| 研究生: |
何育亘 Ho, Yu-Hsuan |
|---|---|
| 論文名稱: |
還原氧化石墨烯於柔性超級電容器之噴墨列印與製程優化研究 Study on Inkjet Printing and Process Optimization of Reduced Graphene Oxide for Flexible Supercapacitors |
| 指導教授: |
陳以文
Chen, Peter I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 微型超級電容器 、還原氧化石墨烯 、噴墨印刷 |
| 外文關鍵詞: | micro-supercapacitor, reduced graphene oxide, Inkjet printing |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Kour, S., Tanwar, S., and Sharma, A. A review on challenges to remedies of MnO2 based transition-metal oxide, hydroxide, and layered double hydroxide composites for supercapacitor applications. Mater. Today Commun., 32, 104033, 2022.
2. Karthikeyan, S., Narenthiran, B., Sivanantham, A., Bhatlu, L. D., and Maridurai, T. Supercapacitor: Evolution and review. Mater. Today Proc., 46, 3984-3988, 2021.
3. Jiang, Y. and Liu, J. Definitions of pseudocapacitive materials: A brief review. Energy Environ. Sci., 2 (1), 30-37, 2019.
4. Şahin, M. E., Blaabjerg, F., and Sangwongwanich, A. A comprehensive review on supercapacitor applications and developments. Energies, 15 (3), 674, 2022.
5. Standen, M., School of chemistry, University of Bristol, 2021.
6. Li, K.-B., Shi, D.-W., Cai, Z.-Y., Zhang, G.-L., Huang, Q.-A., Liu, D., and Yang, C.-P. Studies on the equivalent serial resistance of carbon supercapacitor. Electrochim. Acta, 174, 596-600, 2015.
7. Uddin, M. S., Das, H. T., Maiyalagan, T., and Elumalai, P. Influence of designed electrode surfaces on double layer capacitance in aqueous electrolyte: Insights from standard models. Appl. Surf. Sci., 449, 445-453, 2018.
8. Zhang, L. L. and Zhao, X. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev., 38 (9), 2520-2531, 2009.
9. Dey, R. S. and Kumar, D. Carbonaceous materials for next-generation flexible supercapacitors. Rev. Adv. Sci. Eng., 5 (1), 32-50, 2016.
10. Wang, K., Chao, Y., Chen, Z., Sayyar, S., Wang, C., and Wallace, G. Wet spinning of hollow graphene fibers with high capacitance. Chem. Eng. J., 453, 139920, 2023.
11. Kyeremateng, N. A., Brousse, T., and Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol., 12 (1), 7-15, 2017.
12. Qin, J., Das, P., Zheng, S., and Wu, Z.-S. A perspective on two-dimensional materials for planar micro-supercapacitors. APL Materials, 7 (9), 2019.
13. Yun, X., Lu, B., Xiong, Z., Jia, B., Tang, B., Mao, H., Zhang, T., and Wang, X. Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Adv., 9 (50), 29384-29395, 2019.
14. Zhang, C. J., McKeon, L., Kremer, M. P., Park, S.-H., Ronan, O., Seral-Ascaso, A., Barwich, S., Coileáin, C. Ó., McEvoy, N., and Nerl, H. C., Additive-free MXene inks and direct printing of micro-supercapacitors, in MXenes, Jenny Stanford Publishing. 463-485, 2023.
15. Li, B., Hu, N., Su, Y., Yang, Z., Shao, F., Li, G., Zhang, C., and Zhang, Y. Direct inkjet printing of aqueous inks to flexible all-solid-state graphene hybrid micro-supercapacitors. ACS Appl. Mater. Interfaces, 11 (49), 46044-46053, 2019.
16. Wu, Z.-S., Parvez, K., Feng, X., and Müllen, K. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. J. Mater. Chem. A, 2 (22), 8288-8293, 2014.
17. El-Kady, M. F. and Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun., 4 (1), 1475, 2013.
18. El-Kady, M. F., Strong, V., Dubin, S., and Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 335 (6074), 1326-1330, 2012.
19. Li, L., Zhang, J., Peng, Z., Li, Y., Gao, C., Ji, Y., Ye, R., Kim, N. D., Zhong, Q., and Yang, Y. High‐performance pseudocapacitive microsupercapacitors from laser‐induced graphene. Adv. Mater., 28 (5), 838-845, 2016.
20. He, P., Cao, J., Ding, H., Liu, C., Neilson, J., Li, Z., Kinloch, I. A., and Derby, B. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Appl. Mater. Interfaces, 11 (35), 32225-32234, 2019.
21. Xiong, Z., Yun, X., Qiu, L., Sun, Y., Tang, B., He, Z., Xiao, J., Chung, D., Ng, T. W., and Yan, H. A dynamic graphene oxide network enables spray printing of colloidal gels for high‐performance micro‐supercapacitors. Adv. Mater., 31 (16), 1804434, 2019.
22. Xiao, H., Wu, Z.-S., Chen, L., Zhou, F., Zheng, S., Ren, W., Cheng, H.-M., and Bao, X. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano, 11 (7), 7284-7292, 2017.
23. Kang, S. H., Kim, I. G., Kim, B. N., Sul, J. H., Kim, Y. S., and You, I. K. Facile fabrication of flexible in‐plane graphene micro‐supercapacitor via flash reduction. ETRI Journal, 40 (2), 275-282, 2018.
24. Li, D., Yang, S., Chen, X., Lai, W.-Y., and Huang, W. 3D wearable fabric-based micro-supercapacitors with ultra-high areal capacitance. Adv. Funct. Mater., 31 (50), 2107484, 2021.
25. Gao, C., Gu, Y., Zhao, Y., and Qu, L. Recent development of integrated systems of microsupercapacitors. Energy Mater. Adv., 2022.
26. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D.-e., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. Electric field effect in atomically thin carbon films. Science, 306 (5696), 666-669, 2004.
27. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., and Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater., 2 (8), 1-15, 2017.
28. Roy, S., Zhang, X., Puthirath, A. B., Meiyazhagan, A., Bhattacharyya, S., Rahman, M. M., Babu, G., Susarla, S., Saju, S. K., and Tran, M. K. Structure, properties and applications of two‐dimensional hexagonal boron nitride. Adv. Mater., 33 (44), 2101589, 2021.
29. Shanmugam, V., Mensah, R. A., Babu, K., Gawusu, S., Chanda, A., Tu, Y., Neisiany, R. E., Försth, M., Sas, G., and Das, O. A review of the synthesis, properties, and applications of 2D materials. Part. Part. Syst. Charact., 39 (6), 2200031, 2022.
30. Lei, Z. L. and Guo, B. 2D material‐based optical biosensor: Status and prospect. Adv. Sci., 9 (4), 2102924, 2022.
31. Yang, S., Jiang, C., and Wei, S.-h. Gas sensing in 2D materials. Appl. Phys. Rev., 4 (2), 2017.
32. Cui, H., Guo, Y., Ma, W., and Zhou, Z. 2 d materials for electrochemical energy storage: Design, preparation, and application. ChemSusChem, 13 (6), 1155-1171, 2020.
33. Shim, J., Park, H. Y., Kang, D. H., Kim, J. O., Jo, S. H., Park, Y., and Park, J. H. Electronic and optoelectronic devices based on two‐dimensional materials: From fabrication to application. Adv. Electron. Mater., 3 (4), 1600364, 2017.
34. Peng, Y., Que, M., Tao, J., Wang, X., Lu, J., Hu, G., Wan, B., Xu, Q., and Pan, C. Progress in piezotronic and piezo-phototronic effect of 2D materials. 2D Mater., 5 (4), 042003, 2018.
35. Tiwari, S. K., Sahoo, S., Wang, N., and Huczko, A. Graphene research and their outputs: Status and prospect. J. Sci.: Adv. Mater. Devices, 5 (1), 10-29, 2020.
36. Coroş, M., Pruneanu, S., and Stefan-van Staden, R.-I. Recent progress in the graphene-based electrochemical sensors and biosensors. J. Electrochem. Soc., 167 (3), 037528, 2019.
37. Kheirabadi, N. and Shafiekhani, A. Graphene/Li-ion battery. J. Appl. Phys., 112 (12), 2012.
38. Ran, J., Liu, Y., Feng, H., Shi, H., and Ma, Q. A review on graphene-based electrode materials for supercapacitor. J. Ind. Eng. Chem., 2024.
39. Mahmoudi, T., Wang, Y., and Hahn, Y.-B. Graphene and its derivatives for solar cells application. Nano Energy, 47, 51-65, 2018.
40. Šedajová, V., Bakandritsos, A., Błoński, P., Medveď, M., Langer, R., Zaoralová, D., Ugolotti, J., Dzíbelová, J., Jakubec, P., and Kupka, V. Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy & Environmental Science, 15 (2), 740-748, 2022.
41. Abdolmaleki, A., Mohamadi, Z., Fashandi, H., and Bazyar, Z. Synergistic contribution of sulfonated poly (ether sulfone) and iminodiacetic acid functionalized-graphene oxide nanosheets towards enhancing cationic dye wastewater purification using nanocomposite membranes. Chem. Eng. J., 481, 148622, 2024.
42. Han, Z.-y., Huang, L.-J., Qu, H.-J., Wang, Y.-x., Zhang, Z.-J., Rong, Q.-L., Sang, Z.-Q., Wang, Y., Kipper, M. J., and Tang, J.-g. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. J. Mater. Sci., 56, 9545-9574, 2021.
43. Itoo, A. M., Vemula, S. L., Gupta, M. T., Giram, M. V., Kumar, S. A., Ghosh, B., and Biswas, S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J. Controlled Release, 350, 26-59, 2022.
44. Tang, X., Debliquy, M., Lahem, D., Yan, Y., and Raskin, J.-P. A review on functionalized graphene sensors for detection of ammonia. Sensors, 21 (4), 1443, 2021.
45. Labiano, I. I. and Alomainy, A. Flexible inkjet-printed graphene antenna on kapton. Flex. Print. Electron., 6 (2), 025010, 2021.
46. Zhang, R., Lv, S., Li, Z., Dong, Y., Zhao, Y., Gong, W., Sun, Y., Zou, X., Lu, X., and Yuan, G. Low-power-consumption electronic skins based on carbon nanotube/graphene hybrid films for human–machine interactions and wearable devices. ACS Appl. Nano Mater., 6 (13), 12338-12350, 2023.
47. Madurani, K. A., Suprapto, S., Machrita, N. I., Bahar, S. L., Illiya, W., and Kurniawan, F. Progress in graphene synthesis and its application: History, challenge and the future outlook for research and industry. ECS J. Solid State Sci. Technol., 9 (9), 093013, 2020.
48. Surani, A., Rashid, A., Arshad, N., and Hakim, A. High-yield and stepwise synthesis of graphene oxide by modified Hummers’ method. Int. J. Nanoelectron. Mater., 12 (4), 0, 2019.
49. Farjadian, F., Abbaspour, S., Sadatlu, M. A. A., Mirkiani, S., Ghasemi, A., Hoseini‐Ghahfarokhi, M., Mozaffari, N., Karimi, M., and Hamblin, M. R. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. ChemistrySelect, 5 (33), 10200-10219, 2020.
50. Guerrero-Contreras, J. and Caballero-Briones, F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys., 153, 209-220, 2015.
51. Talyzin, A. V., Mercier, G., Klechikov, A., Hedenström, M., Johnels, D., Wei, D., Cotton, D., Opitz, A., and Moons, E. Brodie vs Hummers graphite oxides for preparation of multi-layered materials. Carbon, 115, 430-440, 2017.
52. Poh, H. L., Šaněk, F., Ambrosi, A., Zhao, G., Sofer, Z., and Pumera, M. Graphenes prepared by staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale, 4 (11), 3515-3522, 2012.
53. Chen, X., Qu, Z., Liu, Z., and Ren, G. Mechanism of oxidization of graphite to graphene oxide by the Hummers method. ACS Omega, 7 (27), 23503-23510, 2022.
54. Chen, J., Yao, B., Li, C., and Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229, 2013.
55. Chen, J., Li, Y., Huang, L., Li, C., and Shi, G. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 81, 826-834, 2015.
56. Farooq, N., ur Rehman, Z., Hareem, A., Masood, R., Ashfaq, R., Fatimah, I., Hussain, S., Ansari, S. A., and Parveen, N. Graphene oxide and based materials: Synthesis, properties, and applications–a comprehensive. MatSci Express, 1 (04), 185-231, 2024.
57. Dreyer, D. R., Park, S., Bielawski, C. W., and Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev., 39 (1), 228-240, 2010.
58. Silva, T. A., Zanin, H., Saito, E., Medeiros, R. A., Vicentini, F. C., Corat, E. J., and Fatibello-Filho, O. Electrochemical behaviour of vertically aligned carbon nanotubes and graphene oxide nanocomposite as electrode material. Electrochim. Acta, 119, 114-119, 2014.
59. Islam, T., Hasan, M. M., Sarker, S., and Ahammad, A. S. Intrinsic properties of GO/RGO bilayer electrodes dictate their inter-/intralayer intractability to modulate their capacitance performance. ACS Omega, 8 (15), 14013-14024, 2023.
60. Chauhan, K., Cho, E., and Kim, D.-E., Graphene oxide and nucleic acids, in Handbook of chemical biology of nucleic acids, Springer. 1-31, 2022.
61. Chua, C. K. and Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev., 43 (1), 291-312, 2014.
62. Sengupta, I., Chakraborty, S., Talukdar, M., Pal, S. K., and Chakraborty, S. Thermal reduction of graphene oxide: How temperature influences purity. J. Mater. Res., 33 (23), 4113-4122, 2018.
63. Jakhar, R., Yap, J. E., and Joshi, R. Microwave reduction of graphene oxide. Carbon, 170, 277-293, 2020.
64. Gao, X., Jang, J., and Nagase, S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C, 114 (2), 832-842, 2010.
65. Pei, S., Zhao, J., Du, J., Ren, W., and Cheng, H.-M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48 (15), 4466-4474, 2010.
66. De Silva, K., Huang, H.-H., Joshi, R., and Yoshimura, M. Chemical reduction of graphene oxide using green reductants. Carbon, 119, 190-199, 2017.
67. Guex, L. G., Sacchi, B., Peuvot, K. F., Andersson, R. L., Pourrahimi, A. M., Ström, V., Farris, S., and Olsson, R. T. Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale, 9 (27), 9562-9571, 2017.
68. Liu, W. and Speranza, G. Chemical reduction of GO: Comparing hydroiodic acid and sodium borohydride chemical approaches by X-ray photoelectron spectroscopy. C, 8 (2), 20, 2022.
69. Ramamoorthy, H., Buapan, K., Chiawchan, T., Thamkrongart, K., and Somphonsane, R. Exploration of the temperature-dependent correlations present in the structural, morphological and electrical properties of thermally reduced free-standing graphene oxide papers. J. Mater. Sci., 56, 15134-15150, 2021.
70. Secor, E. B., Prabhumirashi, P. L., Puntambekar, K., Geier, M. L., and Hersam, M. C. Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett., 4 (8), 1347-1351, 2013.
71. Shin, K.-Y., Hong, J.-Y., and Jang, J. Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv. Mater., 23 (18), 2113-2118, 2011.
72. Le, L. T., Ervin, M. H., Qiu, H., Fuchs, B. E., and Lee, W. Y. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun., 13 (4), 355-358, 2011.
73. Pham, M.-H., Khazaeli, A., Godbille-Cardona, G., Truica-Marasescu, F., Peppley, B., and Barz, D. P. Printing of graphene supercapacitors with enhanced capacitances induced by a leavening agent. J. Energy Storage, 28, 101210, 2020.
74. Moon, G. D., Joo, J. B., and Yin, Y. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors. Nanoscale, 5 (23), 11577-11581, 2013.
75. Jiang, L., Jiang, Q., Liu, Q., Peng, J., Gao, Y., Duan, Z., Hu, A., and Lu, X. Preparation of CNT/RGO macroscopic body by partially stripping CNT and its energy storage performances. Diamond and Related Materials, 88, 1-5, 2018.
76. Yan, M., Jiang, F., Liu, Y., Sun, L., Bai, H., Zhu, F., and Shi, W. Flexible mixed metal oxide hollow spheres/RGO hybrid lamellar films for high performance supercapacitors. Colloids Surf., A, 612, 125902, 2021.
77. Kumar, R., Singh, R. K., Vaz, A. R., Savu, R., and Moshkalev, S. A. Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces, 9 (10), 8880-8890, 2017.
78. Kosukoglu, T., Carpan, M., Tokgoz, S. R., and Peksoz, A. Fabrication of a new rGO@ PPy/SS composite electrode with high energy storage and long cycling life for potential applications in supercapacitors. Mater. Sci. Eng. B, 286, 116032, 2022.
79. Fan, X., Yang, Z., and He, N. Hierarchical nanostructured polypyrrole/graphene composites as supercapacitor electrode. Rev. Adv. Sci. Eng., 5 (20), 15096-15102, 2015.
80. Hsu, H. H. and Zhong, W. Nanocellulose-based conductive membranes for free-standing supercapacitors: A review. Membranes, 9 (6), 74, 2019.
81. Tian, H., Qin, J., Hou, D., Li, Q., Li, C., Wu, Z. S., and Mai, Y. General interfacial self‐assembly engineering for patterning two‐dimensional polymers with cylindrical mesopores on graphene. Angew. Chem. Int. Ed., 131 (30), 10279-10284, 2019.
82. Mohamad, A. A. Cyclic voltammetry of hybrid supercapacitors: A characterization review. Inorg. Chem. Commun., 113677, 2024.
83. Karlsson, A., Electrohydrodynamic printing of supercapacitors, Acta Universitatis Upsaliensis, 2024.
84. Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., and Dempsey, J. L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ., 95 (2), 197-206, 2018.
85. Pan, X., Supiyeva, Z., Wang, Z., and Abbas, Q. Progress and challenges of zinc ion capacitors: From basic principles to performance optimization strategies. Chem. Eng. J., 163974, 2025.
86. Lazanas, A. C. and Prodromidis, M. I. Electrochemical impedance spectroscopy─ a tutorial. ACS Meas. Sci. Au., 3 (3), 162-193, 2023.
87. Xie, J., Yang, P., Wang, Y., Qi, T., Lei, Y., and Li, C. M. Puzzles and confusions in supercapacitor and battery: Theory and solutions. J. Power Sources, 401, 213-223, 2018.
88. Poulose, A., Shibina, T., Sreejith, T., Mercy, A. S., Das, D., Haritha, K., Sijo, A., Mathew, G., and S, P. K., Characterization of nontoxic nanomaterials for biological applications, in Biomedical applications and toxicity of nanomaterials, Springer. 363-400, 2023.
89. Akhtar, K., Khan, S. A., Khan, S. B., and Asiri, A. M., Scanning electron microscopy: Principle and applications in nanomaterials characterization, in Handbook of materials characterization, Springer. 2018.
90. Ghasempour-Mouziraji, M., Lagarinhos, J., Afonso, D., and de Sousa, R. A. A review study on metal powder materials and processing parameters in laser metal deposition. Opt. Laser Technol., 170, 110226, 2024.
91. Delrue, C., De Bruyne, S., and Speeckaert, M. M. Unlocking the diagnostic potential of saliva: A comprehensive review of infrared spectroscopy and its applications in salivary analysis. J. Pers. Med., 13 (6), 907, 2023.
92. Mohamed, M. A., Jaafar, J., Ismail, A., Othman, M., and Rahman, M., Fourier transform infrared (FTIR) spectroscopy, in Membrane characterization, Elsevier. 3-29, 2017.
93. Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D., and Valev, V. K. Raman techniques: Fundamentals and frontiers. Nanoscale Res. Lett., 14, 1-34, 2019.
94. Hu, X., Cai, J., Yu, Z., Liu, J., Tang, Z., and Yang, S. The development of exothermic surface reaction between coal and oxygen affected by methane during coal spontaneous combustion in gob. Case Stud. Therm. Eng., 61, 105086, 2024.
95. Bindu, S., Panda, S. K., and Rekha, P. Estimation of depletion layer thickness in PEDOT-PSS films. in 2022 3rd International Conference for Emerging Technology (INCET), IEEE,1-5, 2022.
96. Hummers Jr, W. S. and Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc., 80 (6), 1339-1339, 1958.
97. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., and Tour, J. M. Improved synthesis of graphene oxide. ACS Nano, 4 (8), 4806-4814, 2010.
98. Al-Gaashani, R., Zakaria, Y., Lee, O.-S., Ponraj, J., Kochkodan, V., and Atieh, M. A. Effects of preparation temperature on production of graphene oxide by novel chemical processing. Ceram. Int., 47 (7), 10113-10122, 2021.
99. Surekha, G., Krishnaiah, K. V., Ravi, N., and Suvarna, R. P. FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. in Journal of Physics: Conference Series, IOP Publishing, 1495 (1), 012012, 2020.
100. Strankowski, M., Włodarczyk, D., Piszczyk, Ł., and Strankowska, J. Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. J. Spectrosc., 2016 (1), 7520741, 2016.
101. Gong, Y., Li, D., Fu, Q., and Pan, C. Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci. Mater. Int., 25 (5), 379-385, 2015.
102. Eigler, S. and Dimiev, A. M., Graphene oxide: Fundamentals and applications. John Wiley & Sons. 2016.
103. Ebrahimi Naghani, M., Neghabi, M., Zadsar, M., and Abbastabar Ahangar, H. Synthesis and characterization of linear/nonlinear optical properties of graphene oxide and reduced graphene oxide-based zinc oxide nanocomposite. Sci. Rep, 13 (1), 1496, 2023.
104. Shi, Q., Hou, C., Wang, H., Zhang, Q., and Li, Y. Rapid formation of superelastic 3D reduced graphene oxide networks with simultaneous removal of hi utilizing nir irradiation. J. Mater. Chem. A, 3 (18), 9882-9889, 2015.
105. Leo, I. M., Soto, E., Vaquero, F., Mota, N., Garcia, B., Liuzzi, D., Guil-López, R., Navarro, R., and Fierro, J. Influence of the reduction of graphene oxide with hydroiodic acid on the structure and photoactivity of CdS–rGO hybrids. Top. Catal., 60 (15), 1183-1195, 2017.
106. Ucar Kaya, M., Yurderi, M., and Zahmakiran, M. Preparation and characterization of RhFe/g-C3N4 nanoparticles for efficienthydrolysis of sodium borohydride. Turk. J. Chem., 49 (1), 68-78, 2025.
107. Mohan, J. C., Praveen, G., Chennazhi, K., Jayakumar, R., and Nair, S. Functionalised gold nanoparticles for selective induction of in vitro apoptosis among human cancer cell lines. J. Exp. Nanosci., 8 (1), 32-45, 2013.
108. Hsueh, C.-L., Liu, C.-H., Chen, B.-H., Chen, C.-Y., Kuo, Y.-C., Hwang, K.-J., and Ku, J.-R. Regeneration of spent-NaBH4 back to NaBH4 by using high-energy ball milling. Int. J. Hydrogen Energy, 34 (4), 1717-1725, 2009.
109. Lang, C., Jia, Y., Liu, J., Wang, H., Ouyang, L., Zhu, M., and Yao, X. Nabh4 regeneration from NaBO2 by high-energy ball milling and its plausible mechanism. Int. J. Hydrogen Energy, 42 (18), 13127-13135, 2017.
110. Šimek, P., Klímová, K., Sedmidubský, D., Jankovský, O., Pumera, M., and Sofer, Z. Towards graphene iodide: Iodination of graphite oxide. Nanoscale, 7 (1), 261-270, 2015.
111. Li, J., Sollami Delekta, S., Zhang, P., Yang, S., Lohe, M. R., Zhuang, X., Feng, X., and Ostling, M. Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano, 11 (8), 8249-8256, 2017.
112. Delekta, S. S., Adolfsson, K. H., Erdal, N. B., Hakkarainen, M., Östling, M., and Li, J. Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte. Nanoscale, 11 (21), 10172-10177, 2019.
113. Li, Z., Ruiz, V., Mishukova, V., Wan, Q., Liu, H., Xue, H., Gao, Y., Cao, G., Li, Y., and Zhuang, X. Inkjet printed disposable high‐rate on‐paper microsupercapacitors. Adv. Funct. Mater., 32 (1), 2108773, 2022.
114. Wang, Y., Zhang, Y.-Z., Dubbink, D., and ten Elshof, J. E. Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano energy, 49, 481-488, 2018.
115. Bräuniger, Y., Lochmann, S., Grothe, J., Hantusch, M., and Kaskel, S. Piezoelectric inkjet printing of nanoporous carbons for micro-supercapacitor devices. ACS Appl. Energy Mater., 4 (2), 1560-1567, 2021.
116. Belal, M. A., Yousry, R., Taulo, G., AbdelHamid, A. A., Rashed, A. E., and El-Moneim, A. A. Layer-by-layer inkjet-printed manganese oxide nanosheets on graphene for high-performance flexible supercapacitors. ACS Appl. Mater. Interfaces, 15 (46), 53632-53643, 2023.
117. Coelho, J., Correia, R. F., Silvestre, S., Pinheiro, T., Marques, A. C., Correia, M. R. P., Pinto, J. V., Fortunato, E., and Martins, R. Based laser-induced graphene for sustainable and flexible microsupercapacitor applications. Microchim. Acta, 190 (1), 40, 2023.
118. Zhao, Y., Zhao, M., Guo, S., Chen, K., Guo, Y., and Zhao, J. Screen-printed CuO/LIG nanocomposite-enabled bifunctional planar micro-supercapacitors with self-sensing piezoresistive capability. Surf. Interfaces, 106798, 2025.
119. Panghal, A., Singh, T., Deepak, D., Kumar, R., and Roy, S. S. Fabrication of nickel decorated laser-induced graphene for flexible wearable microsupercapacitors. J. Energy Storage, 115, 115981, 2025.
120. Fornasini, L., Scaravonati, S., Magnani, G., Morenghi, A., Sidoli, M., Bersani, D., Bertoni, G., Aversa, L., Verucchi, R., and Riccò, M. In situ decoration of laser-scribed graphene with TiO2 nanoparticles for scalable high-performance micro-supercapacitors. Carbon, 176, 296-306, 2021.
121. Parmeggiani, M., Zaccagnini, P., Stassi, S., Fontana, M., Bianco, S., Nicosia, C., Pirri, C. F., and Lamberti, A. PDMS/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes. ACS Appl. Mater. Interfaces, 11 (36), 33221-33230, 2019.
122. Shao, Y., Li, J., Li, Y., Wang, H., Zhang, Q., and Kaner, R. B. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz., 4 (6), 1145-1150, 2017.
123. Soroush, E., Zargar, S. A., Dolatsara, R. A., Khachatourian, A. M., and Golmohammad, M. Facile fabrication of copper-based metal-organic-framework/graphene hybrid supported on highly stretchable wooden substrate for in-plane micro-supercapacitor with potential applications as wearable devices. Electrochim. Acta, 521, 145905, 2025.
124. Lee, S. H., Lee, J., Jung, J., Cho, A. R., Jeong, J. R., Dang Van, C., Nah, J., and Lee, M. H. Enhanced electrochemical performance of micro-supercapacitors via laser-scribed cobalt/reduced graphene oxide hybrids. ACS Appl. Mater. Interfaces, 13 (16), 18821-18828, 2021.
125. Sollami Delekta, S., Ostling, M., and Li, J. Wet transfer of inkjet printed graphene for microsupercapacitors on arbitrary substrates. ACS Appl. Energy Mater., 2 (1), 158-163, 2018.
126. Lee, Y., Park, S. B., Kim, K.-W., Jo, H., Kim, J. K., Kim, S. H., Lim, S., Lee, S. W., and Choi, C.-H. Effective and scalable graphene ink production for printed microsupercapacitors. Ind. Eng. Chem. Res., 64 (14), 7507-7515, 2025.
127. Pei, Z., Hu, H., Liang, G., and Ye, C. Carbon-based flexible and all-solid-state micro-supercapacitors fabricated by inkjet printing with enhanced performance. Nano-Micro Lett., 9, 1-11, 2017.
128. Islam, M. R., Afroj, S., Novoselov, K. S., and Karim, N. Inkjet‐printed 2D heterostructures for smart textile micro‐supercapacitors. Adv. Funct. Mater., 34 (52), 2410666, 2024.
129. Kwon, S., Lee, T., Choi, H.-J., Ahn, J., Lim, H., Kim, G., Choi, K.-B., and Lee, J. Scalable fabrication of inkless, transfer-printed graphene-based textile microsupercapacitors with high rate capabilities. J. Power Sources, 481, 228939, 2021.
130. Zhao, J., Zhao, M., Li, J., Gao, J., and Xu, R. Screen-printed all-in-one pressure sensor with integrated microsupercapacitor. IEEE Sens. J., 23 (20), 25299-25306, 2023.
131. Chen, H., Liu, Y., Zhang, G., and Chen, M. Surface engineering of paper via binary graphene inks for sustainable micro-supercapacitor with innovative architecture. Appl. Surf. Sci., 684, 161966, 2025.
132. Chaney, L. E., Hyun, W. J., Khalaj, M., Hui, J., and Hersam, M. C. Fully printed, high‐temperature micro‐supercapacitor arrays enabled by a hexagonal boron nitride ionogel electrolyte. Adv. Mater., 36 (52), 2305161, 2024.
校內:2026-08-27公開