. (2013). 臺灣水體環境中視網酸 X 受體干擾物質與甲狀腺荷爾蒙受體干擾物質之流布. 成功大學環境工程學系碩士學位論文, 1-132.
陳廣育. (2014). 臺灣河川中內分泌干擾物質之流布及其複合效應之評估. 成功大學環境工程學系碩士學位論文, 1-197.
彭柏頤. (2011). 結合生物試驗法與 LC-MS/MS 檢測台灣河川中類雌激素物質之分布. 成功大學環境工程學系碩士學位論文, 1-103.
經濟部水利署. (2013). 二仁溪治理基本計畫-崇德橋至德和橋河段-含支流牛稠埔溪.
經濟部水利署. (2014). 阿公店溪治理計畫-河口至阿公店水庫溢洪管終點.
經濟部水利署. (2015). 鹽水溪治理計畫-含支流那拔林溪-1-68.
經濟部水利署. (2018). 中華民國107年臺灣水文年報.
葉文琪. (2019). 臺灣國小室內粉塵中內分泌干擾活性及有機磷阻燃劑之檢測. 成功大學環境工程學系碩士學位論文, 1-106.
臺灣質譜學會. (2015). 質譜分析技術原理與應用 (廖寶琦 Ed.). 臺灣: 全華圖書股份有限公司.
鍾孝武. (2009). 以微波輔助萃取搭配氣相層析質譜儀檢測底泥樣品中有機磷耐燃劑之研究. 國立中央大學化學學系碩士學位論文.