| 研究生: |
林承翰 Lin, Cheng-Han |
|---|---|
| 論文名稱: |
研究以氧化物備製電容結構之電阻式記憶體 Investigation of Oxide-Based Materials Applied to Resistive Random Access Memory with Structure of Capacitor |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 氧化物材料 、非揮發性記憶體 、電阻式隨機存取記憶體 |
| 外文關鍵詞: | oxide-based materials, nonvolatile memory (NVM), resistive random access memory (RRAM) |
| 相關次數: | 點閱:70 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,以一些常見的氧化物做為電阻式隨機存取記憶體的氧化層,在材料的選用上,主要以高絕緣並且為半導體產業常使用的氧化物為主。
首先,在室溫下,我們探討以TiO2 做為阻值轉換層的電阻式記憶體的製備方法與電特性。因為實驗內容探討退火對元件產生的影響,因此以X光光電子能譜儀(XPS)分析射頻磁控濺鍍所製備的TiO2 薄膜,分析所獲得的數據曲線,可以確認此薄膜是以TiO2 在各種退火溫度下的組成改變趨勢。製備完成的元件,在100毫伏電壓的操作下,可在有著雙極性電阻轉換特性的直流操作下運作超過1000次的次
數,並且有著超過10000 秒的穩定記憶特性。根據動態與靜態量測的數據中,計算標準差探討退火製程對所備製的電阻式記憶體造成的效益,而利用累積概率能了解元件在靜態量測下的表現。
另一部分,本論文以Pt/MgZnO/Pt與ITO/MgZnO/Pt為架構的電阻式隨機存取記憶體的製備方法與電特性。製備完成的記憶體,能夠完成超過500次的操作次數,會在100毫伏電壓下,有著超過10000 秒的穩定記憶特性,並有雙極性電阻轉換特性。利用分析電流-電壓曲線,可以探討載子的傳導機制;在Set過程中,起初電壓電流呈現一次線性關係,在逐漸增加電壓的過程中,電流隨電壓上升的幅度趨緩且為與電壓平方成正相關,此時傳導機制進入空間電荷限電流值,最後當電壓到達VSET,導電路徑成功形成,元件進入導通狀態。
最後,為了達到更好的高阻態與低組態之穩定性,我們研究以ITO/TiO2/MgZnO/ITO 的雙層氧化物結構之電阻式記憶體開關電特性。製備完成的元件,一樣表現出雙極性電阻轉換特性,並有效降低在高電阻態與低電阻態的標準差,且維持優良的記憶體開關比,意味著雙層結構是改善記憶體特性的重要方法之一。
In this thesis, a few kinds of common and high-κ oxide-based materials are applied as the resistive switching layers of resistive random access memory (RRAM) devices and the characteristics are investigated.
In the beginning, the fabrication and characterization of the devices with TiO2 resistive switching layers are reported. In order to research in how annealing temperature influences RRAM devices, we analyze X-ray photoelectron spectroscopy (XPS) spectrum of the annealed TiO2 films fabricated by RF sputter to confirm the TiO2 phase and investigate the trend. The fabricated devices exhibit over one thousand DC switching cycles and shows bipolar resistance switching behavior. Moreover, stable retention test for over 104 s under a 100 mV stress is carried out successfully. According to dynamic and static test, we calculate the standard deviation to explore how annealing process impacts on RRAM devices. Furthermore, cumulative probability plots demonstrate the static performance of the devices.
The other part is described the fabrication and analysis of the RRAM cell with Pt/MgZnO/Pt and ITO/MgZnO/Pt structures. The fabricated device shows over five hundreds DC switching times and displays stable retention test for over 104 s under 100 mV stress that exhibits bipolar switching behavior. With I-V curves fitting method, we can analyze the conductive mechanism of the devices. In set process is firstly dominated by Ohmic conduction since current is proportional to applied voltage and then transforms to the space-charge-limited-current(SCLC) process which current is proportional to square of applied voltage in the high resistance state. Finally, conduction filaments form successfully and turns into low resistance state when applied voltage sweeps to VSET.
Finally, in order to improve stability of high resistance state and low resistance state, we investigate the characteristics of bilayer (two oxide layer) structure : ITO/TiO2/MgZnO/ITO RRAM device. The fabricated device shows bipolar switching behavior as well and bring forth lower standard deviation of high resistance state and low resistance state; moreover, it can maintain good ratio of RHRS /RLRS. The bilayer structure reveals a critical method to improve the characteristics of RRAM devices.
CH.1
[1] Wei-Kang Hsieh, “Investigation of Oxide-Based Materials Applied to Nonvolatile Memory Devices,” Ph. D. disseration, NCKU, pp. 1-3, June 2016.
[2] Chung H. Lam, “Storage Class Memory,” IEEE ICSICT, pp. 1080-1083, 2010.
[3] S.K. Moore, “Multicore Is Bad News For Supercomputers,” IEEE Spectrun ,vol. 45, issue 11, pp. 15, November 2008.
[4] Dao Li-Ming, “Development and Challenges of the New Non-volatile Memory,” NANO COMMUNICATION, 21(3), pp.9 - 14, 2014.
[5] R.F. Frietas and W.W. Wilcke, “Storage-class memory: the next storage system technology,” IBM J. of Res. and Dev., v. 25, p.439, 2008.
[6] Said Hamdioui, Peyman Pouyan, Huawei Li, Ying Wang, Arijit Raychowdhur and Insik Yoon, “Test and Reliability of Emerging Non-Volatile Memories,” IEEE 26th Asian Test Symposium (ATS), 2377-5386, Nov. 2017.
[7] L. Savtchenko, B. Engel, N. Rizzo, M. Deherrera, and J. Janesky, “Method of writing to scalable magnetoresistance random access memory element,” U.S. Patent 6545906 B1, 2003.
[8] D. Apalkov, et al., “Magnetoresistive Random Access Memory, IEEE Proceedings, v. 104, no. 10, pp. 1796-1830, 2016.
[9] ElectronicDesign, “4-Mbit device is first commercially available MRAM,” Jul. 2006.
[10] N. D. Rizzo et al., “A fully functional 64 Mb DDR3 ST-MRAM built on 90 nm CMOS Technology,” IEEE Trans. Magn., v. 49, no. 7, pp. 4441–4446, Jul. 2013.
[11] H.-S. Philip Wong, Simone Raoux, Sang Bum Kim, Jiale Liang, John P. Reifenberg, Bipin Rajendran, Mehdi Asheghi, and Kenneth E. Goodson, “Phase Change Memory,” IEEE, v. 98, no. 12, pp.2201-2227, Dec. 2010.
[12] S. R. Ovshinsky, “Symmetrical current controlling device,” U.S. Patent 3 271 591, 1966.
[13] S. Kim, B. Lee, M. Asheghi, G. A. M. Hurkx, J. P. Reifenberg, K. E. Goodson, and H.-S. P. Wong, “Thermal disturbance and its impact on reliability of phase-change memory studied by micro-thermal stage,” Proc. IEEE Int. Reliab. Phys. Symp., pp. 99–103, May 2010.
[14] S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett., v. 21, pp. 1450–1453, 1968.
[15] S. Yu, “Overview of Resistive Switching Memory (RRAM) Switching Mechanism and Device Modeling,” IEEE International Symposium on Circuits and Systems (ISCAS), 2014
[16] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, “Metal–oxide RRAM,” Proc. IEEE, v. 100, no. 6, pp. 1951–1970, 2012.
[17] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive challenges,” Adv. Mater., v. 21, pp. 2632–2663, 2009.
[18] Ting Chang Chang, Kuan Chang Chang, Tsung Ming Tsai, Tian Jian Chu and Simon M. Sze, “Resistance random access memory,” Mater. Sci., v. 19, Issue 5, pp. 254-264, 2016.
[19] T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,”J. Appl. Phys., v. 33, 2669, 1962.
[20] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,”Nature Mater., v. 6, pp. 833-840, 2007.
[21] Konstantin V. Egorov, Dmitry S. Kuzmichev, Pavel S. Chizhov, Yuri Yu. Lebedinskii, Cheol Seong Hwang, and Andrey M. Markeev, “In Situ Control of Oxygen Vacancies in TaOx Thin Films via Plasma-Enhanced Atomic Layer Deposition for Resistive Switching Memory Applications, ” ACS Appl. Mater. Interfaces, v.9 (15), pp. 13286–13292, 2017.
[22] F. Pan, S. Gao, C. Chen, C. Song and F. Zeng , “Recent progress in resistive random access memories: Materials, switching mechanisms, and performance , ” Mater. Sci., v. 83, pp. 1-59, Sep. 2014.
[23] Y.C. Yang, X.X. Zhang, M. Gao, F. Zeng, W.Y. Zhou, S.S. Xie, F. Pan, “Nonvolatile resistive switching in single crystalline ZnO nanowires , ” Nanoscale, v. 3, pp. 1917-1921, 2011.
[24] J.-Y. Chen, C.-L. Hsin, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, S.-J. Lin, W.-W. Wu, L.-J.Chen, “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories , ” Nano Lett., v. 13 (8), pp. 3671–3677, 2013.
CH.2
[1] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, v. 11, pp. 28-36, 2008.
[2] Tzu-Hsuan Liu, “Study of α -Si Thin Film in Resistive Random Access Memory Application,” Master D. thesis, NCTU, p. 16, Nov. 2011.
CH.3
[1] Wei-Ting Wu, “Investigation of Indium Titanium Zinc Oxide Thin Film Transistors Fabricated by RF Sputtering System and Their Optoelectronic Application,” Master D. thesis, NCKU , pp.13-22, Jan. 2017
[2] Streetman, Ben G. and Sanjay Banerjee, “Noise in Solid State Devices and Circuits,” New Jersey: Prentice Hall, 1986.
[3] D. C. Reynolds, D. C. Look, B. Jogai, C.W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, “Neutral-donor–bound-exciton complexes in ZnO crystals,” Phys. Rev. B, v. 57, pp. 12151–12155, 1998.
[4] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “AlxGa1-xN:SiSchottky barrier photodiodes with fast response and high detectivity,” Appl. Phys. Lett., v. 73, pp. 2146–2148, 1998.
[5] Donald A., “Semiconductor Physics and Devices:Basic Principles,” Neamen 3/e. New York: McGraw-Hill, 2003.
[6] J. L. Vossen and W. Kern, “Thin Flim Processes,” New York: Academic Press, 1978.
[7] S. I. Shah, “Handbook of Thin Film Process Technology,” London: Institute of Physics Pub, 1995.
[8] Li-Yang Chang, “Investigation of Indium Gallium Oxide Thin Film Fabricated by RF Sputtering System and Their Applications,” Master D. thesis, NCKU, Jun. 2017.
CH.4
[1] Chikako Yoshida, Kohji Tsunoda, Hideyuki Noshiro, and Yoshihiro Sugiyama, “ High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application,” Applied Physics Letters, v 91, i. 22, Nov. 2007.
[2] Iulia Salaoru, Ali Khiat, Anna Regoutz, Christoph Mitterbauer, Nicholas M. Harrison, and Themistoklis Prodromaki, “ Investigation of the Switching Mechanism in TiO2‑Based RRAM: A Two-Dimensional EDX Approach,” ACS Appl. Mater. Interfaces, v. 8 (30), pp 19605–19611, 2016.
[3] Hu Young Jeong, Sung Kyu Kim, Jeong Yong Lee, and Sung-Yool Choi, “Role of Interface Reaction on Resistive Switching of Metal/Amorphous TiO2/Al RRAM Devices,” ECS. J. Electrochem. v. 158, i. 10, Aug. 2011.
[4] K. Szot, W. Speier, G. Bihlmayer, and R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3,” Nature Mater., v. 5(312), 2006.
[5] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature Nanotechnol., v. 3, pp.429-433, Jul. 2008.
[6] Retrieved from (https : // docplayer.net /34246165- Transmission -
electron - microscopy-overview.html).
[7] N.R. Mathews, Erik R. Morales , M.A. Corte´s-Jacome a ans J.A. Toledo Antonio, “TiO2 thin films – Influence of annealing temperature on structural, optical and photocatalytic properties,” v. 83, i. 9, pp. 1499-1508, Sep. 2009.
[8] Dewei Chu, Adnan Younis and Sean Li, “Direct growth of TiO2 nanotubes on transparent substrates and their resistive switching characteristics,” Journal of Physics D: Applied Physics, v.45 , Aug. 2012.
[9] Boubacar Traore, “Investigation of HfO2-based resistive RAM cells by electrical characterization and atomistic simulations,” Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes, Ph.D. Thesis, Oct. 2015.
[10] Wan-Gee Kim and Shi-Woo Rhee, “Effect of post annealing on the resistive switching of TiO2 thin film, ” ELSEVIER:Microelectronic Engineering,v. 86(11), pp. 2153-2156, Nov. 2009.
CH.5
[1] W. K. Hsieh, R. W. Chuang and S. J. Chang, “Two-bit-per-cell resistive switching memory device with a Ti/MgZnO/Pt structure,” RSC Adv. 5, pp. 88166–88170, 2015.
[2] Xinman Chen, Wei Hu, Shuxiang Wu, and Dinghua Bao, “Stabilizing resistive switching performances of TiN/MgZnO/ZnO/Pt heterostructure memory devices by programming the proper compliance current,” Appl. Phys. Lett., v. 104 , 2014.
[3] X. M. Chen, G. H. Wu, W. F. Liu, P. Jiang, and D. H. Bao, “Colossal resistance switching effect in Pt/spinel-MgZnO/Pt devices for nonvolatile memory applications,” Appl. Phys. Lett., v. 94, 2009.
[4] X. M. Chen, G. H. Wu, and D. H. Bao, “Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications,” Appl. Phys. Lett., v. 93, 2009.
[5] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory,” Nano Lett., v. 9(4), pp. 1636–1643, 2009.
[6] S. Kim, H. Moon and D. Gupta, et al., Resistive, “Switching Characteristics of Sol–Gel Zinc Oxide Films for Flexible Memory Applications,” IEEE Trans. Electron Devices, v.56, pp. 696–699, 2009.
[7] C. C. Shih, K. C. Chang and T. C. Chang, et al., “Resistive Switching Modification by Ultraviolet Illumination in Transparent Electrode Resistive Random Access Memory,” IEEE Electron Device Lett., v. 35, pp. 633–635, 2014.
[8] S. M. Lin, J. Y. Tseng and T. Y. Su, et al., “Tunable Multilevel Storage of Complementary Resistive Switching on Single- Step Formation of ZnO/ZnWOx Bilayer Structure,” ACS Appl. Mater. Interfaces, v. 6, pp. 17686–17693, 2014.
[9] Jyun-Yi Li, Sheng-Po Chang,z Ming-Hung Hsu, Tsung-Hsien Kao, and Shoou-Jinn Chang, “Characterization of High Mg Content MgZnO Ultraviolet Photodetectors with Noise Properties,” ECS J. Solid State Sci. Technol., v. 5, i. 7, 2016.
[10] Chieh-Jen Ku, Ziqing Duan, Pavel I. Reyes, Yicheng Lu, Yi Xu, Chien-Lan Hsueh, and Eric Garfunkel, “Effects of Mg on the electrical characteristics and thermal stability of MgxZn1-xOthin film transistors,” Appl. Phys. Lett., v. 98, 2011.
[11] Boubacar Traore, “Investigation of HfO2-based resistive RAM cells by electrical characterization and atomistic simulations,” Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes, Ph.D. Thesis, Oct. 2015.
CH.6
[1] Cong Ye, Tengfei Deng, Junchi Zhang, Liangping Shen, Pin He, Wei Wei and Hao Wang, “Enhanced resistive switching performance for bilayer HfO2/TiO2 resistive random access memory,” Semicond. Sci. Technol., v. 31, 2016.
[2] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, v. 11, pp. 28-36, 2008.
[3] D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nature Nanotechnology, v. 5, pp. 148–153, 2010.
[4] De Stefano F, Houssa M, Kittl J A, Jurczak M, Afanas’ev V V and Stesmans A, “Semiconducting-like filament formation in TiN/HfO2/TiN resistive switching random access memories,” Appl. Phys. Lett., v.100, 2012.
[5] Hangbing Lv, Haijun Wan, and Tingao Tang, “Improvement of resistive switching uniformity by introducing a thin GST interface layer,” IEEE Electron Device Letters, v. 31,i. 9, Sept. 2010.
[6] Liudmila Alekseeva, Toshihide Nabatame, Toyohiro Chikyow, and Anatolii Petrov, “Resistive switching characteristics in memristors with Al2O3/TiO2 and TiO2/Al2O3 bilayers,” Jpn. J. Appl. Phys., v. 55,2016.
[7] H. Jeon, J. Park, W. Jang, H. Kim, S. Ahn, K.-J. Jeon, H. Seo, and H. Jeon, “Detection of oxygen ion drift in Pt/Al2O3/TiO2/Pt RRAM using interface-free single-layer graphene electrodes,” Carbon, v. 75, pp. 209-216, Aug. 2014.
[8] B. Hudec, A. Paskaleva, P. Jančovič, J. Dérer, J. Fedor, A. Rosová, E. Dobročka, and K. Fröhlich, “Resistive switching in TiO2-based metal–insulator–metal structures with Al2O3 barrier layer at the metal/dielectric interface,” Thin Solid Films, v. 563, pp.10-14, Jul. 2014.
[9] Kim K M, Song S J, Kim G H, Seok J Y, Lee M H, Yoon J H, Park J and Hwang C S, “Collective motion of conducting filaments in Pt/n-type TiO2/p-type NiO/Pt stacked resistance switching memory,” Adv. Funct. Mater., v. 21, pp. 1587, 2011.
[10] Zhi Y S, Li P G, Wang P C, Guo D Y, An Y H, Wu Z P, Chu X L, Shen J Q, Tang W H and Li C R, “Reversible transition between bipolar and unipolar resistive switching in Cu2O/Ga2O3 binary oxide stacked layer,” AIP Adv., v. 6 , 2016.
[11] Cheng C H, Chin A and Yeh F S, “Ultralow switching energy Ni/GeOx/HfON/TaN RRAM,” IEEE Electron Device Lett., v. 32 pp.366-368, 2011.
[12] Yuan F, Shen S, Zhang Z, Pan L and Xu J, “Interface induced two-step RESET for filament-based multi-level resistive memory,” Superlattices and Microstructures, v. 91, pp. 90-97, Mar. 2016.
CH.7
[1] Kim Ngoc Pham, Van Dung Hoang, Cao Vinh Tran and Bach Thang Phan1, “TiO2 thin film based transparent flexible resistive switching random access memory ,” Adv. Nat. Sci. Nanosci.Nanotechnol., v. 7, 2016.
[2] Jung S, Kong J, Song S and Lee K J., “Resistive switching characteristics of solution-processed TiOx for next-generation non-volatile memory application; transparency, flexibility, and nano-scale memory feasibility,” Electrochem. Soc., v. 157 , 2010.
[3] Kim S, Yarimaga O, Choi S and Choi Y, “Highly durable and flexible memory based on resistance switching,” Solid-State Electronics., v. 54, i. 4, pp. 392-396, Apr. 2010.
[4] Myeongcheol Kim and Kyung Cheol Choi, “Transparent and Flexible Resistive Random Access Memory Based on Al2O3 Film With Multilayer Electrodes,” ACS Nano, v. 6, pp. 7879–7884, 2012.
[5] J. W. Seo et al., “Transparent flexible resistive random access memory fabricated at room temperature,” Appl. Phys. Lett., v. 95, n. 13, p. 133508, Sep. 2009.
[6] F. Yuan, Z. Zhang, L. Pan and J. Xu, “A Combined Modulation of Set Current With Reset Voltage to Achieve 2-bit/cell Performance for Filament-Based RRAM,” IEEE J. Electron Devices Soc., v. 2, pp. 154-157, 2014.
[7] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories- Nanoionic mechanisms, prospects, and challenges,” Adv. Mater., v. 21, n. 25–26, pp. 2632–2663, 2009.
[8] H.-S. P. Wong et al., “Metal–oxide RRAM,” Proc. IEEE, v. 100, n. 6, pp. 1951–1970, Jun. 2012.
[9] Y. S. Chen et al., “Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity,” Proc. Int. Electron Devices Meeting (IEDM) Tech. Dig., pp. 1–4, 2009.
[10] J. Park et al., “Multibit operation of TiOx-based ReRAM by schottky barrier height engineering,” IEEE Electron Device Lett., v. 32, n. 4, pp. 476–478, Apr. 2011.
[11] Cheng C H, Chin A and Yeh F S, “Ultralow switching energy Ni/GeOx/HfON/TaN RRAM,” IEEE Electron Device Lett., v. 32 , Mar. 2011.
[12] Y. Wang et al., “Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications,” Nanotechnology, v. 21, n. 4, Jan. 2010.
[13] Wei-Kang Hsieh, “Investigation of Oxide-Based Materials Applied to Nonvolatile Memory Devices,” Ph. D. disseration, NCKU, p. 101, June 2016.
[14] Won-Ho Lee, Eom-Ji Kim, and Sung-Min Yoon, “Multilevel Resistive-Change Memory Operation of Al-Doped ZnO Thin-Film Transistor,” IEEE Electron Device Letters, v. 37, i. 8, Aug. 2016.
[15] J.-B. Yang, T.-C. Chang, J.-J. Huang, Y.-C. Chen, Y.-T. Chen, H.-C. Tseng, A.-K. Chu, and S. M. Sze, “Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors,” Appl. Phys. Lett., v. 104, p. 153501, Apr. 2014.
[16] S.-T. Han, Y. Zhou, B. Chen, C. Wang, L. Zhou, Y. Yan, J. Zhuang, Q. Sun, H. Zhang, and V. A. L. Roy, “Hybrid flexible resistive random access memory-gated transistor for novel nonvolatile data storage,” Small, v. 12, p. 396, Jan. 2016.
校內:2023-07-18公開