| 研究生: |
翁得期 Wong, Te-Chi |
|---|---|
| 論文名稱: |
化學氣相沉積法低溫成長奈米多晶矽薄膜及
氧化矽奈米線之研究 Low temperature growth of nanocrystalline silicon films and silicon oxide nanowires using chemical vapor depositio |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 熱燈絲化學氣相沉積 、SiCl4 、氧化矽奈米線 、多晶矽薄膜 |
| 外文關鍵詞: | SiCl4, HW-CVD, polycrystalline silicon films, SiOx nanowire |
| 相關次數: | 點閱:72 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分為兩大研究主題,第一個主題為以SiCl4/H2於熱燈絲化學氣相沉積系統中低溫成長多晶矽薄膜。第二個主題則是以SiCl4/H2於熱燈絲系統中成長氧化矽奈米線及探討氧化矽奈米線的特性。
第一部份:
在多晶矽薄膜研究部份,本研究能夠在鎢絲溫度1800℃,SiCl4進料濃度18 %,基板溫度180℃下,以約2.08 nm/s的鍍膜速度成功成長出結晶程度89%的奈米多晶矽薄膜;當基板溫度增加為210℃,鍍膜速度將可增加為2.13 nm/s,且結晶程度亦高達94%。這已比採用SiH4/H2氣體的鍍膜速度快,而且結晶程度也較高。可見Cl自由基在低溫下確實能蝕刻排列較差的矽結構並且H自由基能與表面的Si-Cl鍵反應形成活性位,使得接下來的矽先趨物能順利進行鍍膜成長。
第二部份
在氧化矽奈米線研究部份,綜合XRD、Raman、TEM、EELS和FTIR的結果証明,當固定SiCl4進料濃度14%,基板溫度低於175℃,皆可於石英玻璃或Si基板上順利成長出含有奈米晶矽的氧化矽奈米線,其奈米線直徑約80-90 nm。PL量測結果類似一白光的螢光光譜,進一步可分解為460nm、490nm和530nm三個特徵峰。經研究結果指出,其460nm特徵峰可能為奈米線內的氧空缺(O3≡Si-Si≡O3)所貢獻;530nm的特徵峰可能為奈米線內的奈米晶矽與氧化矽間的界面所貢獻;而490 nm特徵峰形成機制目前仍不清楚。
Two main research subjects are presented in this thesis. Part I is “Low temperature growth of polycrystalline silicon films using SiCl4/H2 in a HW-CVD reactor”. Part II is “Growth and characterization of SiOx nanowire using SiCl4/H2 in a HW-CVD reactor”.
Part I.
Polycrystalline silicon film with a crystalline fraction 89% and 94% have been successfully deposited at low substrate temperatures of 180℃ and 210℃, respectively. The growth rate is changed from 2.03 nm/s to 2.18 nm/s by increasing the substrate temperature from 180℃ to 210℃. The possible advantages of the process of crystalline silicon film growth using SiCl4 are suggested that Cl radicals possess a proper ability of etching weak Si-Si bonds and high [H] can abstract the surface Si-Cl bond to form surface active sites during deposition for subsequent Si species addition to surface.
Part II
Growth of SiOx nanowire at a substrate temperature 120-175℃ in a HW-CVD reactor is reported here. TEM, EELS, FTIR and XRD analyses indicate that the silicon nanocrystals were embedded in the SiOx nanowires. The PL measurement reveals that the spectrum was composed by three peaks at 460nm, 490 nm and 530 nm. The characteristics peak of 460 nm and 530 nm ascribed to neutral oxygen vacancy, ie.O3≡Si-Si≡O3 and the surface state between SiOx and Si nanocrystal, respectively. However, the factor induced the characteristic peak of 490 nm is unclear.
1. Plummer, J. D., Deal, M. D. and Griffin, P. B., Silicon VLSI Technology Fundamental, Practice and Modeling, Prentice Hall, USA, 2000
2. Whitesides, G. M., Love, J. C., 張明哲翻譯, 科學人, 台灣, 2003
3. Feynman, R., J. Micro. Syst. 1, 60, 1992
4. 趙中興, 顯示器原理與技術, 全華科技圖書, 台灣, 1999
5. Kamins, T., Polycrystalline silicon for intergraded circuits and displays, Kluwer Academic publisher, Boston, 2nd, 1998
6. Jang, J., Ryu J. I., Yoon, S. Y. and Lee, K. H., Vacuum, 51, 769, 1998
7. Fulk, R. T., Ho, J., Boyce, J. B., Davis, G. A., and Aebi, V., Journal of Non-Crystalline Solids, 266-269, 1270, 2000
8. Giust, G. K., Sigmon, T. W., Carey, P. G., and Davis, G. A., IEEE Electron device letters, 19, 343, 1998
9. Sirringhaus, H., Kawase, T., Friend, R. H., Shimod, T. A, Wu, W. and Woo, E. P., Science, 290, 2123, 2000
10. Kagan, C. R., Mitz,i D. B., and Dimitrakopoulous, C. D., Science, 286, 945, 1999
11. Baughman, R. B., Zakuidov, A. A., Heer, W. A., Science, 297, 787, 2002
12. Cui, Y., and Lieber, C. M., Science, 291, 851, 2001
13. Baron, T., Gentile, P., Magnea, N., and Mur, P., Appl. Phys. Lett., 79, 1175, 2001
14. Awschalom, D. D., Flatte, M. E., and Samarth, N., 張有毅, 陳企寧翻譯, 科學人, 7, 45, 2002
15. Alivisatos, A. P., Science, 271, 933, 1996
16. Iijima, Nature, 354, 56, 1991
17. Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res., 32, 435, 1999
18. Terrones, M., Hsu, W. K., Kroto, H. W., and David, R.M., Walton Topics in Current Chemistry, 199, 189, 1999
19. Lieber, C. M., Nature, 421, 241, ,2003
20. Cui, Y., Wei, Q., Park, H., Lieber, C. M., Science, 293, 1289, 2001
21. Appell, D., Nature, 419, 553, 2002
22. Klimov, V. I., Los Alamos Science, 28, 214, 2003
23. Park, N-M., Kim, T-S., and Park, S-J., Appl. Phys. Lett., 78, 2575, 2001
24. Pei, Z., Chang, Y. R., and Hwang, H. L., Appl. Phys. Lett., 80, 2839, 2002
25. 陳良益, 國立成功大學化學工程研究所博士論文, 2003
26. Kenyon, A. J., Chryssou, C. E., and Pitt, C. W., J. Appl. Phys., 91, 2002
27. Smith, D. L., Thin-Film Deposition principle & practice, Mcgraw-Hill, USA, 1995
28. Morosanu, C. E., Thin Films by Chemical Vapor Deposition, Elsevier, USA, 1990
29. Wolf, S., and Tauber, R. N., Silicon processing for the VLSI ERA, Lattice press, USA, 1986
30. Wagner, R. S., and Ellis, W. C., Appl. Phys. Lett., 4, 89, 1964
31. Wagner, R. S., and Ellis, W. C., Trans. Metall. Soc. AIMS, 233, 1053, 1965
32. Iwanari, S. I., Takayanagi, K., Jpn. J. Appl. Phys., 30, L1978, 1991
33. Wilk, G. D., Martinez, R. E., Spaepen, F., and Golovchenko, J. A., Appl. Phys. Lett., 65, 866, 1994
34. Nast, O., Puzzer, T., Koschier, L. M., and Wenham, S. R., Appl. Phys. Lett., 73, 3214, 1998
35. Lee, C-H., and Lim, K. S., Appl. Phys. Lett., 77, 2027, 2000
36. Khakifirooz, A.., Haji, S., and Mohajerzadeh, S. S., Thin Solid Films, 383, 241, 2001
37. Kim, T-K., Kim, G-B., Yoon, Y-G., Kim, C-H., and Joo, S-K., Jpn. J. Appl. Phys., 39, 5773, 2000
38. Kakinuma, H., Mohri, M., Sakamoto, M., and Tsuruoka, T., J. Appl. Phys., 70, 7374, 1991
39. Mebarji, B., Sumiya, S., Yoshida, R., Ito, M., and Tsukada, T., Materials Letters, 41, 16, 1999
40. Osborne, I. S., Hata, N., and Matsuda, A., Jpn. J. Appl. Phys., 34, L536, 1995
41. Mohri, M., Kakinuma, H., Sakamoto, M., and Sawai, H., J. Jap. Appl. Phys., 30, L779, 1991
42. Guo, L., Kondo, M., Fukawa, M., Saitoh, K., and Matsuda, A., Jpn. J. Appl. Phys., 37, L1116, 1998
43. Lihui, G., and Rongming, L., Thin Solid Films, 376, 249, 2000
44. Arai, T., Nakamura, T., and Shirai, H., Jpn. J. Appl. Phys., 36, 4907, 1997
45. Tsai, C. C., Anderson, G. B., and Thompson, R., J. Non-Crystalline Solids, 137 & 138, 673, 1991
46. Liu, H., Jung, S., Fujimura, Y., Toyoshima, Y., and Shirai, H., Jpn. J. Appl. Phys., 40, L215, 2001
47. Fujimura, Y., Jung, S., and Shiria, H., Jpn. J. Appl. Phys., 40, L1214, 2001
48. Nakahata, K., Miida, A., Kamiya, T., Fortmann, C. M., Shimizu, I., Thin Solid Films, 337, 45, 1999
49. Moon, B. Y., Youn, J. H., Won, S. H., and Jang, J., Solar Energy & Solar Cells, 69, 139, 2001
50. Shin, J. H., and Huh, H., J. Vac. Sci. Technol. A., 18, 51, 2000
51. Xu, K., Shah, S. I., and Guerin, D., J. Vac. Sci. Technol. A., 19, 2001, 1078
52. Matsumura, H., Jpn. J. Appl. Phys., 37, 3175, 1998
53. Thiesen, J., Iwaaniczko, E., Mahan, A., and Crandall, R., Appl. Phys. Lett., 75, 992, 1999
54. Lee, J-C., Kang, K-U., Kim, S-K., Yoon, K-H., Song, J., and Park, I-J., Thin Solid Films, 395, 188, 2001
55. Brogueira, P., Conde, J. P., Arekat, S., and Chu, V., J. Appl. Phys., 79, 8748, 1996
56. Wang, Q. Yue G., Li, J., and Hand, D., Solid State Communications, 113, 175, 2000
57. Nikura, C., Brenot, R., Guillet, J., Bouree, J. E., and Longeaud, C., Solar Energy Materials & Solar Cells, 66, 421, 2001
58. Matsumura, H., Kamesaki, K., Masuda, A., Izumi, A., Jpn. J. Appl. Phys., 36, L289, 1997
59. Harada, H., Yoshida, N., Yamamoto, K., Itoh, T., Inagaki, K., Inouchi, H., Yamana, N., Aoki, T., and Nitta, S., Solar Energy Materials & Solar Cells, 66, 253, 2001
60. (a)Martins, R., Ferreira, I., Fernandes, B., and Fortunato, E., Vacuum, 52, 203, 1999 (b) Ferreria, I., Fernandes, F. B., and Martins, R., Materials Science and Engineering C, 15, 137, 2001
61. Watahiki, T., Yamada, A., and Konagai, M., J. Crystal Growth, 209, 335, 2000
62. Ichikawa, M., Tsushima, T., Yamada, A., and Konagai, M., Solar Energy Materials & Solar cells, 66, 225, 2001
63. Kamins, T. I., and Turner, J. E., Solid State Technology, 4, 80, 1990
64. Puigdollers, J., Dosev, D., Orpella, A., and Alcubilla, R., Materials Science and Engineering B, 69-70, 526, 2000
65. Puigdollers, J., Dosev, D., Orpella, A., and Alcubilla, R., J. Non-Crystalline Solids, 266-269, 1304, 2000
66. Schropp, R. E. I., Stannowski, B., and Rath, J. K., J. Non-Crystalline Solids, 299, 1304, 2002
67. Claassen, W. A. P., Bloem, J., Valkenburg, W. G. J. N., and Brekel, C. H. J., J. Crystal Growth, 57, 259, 1982
68. Coltrin, M. E., Kee, R. J., and Miller, J. A., J. Electrochem. Soc., 131, 425, 1984
69. Brekel, C. H. J., and Bollen, L. J. M., J. Crystal Growth, 54, 310, 1981
70. Bloem, J., and Claassen, W. A. P., J. Crystal Growth, 49, 435, 1990
71. Chernov, A. A., J. Crystal Growth, 42, 55, 1977
72. Chernov, A. A., and Rusaikin M. P., J. Crystal Growth., 45, 73, 1978
73. Meakin, D. B., and Ahmed, W., Fall Electrochemical Society Meeting, abstract 287, 398, 1986
74. Hu, X. F., Xu, Z., Lim, D., Downer, M. C., Parkinson, P. S., Gong, B., Hess, G., and Ekerdt, J. G., Appl. Phys. Lett., 71, 1376, 1997
75. Nalwa, H. S., Silicon-Based materials and Devices volume 1, Academic Press, USA, 2001
76. Ho, P., Coltrin, M.E., and Breiland, W. G., J. Phys. Chem., 98, 10138, 1994
77. Gate, S. M., Greenlief, C. M., kulkarni, S. K., and Sawin, H. H., J. Vac. Sci. Technol. A, 8, 2965, 1990
78. Gate, S. M., Greenlief, C. M., and Beach, D. B., J. Chem. Phys., 93, 7493, 1990
79. Masi, M., Besana, G., Canzi, L., and Carra, S., Chem. Eng. Sci., 49, 669, 1994
80. Newman, C. G., O’neal, H. E., Ring, M. A., Leska, F., and Shipley, N., Int. J. Chem. Kinet., 11, 1167, 1979
81. John, P., and Purnell, J. H., J. Chem. Soc., 69, 1455, 1973
82. Benson, S. W., Thermochemical Kinetics, Wiley, New York, 1976
83. Boudart, M. G., and Diege, D., Kinetics of heterogeneous Catalytic reactions, Princeton University press, Princeton, 1984
84. Holleman, J., Kuiper, A. E. T., and Verweij, J., J. Electrochem. Soc., 140, 1717, 1993
85. Holleman, J., and Verweij, J., J. Electrochem. Soc., 140, 2089, 1993
86. Weerts, W. L. M., Croon, M. H. J. M., and Matin, G. B., Chem. Emg. Sci., 51, 2109, 1996
87. Duan, H. L., Zaharias, G. A., And Bent, S. F., Appl. Phys. Lett., 78, 200, 2001
88. Ichikawa, M., Tsushima, T., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys., 39, 4712, 2000
89. Brogueira, P., Conde, J. P., Arekat, S., Chu, V., J. Appl. Phys., 78, 3776, 1995
90. Tachibana, K., Shirafuji, T., Hayashi, Y., Maekawa, S., and Morita, T., Jpn. J. Appl. Phys., 33, 4191, 1994
91. Matsuura, D., Kamiya, T., Fortmann, C. M., and Simizu, I., Solar Energy Materials & Solar Cells, 66, 305, 2001
92. Kaneko, T., Wakagi, M., Onisawa, K., and Minemura, T., Appl. Phys. Lett., 64, 1865, 1994
93. Nakahata, K., Ro, K., Sumasu, A., Kamiya, T., Fortmann, C. M., Shimizu, I., Jpn. J. Appl. Phys., 39, 3294, 2000
94. Nakahata, M., and Wagner, S., Appl. Phys. Lett., 65, 1940, 1994
95. Platz, R., and Wagner, S., Appl. Phys. Lett., 73, 1236, 1998
96. Mulato, M., Wagner, S., and Zanatta, A. R., J. Electrochem. Soc., 147, 1829, 2000
97. Mulato, M., Chen, Y., Wagner, S., and Zanatta, A. R., J. Non-Crystalline Solids, 266-269, 1260, 2000
98. Bloem, J., and Giling, L. J., Curr. Top. Mater. Sci., 1, 147, 1978
99. Violette, K. E., O’neal, P. A., Ozturk, M. C., Christensen, K., and Maher, D. M., J. Electrochem. Soc., 143, 3290, 1996
100. Lavrushenko, B. B., Baklanov, A. V., and Strunin, V. P., Spectrochim. Acta., 46, 479, 1990
101. Su, M. D., and Schlegel, H. B., J. Phys. Chem., 97, 1993, 9981
102. Narusawa, U., J. Electrochem. Soc., 141, 2072, 1994
103. Narusawa, U., J. Electrochem. Soc., 131, 2078, 1994
104. Kruppa, G. H., Shim, S. K., and Beauchamp, J. L., J. Phys. Chem., 94, 327, 1990
105. Gupta, P., Coon, P. A., Koehler, B. G., George, S. M., J. Chem. Phys., 93, 2827, 1990
106. Coon, P. A., Gupta, P., Koehler, B. G., George, S.M., J. Vac. Sci. tech. A, 10, 324, 1992
107. Mendicino, M. A., and Seebauer, E. G., J. Electrochem. Soc., 140, 1786, 1993
108. Dillon, A. C., Wise, M. L., Robinson, M. B., and George, S. M., J. Vac. Sci. Tech. A, 13, 1, 1995
109. Szabo, A., Farrall, P. D., Engel T., Surf. Sci., 312, 1994, 284
110. Hierlemann, M., Kersch, A., Werner, C., and Schafer, H., J. Electrochem. Soc., 142, 259, 1995
111. Habuka, H., Nagoya, T., Mayusumi, M., Katayama, M., Shimada, M., Okuyama, K., J. Crystal Growth, 169, 61, 1996
112. Angermaier, D., Monna, R., Slaoui, A., and Muller, J. C., J. Electrochem. Soc., 144, 3256, 1997
113. Ho, P., Chacin, J. M., Thilderkvist, A., Haas, B., and Comita, P. B., Proc. Electrochem. Soc., 98, 23
114. Kamins, T. I., J. Electrochem. Soc., 121, 681, 1974
115. Martins, R., Ferreira, I., Fernandes, F. B., and Fortunato, E., J. Non-Crystalline Solids, 227-230, 901, 1998
116. Ferreira, I., Carbrita, A., Fernandes, F. B., Fortunato, E., and Martins, R., Materials Science and Engineering C, 15, 141, 2001
117. Xia, Y., and Yang, P., Adv. Mater., 15, 353, 2003
118. Wu, J-J., and Liu, S-S., J. Phys. Chem. B, 106, 9546, 2002
119. Wagner, R. S., and Ellis, W. C., Appl. Phys. Lett., 4, 89, 1964
120. Hiruma, K., Appl. Phys. Lett., 59, 431, 1991
121. Alivisatos, A. P, Nature, 404, 59, 2000
122. Alivisatos, A. P, J. Am. Chem. Soc., 122, 12700, 2000
123. Tang, C. C., Fan, S. S., Chapelle, M. L., and Li, P., Chem. Phys. Lett., 333, 12, 2001
124. Wang, N., Tang, Y. H., Zhang, Y. F., Lee, C. S., and Lee, S. T., Physical Review B, 58, R16024, 1998
125. Zhang, R. Q., Chu, T. S., Cheung, H. F., Wang, N., and Lee, S. T., Physical Review B, 64, 113304, 2001
126. Zhang, R. Q., Chu, T. S., Cheung, H. F., Wang, N., and Lee, S. T., Materials Science and Engineering C, 16, 31, 2001
127. Peng, H. Y., Pan, Z. W., Xu, L., Fan, X. H., Wang, N., Lee, C. S., and Lee, S. T., Adv. Mater., 13, 317, 2001
128. Zhang, R. Q., Lifshitz, Y., and Lee, S. T., Adv. Mater., 15, 635, 2003
129. Meng, X-M., Hu, J-Q., Jiang, Y., Lee, C-S., and Lee, S-T., Appl. Phys. Lett., 83, 2241, 2003
130. Lee, S. T., Zhang, Y. F., Wang, N., Tang, Y. H., Bello, I., and Lee, C. S., J. Material Research, 14, 4503, 1999
131. Zhang, Y. F., Tang, Y. H., Wang, N., Lee, C. S., Bello, I., Lee, S. T., J. Crystal Growth, 197, 136, 1999
132. Sanders, G. D., and Chang, Y. C., Appl. Phys., Lett., 60, 2525, 1991
133. Lehmann, V., and Gosele, U., Appl. Phys., Lett., 58, 856, 1991
134. Givargizov, E. I., J Crystal growth, 31, 20, 1975
135. Wu, Y., Yan, H., Huang, M., Messer, B., Song, J. H., and Yang, P., Chem. Euri. J., 8, 1261, 2002
136. Westwater, J., Gosain, D. P., Tomiya, S., and Usui, S., J. Vac. Sci. Techno. B, 15, 554, 1997
137. Wang, N., Zhang, Y., and Zhu, J., J. Materials Science Letters, 20, 89, 2001
138. Zhang, Y., Zhang, Q., Wang, N., Yan, Y., Zhou, H., and Zhu, J., J Crystal Growth, 226, 185, 2001
139. Liu, Z. Q., Zhou, W. Y., Sun, L. F., Tang, D. S., Zou, X. P., Wang, G., and Xie, S. S., Chem. Phys. Lett., 341, 523, 2000
140. Holmes, J. D., Johnston, K. P., Doty, R. C., and Korgel, B. A., Science, 287, 1471, 2000
141. Yu, D. P., Xing, Y. J., Hang, Q. L., Yan, H. F., Xu, J., Xi, Z. H., and Feng, S. Q., Physica E., 9, 305, 2001
142. Peng, X. S. J. Mater. Chem., 12, 1602, 2002
143. Peng, W. S., Appl. Phys. A, 74, , 437, 2001
144. Frank, F. C., Discover Faraday Soc., 5, 48, 1949
145. Cheong, W. S., Hwang, N. M., and Yoon, D. Y., J. Crystal Growth, 204, 52, 1999
146. Hwang, N. M., Hahn, J. H., and Yoon, D. K., J. Crystal Growth, 162, 55, 1996
147. Hwang, N. M., J. Crystal Growth, 199/198, 945, 1999
148. Hwang, N. M., Cheong, W. S., and Yoon, D. Y., J. Crystal Growth, 206, 177, 1999
149. Hwang, N. M., Cheong, W. S., Yoon, D. Y., Kim, D. Y., Journal of Crystal Growth, 218, 33, 2002
150. Dohnalek, Z., Kimmel, G. A., McCready, D. E., Young, J. S., J. Phys. Chem. B, 106, 3526, 2002
151. Harris, K. D., Westra, K. L., and Brett, M. J., Electrochemical and Solid-State Letters, 4, C39, 2001
152. Smy, T., Vick, D., Brett, M. J., Dew, S. K., Wu, A. T., Sit, J. C., and Harris, K. D., J. Vac. Sci. Techno. A., 18, 2507, 2000
153. Messier, R. Venugopal, V. C., and Sunal, P. D., J. Vac. Sci. Technol. A, 18, 1538, 2000
154. Malac, M., Egerton, R. F., Brett, M. J., and Dick, B., J. Vac. Sci. Technol. B, 17, 2671, 1999
155. Liu, F., Umlor, M. T., Shen, L., Weston, J., Eads, W., Barnard, J. A., and Mankey, G. J., Appl. Phys., 85, 5486, 1999
156. Robbie, K., Brett, M. J., and Lakhtakia, A., Nature, 384, 616, 1996
157. Robbie, K., and Brett, M. J., J. Vac. Sci. Technol. A, 15, 1460, 1997
158. Lo, H. C., Das, D., Hwang, J. S., Chan, K. H., Hsu, C. H., Chen, C. F., Chen, L. C., Appl. Phys. Lett., 83, 1420, 2003
159. Cao, L., Zhang, Z., Sun, L., Gao, C, He, M., Wang, Y., Li, Y., Zhang, X., Li, G., and Wang, W., Adv. Mater., 13, 1701, 2001
160. Kittel, C., Introduction to Solid State Physics, Wiley, New York, 7th, 1996
161. Holmes, J. D., Ziegler, K. J., Doty, R. C., Pell, L. E., Johnston, K. P., and Korgel, B. A., J. Am. Chem. Soc., 123, 3743, 2001
162. Brus, L., J. Phys. Chem., 98, 3575, 1994
163. Streetman, B. G., Solid State Electronic Devices, Prentice-Hall, London, 4th, 1995
164. Kanemitsu, Y., J. Luminesence, 70, 333, 1996
165. Canham, L., Nature, 408, 411, 2000
166. Canham, L., Nature, 409, 974, 2001
167. Takagi, H., Ogawa, Y., Yamazaki, Y., and Nakagiri, T., Appl. Phys. Lett., 56, 2379, 1990
168. Ruckschloss, M., Landkammer, B., and Veprek, S., Appl. Phys. Lett., 63, 1474, 1993
169. Kanzawa, Y., Kageyama, T., Takeoka, S., Fujii, M., and Yamamoto, K., Solid Stat Communications, 102, 533, 1997
170. Tripathy, S., Soni, R. K., Ghoshal, S. K., and Jain, K. P., Bull. Mater. Sci., 24, 285, 2001
171. Liao, L. S., Bao, X. M., Li, N. S., Zheng, X. Q., and Min, N. B., J. Luminescence, 68, 199, 1996
172. Nayfeh, M. H., Barry, N., Therrien, J., Gratton, E., and Belomoin, G., Appl. Phys. Lett., 78, 78, 2001
173. 鄭振東, 光纖與無線通訊系統, 全華, 台灣, 1990
174. Kik, P. G., Dood, M. J. A., Kikoin, K., and Polman, A., Appl. Phys. Lett., 70, 1721, 1997
175. Kik, P. G., and Polman, A., Mat. Res. Soc. Bull., 23, 48, 1998
176. Kik, P. G., and Polman, A., J. Appl. Phys., 88, 1992, 2000
177. Zhao, X., Komuro, S., Fujita, S., Isshiki, H., Aoyagi, Y., and Sugano, T., Materials Science and Engineering B, 51, 154, 1998
178. Pivin, J. C., Castro, J., Hofmeister, H., and Vassileva, M., Materials Science and Engineering B, 97, 13, 2003
179. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K., Appl. Phys. Lett., 71, 1198, 1997
180. Coffer, J. L., Ji, J., Chen, Y., and Senter, R. A., Chem. Mater., 13, 4783, 2001
181. Coffer, J. L., Senter, R. A., and Chen, Y., Nano Letters, 1, 383, 2001
182. Lee, W. H., Shin, J. H., and Seo, S. Y., J. Korea Physical Society, 34, S16, 1999
183. Iacona, F., Pacific, D., Irrera, A., Priolo, F., Sanfilippo, D., and Fallica, P. G., Appl. Phys. Lett., 81, 3242, 2002
184. 行政院國家委員會精密儀器發展中心, 儀器總覽, 基本物理量測儀器
185. 汪建民, 材料分析, 中國材料科學學會, 台灣, 1998
186. Warren, B. E., X-ray Diffraction, Assison-Wesley, USA, 253, 1989
187. Ichikawa, M., Takeshita, J., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys., 38, L24, 1999
188. Okada, T., Iwaki, T., Kasahara, H., and Yamamoto, K., Jpn. J. Appl. Phys., 24, 161, 1985
189. Kakinuma, H., Mohri, M., Sakamoto, M., and Tsuruoka, T., J. Appl. Phys., 70, 7374, 1991
190. Guo, L., Toyoshima, Y., Kondo, M., and Matsuda, A., Appl. Phys. Lett., 75, 515, 1999
191. Skoog, D. A., Holler, F. J., and Nieman, T. A., Principles of Instrumental Analysis, Harcourt Brace, 5th, USA, 1998
192. Miller, P. E., and Denton, M. B., Anal. Chem., 63, 619, 1986
193. Chang, J. P., Arnold, J. C., Zau, G. C. H., and Shin, H. S., J. Vac. Sci. Technol. A, 15, 1853, 1997
194. Ogryzio, E. A., Ibbotson, D. E., Fiamm, D. L., and Mucha, J. A., J. Appl. Phys., 67, 3115, 1990
195. Walker, Z. H., and Ogryzlo, E. A., J. Appl. Phys., 69, 548, 1991
196. Pastor, G., and Dominguez, E., J. Electrochem. Soc., 134, 199, 1987
197. Suzuki, K., Hiraoka, S., and Nishimatsu, S., J. Appl. Phys., 64, 3697, 1998
198. Chung, C. H., Rhee, S. W., and Moon, S. H., J. Electrochem. Soc., 142, 2405, 1995
199. Sugino, R., Nara, Y., Horie, H., and Ito, T., J. Appl. Phys., 76, 5498, 1994
200. Ozawa, N., Matsui, T., and Kanamori, J., Jpn. J. Appl. Phys., 34, 6815, 1995
201. Franklin, N. R., and Dai, H., Adv. Mater., 12, 890, 2000
202. Wang, Y. W., Liang, C. H., Meng, G. W., Peng, X. S., and Zhang, L. D., J. Mater. Chem., 12, 651, 2002
203. Peng, X. S., Wang, X. F., Zhang, J., Wang, Y. W., and Zhang, L. D., Appl. Phys. A, 741, 831, 2002
204. Nishikawa, H., Shiroyama, T., Nakamura, R., and Ohki, Y., Physical Review B, 45, 586, 1992
205. Liao, L. S., Bao, X. M., and Zheng, X. Q., Appl. Phys. Lett., 68, 850, 1995
206. Nishikawa, H., Watanabe, E., and Ito, D., J. Appl. Phys., 78, 842, 1995
207. Nalwa, H. S., Silicon-Based Materials and Devices 2, Academic, USA, 2001
208. Pinizzotto, R. F., Yang, H., and Perez, J. M., J. Appl. Phys., 75, 4486, 1994
209. Kautsky, H. and Herzberg, G., Anorg. Allg. Chem., 139, 135, 1924
210. Kanemitsu, Y., and Okamoto, S., Materials Science and Engineering B, 48, 108, 1997
211. Wang, Z., and Coffer, J. L., Nano Letters, 2, 1303, 2002
212. 尤啟中, 國立成功大學化工研究所碩士論文, 2003