簡易檢索 / 詳目顯示

研究生: 翁得期
Wong, Te-Chi
論文名稱: 化學氣相沉積法低溫成長奈米多晶矽薄膜及 氧化矽奈米線之研究
Low temperature growth of nanocrystalline silicon films and silicon oxide nanowires using chemical vapor depositio
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 207
中文關鍵詞: 熱燈絲化學氣相沉積SiCl4氧化矽奈米線多晶矽薄膜
外文關鍵詞: SiCl4, HW-CVD, polycrystalline silicon films, SiOx nanowire
相關次數: 點閱:72下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為兩大研究主題,第一個主題為以SiCl4/H2於熱燈絲化學氣相沉積系統中低溫成長多晶矽薄膜。第二個主題則是以SiCl4/H2於熱燈絲系統中成長氧化矽奈米線及探討氧化矽奈米線的特性。

    第一部份:
    在多晶矽薄膜研究部份,本研究能夠在鎢絲溫度1800℃,SiCl4進料濃度18 %,基板溫度180℃下,以約2.08 nm/s的鍍膜速度成功成長出結晶程度89%的奈米多晶矽薄膜;當基板溫度增加為210℃,鍍膜速度將可增加為2.13 nm/s,且結晶程度亦高達94%。這已比採用SiH4/H2氣體的鍍膜速度快,而且結晶程度也較高。可見Cl自由基在低溫下確實能蝕刻排列較差的矽結構並且H自由基能與表面的Si-Cl鍵反應形成活性位,使得接下來的矽先趨物能順利進行鍍膜成長。

    第二部份
    在氧化矽奈米線研究部份,綜合XRD、Raman、TEM、EELS和FTIR的結果証明,當固定SiCl4進料濃度14%,基板溫度低於175℃,皆可於石英玻璃或Si基板上順利成長出含有奈米晶矽的氧化矽奈米線,其奈米線直徑約80-90 nm。PL量測結果類似一白光的螢光光譜,進一步可分解為460nm、490nm和530nm三個特徵峰。經研究結果指出,其460nm特徵峰可能為奈米線內的氧空缺(O3≡Si-Si≡O3)所貢獻;530nm的特徵峰可能為奈米線內的奈米晶矽與氧化矽間的界面所貢獻;而490 nm特徵峰形成機制目前仍不清楚。

    Two main research subjects are presented in this thesis. Part I is “Low temperature growth of polycrystalline silicon films using SiCl4/H2 in a HW-CVD reactor”. Part II is “Growth and characterization of SiOx nanowire using SiCl4/H2 in a HW-CVD reactor”.

    Part I.
    Polycrystalline silicon film with a crystalline fraction 89% and 94% have been successfully deposited at low substrate temperatures of 180℃ and 210℃, respectively. The growth rate is changed from 2.03 nm/s to 2.18 nm/s by increasing the substrate temperature from 180℃ to 210℃. The possible advantages of the process of crystalline silicon film growth using SiCl4 are suggested that Cl radicals possess a proper ability of etching weak Si-Si bonds and high [H] can abstract the surface Si-Cl bond to form surface active sites during deposition for subsequent Si species addition to surface.

    Part II
    Growth of SiOx nanowire at a substrate temperature 120-175℃ in a HW-CVD reactor is reported here. TEM, EELS, FTIR and XRD analyses indicate that the silicon nanocrystals were embedded in the SiOx nanowires. The PL measurement reveals that the spectrum was composed by three peaks at 460nm, 490 nm and 530 nm. The characteristics peak of 460 nm and 530 nm ascribed to neutral oxygen vacancy, ie.O3≡Si-Si≡O3 and the surface state between SiOx and Si nanocrystal, respectively. However, the factor induced the characteristic peak of 490 nm is unclear.

    中文摘要 I 英文摘要 II 致謝 III 目錄 V 表目錄 X 圖目錄 XI 符號 XXI 第一章 緒論 1 1.1 前言 1 1.2 薄膜電晶體 2 1.2-1 金屬-氧化物-半導體場效電晶體 2 1.2-2 TFT在LCD上的應用 2 1.2-3 非晶矽薄膜和多晶矽薄膜 3 1.2-4 電晶體的未來 4 1.3 奈米材料 4 1.3-1 一維奈米材料 5 1.3-2 奈米晶體 5 1.4 研究動機與目的 6 第二章 理論基礎與文獻回顧 17 2.1薄膜製程 17 2.1-1 材料來源(source)的選擇 17 2.1-2 材料傳輸 17 2.1-3 鍍膜過程 20 2.2 化學氣相沉積法 24 2.2-1 化學氣相沉積動力學 25 2.3多晶矽薄膜成長 27 2.3-1 成長多晶矽薄膜之方法 27 (a) 金屬誘發結晶法 28 (b) 電漿輔助化學氣相沉積法 29 (c) 熱燈絲化學氣相沉積法 32 2.3-2沉積多晶矽薄膜之反應機構 37 (a) 矽氫化合物對鍍膜之影響 37 (b) 含鹵素先驅物對鍍膜之影響 42 (c) 不純物對鍍膜之影響 47 2.4 成長一維奈米結構之方法 48 2.4-1 非等方向性之晶體成長 48 2.4-2 以VLS方法成長 48 2.4-3 以Solution-Liquid-Solid & Solid-Liquid-Solid方法成長 51 2.4-4 以具有奈米級孔洞之模具成長 51 2.4-5 以界面活性劑來控制不同晶面具有不同的成長速度 52 2.4-6 以螺旋差排方式成長 52 2.4-7 帶電原子團導致一維奈米線之成長 52 2.4-8 氧化物促進一維奈米線成長 53 2.4-9 Glazing angle deposition成長一維奈米結構 54 2.4-10 氣相蝕刻成長一維奈米結構 54 2.4-11 其他一維奈米結構成長方法 55 2.5 奈米晶體的成長與光學特性 55 第三章 實驗步驟與研究方法 80 3.1 設計實驗流程 80 3.2 實驗設備 81 3.2-1 實驗用氣體及藥品 81 (a)實驗用氣體 81 (b)實驗用藥品 81 (c)實驗用基板及鎢絲 81 3.2-2儀器設備 81 (a) HW-CVD系統 82 (b) RGA系統 83 (c) 高溫爐系統 83 3.3 實驗步驟 84 3.3-1 實驗前處理 84 (a) 鎢絲前處理 84 (b) 基板前處理 84 3.3-2 HW-CVD系統之實驗步驟 84 (a) 多晶矽薄膜及SiOx奈米線成長 84 (b) 掺雜Erbium於SiOx奈米線 85 3.3-3 RGA系統之實驗步驟 85 3.3-4 高溫爐系統之實驗操作步驟 86 (a) 熱處理(annealing)SiOx奈米線 86 (b) 以熱擴散(thermal diffusion)掺雜Erbium於SiOx奈米線 86 3.4 分析儀器 86 3.4-1 紅外線測溫儀 86 3.4-2 掃描式電子顯微鏡分析 87 3.4-3 X光繞射分析儀 88 3.4-4 穿透式電子顯微鏡 88 3.4-5 拉曼光譜分析儀 89 3.4-6 傅立葉轉換紅外線光譜儀 90 3.4-7紫外線-可見光吸收光譜儀 91 3.4-8 螢光光譜儀 91 3.4.9 電子順磁共振光譜 92 3.4-10 原子力顯微鏡 92 3.4-11殘餘氣體分析儀 93 第四章 以SiCl4/H2於HW-CVD系統中低溫成長多晶矽薄膜 104 4.1 鎢絲溫度效應 105 4.2 鍍膜時間效應 106 4.3 壓力效應 108 4.4 基板溫度效應 108 4.5 進料濃度效應 113 4.6 薄膜成長機制探討 116 4.6-1 反應機構 118 (a) 鎢絲解離反應 118 (b) 氣相反應 118 (c) 表面反應 119 (d) 蝕刻反應 119 4.7 結論 120 第五章 以SiCl4/H2於HW-CVD系統中成長SiOx奈米線之研究 147 5.1 成長時間效應 148 5.2 高SiCl4濃度影響 151 5.3奈米線成長機制 152 5.3-1氧的來源 152 5.3-2 成長機制 154 5.4奈米線之螢光特性 156 5.5 Erbium-doped SiOx奈米線的成長 159 5.5-1 HW-CVD方法直接成長Erbium-doped SiOx 奈米線 160 5.5-2 thermal diffusion方法成長Erbium-doped SiOx 奈米線 162 5.6結論 162 第六章 總結論 193 參考文獻 196

    1. Plummer, J. D., Deal, M. D. and Griffin, P. B., Silicon VLSI Technology Fundamental, Practice and Modeling, Prentice Hall, USA, 2000
    2. Whitesides, G. M., Love, J. C., 張明哲翻譯, 科學人, 台灣, 2003
    3. Feynman, R., J. Micro. Syst. 1, 60, 1992
    4. 趙中興, 顯示器原理與技術, 全華科技圖書, 台灣, 1999
    5. Kamins, T., Polycrystalline silicon for intergraded circuits and displays, Kluwer Academic publisher, Boston, 2nd, 1998
    6. Jang, J., Ryu J. I., Yoon, S. Y. and Lee, K. H., Vacuum, 51, 769, 1998
    7. Fulk, R. T., Ho, J., Boyce, J. B., Davis, G. A., and Aebi, V., Journal of Non-Crystalline Solids, 266-269, 1270, 2000
    8. Giust, G. K., Sigmon, T. W., Carey, P. G., and Davis, G. A., IEEE Electron device letters, 19, 343, 1998
    9. Sirringhaus, H., Kawase, T., Friend, R. H., Shimod, T. A, Wu, W. and Woo, E. P., Science, 290, 2123, 2000
    10. Kagan, C. R., Mitz,i D. B., and Dimitrakopoulous, C. D., Science, 286, 945, 1999
    11. Baughman, R. B., Zakuidov, A. A., Heer, W. A., Science, 297, 787, 2002
    12. Cui, Y., and Lieber, C. M., Science, 291, 851, 2001
    13. Baron, T., Gentile, P., Magnea, N., and Mur, P., Appl. Phys. Lett., 79, 1175, 2001
    14. Awschalom, D. D., Flatte, M. E., and Samarth, N., 張有毅, 陳企寧翻譯, 科學人, 7, 45, 2002
    15. Alivisatos, A. P., Science, 271, 933, 1996
    16. Iijima, Nature, 354, 56, 1991
    17. Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res., 32, 435, 1999
    18. Terrones, M., Hsu, W. K., Kroto, H. W., and David, R.M., Walton Topics in Current Chemistry, 199, 189, 1999
    19. Lieber, C. M., Nature, 421, 241, ,2003
    20. Cui, Y., Wei, Q., Park, H., Lieber, C. M., Science, 293, 1289, 2001
    21. Appell, D., Nature, 419, 553, 2002
    22. Klimov, V. I., Los Alamos Science, 28, 214, 2003
    23. Park, N-M., Kim, T-S., and Park, S-J., Appl. Phys. Lett., 78, 2575, 2001
    24. Pei, Z., Chang, Y. R., and Hwang, H. L., Appl. Phys. Lett., 80, 2839, 2002
    25. 陳良益, 國立成功大學化學工程研究所博士論文, 2003
    26. Kenyon, A. J., Chryssou, C. E., and Pitt, C. W., J. Appl. Phys., 91, 2002
    27. Smith, D. L., Thin-Film Deposition principle & practice, Mcgraw-Hill, USA, 1995
    28. Morosanu, C. E., Thin Films by Chemical Vapor Deposition, Elsevier, USA, 1990
    29. Wolf, S., and Tauber, R. N., Silicon processing for the VLSI ERA, Lattice press, USA, 1986
    30. Wagner, R. S., and Ellis, W. C., Appl. Phys. Lett., 4, 89, 1964
    31. Wagner, R. S., and Ellis, W. C., Trans. Metall. Soc. AIMS, 233, 1053, 1965
    32. Iwanari, S. I., Takayanagi, K., Jpn. J. Appl. Phys., 30, L1978, 1991
    33. Wilk, G. D., Martinez, R. E., Spaepen, F., and Golovchenko, J. A., Appl. Phys. Lett., 65, 866, 1994
    34. Nast, O., Puzzer, T., Koschier, L. M., and Wenham, S. R., Appl. Phys. Lett., 73, 3214, 1998
    35. Lee, C-H., and Lim, K. S., Appl. Phys. Lett., 77, 2027, 2000
    36. Khakifirooz, A.., Haji, S., and Mohajerzadeh, S. S., Thin Solid Films, 383, 241, 2001
    37. Kim, T-K., Kim, G-B., Yoon, Y-G., Kim, C-H., and Joo, S-K., Jpn. J. Appl. Phys., 39, 5773, 2000
    38. Kakinuma, H., Mohri, M., Sakamoto, M., and Tsuruoka, T., J. Appl. Phys., 70, 7374, 1991
    39. Mebarji, B., Sumiya, S., Yoshida, R., Ito, M., and Tsukada, T., Materials Letters, 41, 16, 1999
    40. Osborne, I. S., Hata, N., and Matsuda, A., Jpn. J. Appl. Phys., 34, L536, 1995
    41. Mohri, M., Kakinuma, H., Sakamoto, M., and Sawai, H., J. Jap. Appl. Phys., 30, L779, 1991
    42. Guo, L., Kondo, M., Fukawa, M., Saitoh, K., and Matsuda, A., Jpn. J. Appl. Phys., 37, L1116, 1998
    43. Lihui, G., and Rongming, L., Thin Solid Films, 376, 249, 2000
    44. Arai, T., Nakamura, T., and Shirai, H., Jpn. J. Appl. Phys., 36, 4907, 1997
    45. Tsai, C. C., Anderson, G. B., and Thompson, R., J. Non-Crystalline Solids, 137 & 138, 673, 1991
    46. Liu, H., Jung, S., Fujimura, Y., Toyoshima, Y., and Shirai, H., Jpn. J. Appl. Phys., 40, L215, 2001
    47. Fujimura, Y., Jung, S., and Shiria, H., Jpn. J. Appl. Phys., 40, L1214, 2001
    48. Nakahata, K., Miida, A., Kamiya, T., Fortmann, C. M., Shimizu, I., Thin Solid Films, 337, 45, 1999
    49. Moon, B. Y., Youn, J. H., Won, S. H., and Jang, J., Solar Energy & Solar Cells, 69, 139, 2001
    50. Shin, J. H., and Huh, H., J. Vac. Sci. Technol. A., 18, 51, 2000
    51. Xu, K., Shah, S. I., and Guerin, D., J. Vac. Sci. Technol. A., 19, 2001, 1078
    52. Matsumura, H., Jpn. J. Appl. Phys., 37, 3175, 1998
    53. Thiesen, J., Iwaaniczko, E., Mahan, A., and Crandall, R., Appl. Phys. Lett., 75, 992, 1999
    54. Lee, J-C., Kang, K-U., Kim, S-K., Yoon, K-H., Song, J., and Park, I-J., Thin Solid Films, 395, 188, 2001
    55. Brogueira, P., Conde, J. P., Arekat, S., and Chu, V., J. Appl. Phys., 79, 8748, 1996
    56. Wang, Q. Yue G., Li, J., and Hand, D., Solid State Communications, 113, 175, 2000
    57. Nikura, C., Brenot, R., Guillet, J., Bouree, J. E., and Longeaud, C., Solar Energy Materials & Solar Cells, 66, 421, 2001
    58. Matsumura, H., Kamesaki, K., Masuda, A., Izumi, A., Jpn. J. Appl. Phys., 36, L289, 1997
    59. Harada, H., Yoshida, N., Yamamoto, K., Itoh, T., Inagaki, K., Inouchi, H., Yamana, N., Aoki, T., and Nitta, S., Solar Energy Materials & Solar Cells, 66, 253, 2001
    60. (a)Martins, R., Ferreira, I., Fernandes, B., and Fortunato, E., Vacuum, 52, 203, 1999 (b) Ferreria, I., Fernandes, F. B., and Martins, R., Materials Science and Engineering C, 15, 137, 2001
    61. Watahiki, T., Yamada, A., and Konagai, M., J. Crystal Growth, 209, 335, 2000
    62. Ichikawa, M., Tsushima, T., Yamada, A., and Konagai, M., Solar Energy Materials & Solar cells, 66, 225, 2001
    63. Kamins, T. I., and Turner, J. E., Solid State Technology, 4, 80, 1990
    64. Puigdollers, J., Dosev, D., Orpella, A., and Alcubilla, R., Materials Science and Engineering B, 69-70, 526, 2000
    65. Puigdollers, J., Dosev, D., Orpella, A., and Alcubilla, R., J. Non-Crystalline Solids, 266-269, 1304, 2000
    66. Schropp, R. E. I., Stannowski, B., and Rath, J. K., J. Non-Crystalline Solids, 299, 1304, 2002
    67. Claassen, W. A. P., Bloem, J., Valkenburg, W. G. J. N., and Brekel, C. H. J., J. Crystal Growth, 57, 259, 1982
    68. Coltrin, M. E., Kee, R. J., and Miller, J. A., J. Electrochem. Soc., 131, 425, 1984
    69. Brekel, C. H. J., and Bollen, L. J. M., J. Crystal Growth, 54, 310, 1981
    70. Bloem, J., and Claassen, W. A. P., J. Crystal Growth, 49, 435, 1990
    71. Chernov, A. A., J. Crystal Growth, 42, 55, 1977
    72. Chernov, A. A., and Rusaikin M. P., J. Crystal Growth., 45, 73, 1978
    73. Meakin, D. B., and Ahmed, W., Fall Electrochemical Society Meeting, abstract 287, 398, 1986
    74. Hu, X. F., Xu, Z., Lim, D., Downer, M. C., Parkinson, P. S., Gong, B., Hess, G., and Ekerdt, J. G., Appl. Phys. Lett., 71, 1376, 1997
    75. Nalwa, H. S., Silicon-Based materials and Devices volume 1, Academic Press, USA, 2001
    76. Ho, P., Coltrin, M.E., and Breiland, W. G., J. Phys. Chem., 98, 10138, 1994
    77. Gate, S. M., Greenlief, C. M., kulkarni, S. K., and Sawin, H. H., J. Vac. Sci. Technol. A, 8, 2965, 1990
    78. Gate, S. M., Greenlief, C. M., and Beach, D. B., J. Chem. Phys., 93, 7493, 1990
    79. Masi, M., Besana, G., Canzi, L., and Carra, S., Chem. Eng. Sci., 49, 669, 1994
    80. Newman, C. G., O’neal, H. E., Ring, M. A., Leska, F., and Shipley, N., Int. J. Chem. Kinet., 11, 1167, 1979
    81. John, P., and Purnell, J. H., J. Chem. Soc., 69, 1455, 1973
    82. Benson, S. W., Thermochemical Kinetics, Wiley, New York, 1976
    83. Boudart, M. G., and Diege, D., Kinetics of heterogeneous Catalytic reactions, Princeton University press, Princeton, 1984
    84. Holleman, J., Kuiper, A. E. T., and Verweij, J., J. Electrochem. Soc., 140, 1717, 1993
    85. Holleman, J., and Verweij, J., J. Electrochem. Soc., 140, 2089, 1993
    86. Weerts, W. L. M., Croon, M. H. J. M., and Matin, G. B., Chem. Emg. Sci., 51, 2109, 1996
    87. Duan, H. L., Zaharias, G. A., And Bent, S. F., Appl. Phys. Lett., 78, 200, 2001
    88. Ichikawa, M., Tsushima, T., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys., 39, 4712, 2000
    89. Brogueira, P., Conde, J. P., Arekat, S., Chu, V., J. Appl. Phys., 78, 3776, 1995
    90. Tachibana, K., Shirafuji, T., Hayashi, Y., Maekawa, S., and Morita, T., Jpn. J. Appl. Phys., 33, 4191, 1994
    91. Matsuura, D., Kamiya, T., Fortmann, C. M., and Simizu, I., Solar Energy Materials & Solar Cells, 66, 305, 2001
    92. Kaneko, T., Wakagi, M., Onisawa, K., and Minemura, T., Appl. Phys. Lett., 64, 1865, 1994
    93. Nakahata, K., Ro, K., Sumasu, A., Kamiya, T., Fortmann, C. M., Shimizu, I., Jpn. J. Appl. Phys., 39, 3294, 2000
    94. Nakahata, M., and Wagner, S., Appl. Phys. Lett., 65, 1940, 1994
    95. Platz, R., and Wagner, S., Appl. Phys. Lett., 73, 1236, 1998
    96. Mulato, M., Wagner, S., and Zanatta, A. R., J. Electrochem. Soc., 147, 1829, 2000
    97. Mulato, M., Chen, Y., Wagner, S., and Zanatta, A. R., J. Non-Crystalline Solids, 266-269, 1260, 2000
    98. Bloem, J., and Giling, L. J., Curr. Top. Mater. Sci., 1, 147, 1978
    99. Violette, K. E., O’neal, P. A., Ozturk, M. C., Christensen, K., and Maher, D. M., J. Electrochem. Soc., 143, 3290, 1996
    100. Lavrushenko, B. B., Baklanov, A. V., and Strunin, V. P., Spectrochim. Acta., 46, 479, 1990
    101. Su, M. D., and Schlegel, H. B., J. Phys. Chem., 97, 1993, 9981
    102. Narusawa, U., J. Electrochem. Soc., 141, 2072, 1994
    103. Narusawa, U., J. Electrochem. Soc., 131, 2078, 1994
    104. Kruppa, G. H., Shim, S. K., and Beauchamp, J. L., J. Phys. Chem., 94, 327, 1990
    105. Gupta, P., Coon, P. A., Koehler, B. G., George, S. M., J. Chem. Phys., 93, 2827, 1990
    106. Coon, P. A., Gupta, P., Koehler, B. G., George, S.M., J. Vac. Sci. tech. A, 10, 324, 1992
    107. Mendicino, M. A., and Seebauer, E. G., J. Electrochem. Soc., 140, 1786, 1993
    108. Dillon, A. C., Wise, M. L., Robinson, M. B., and George, S. M., J. Vac. Sci. Tech. A, 13, 1, 1995
    109. Szabo, A., Farrall, P. D., Engel T., Surf. Sci., 312, 1994, 284
    110. Hierlemann, M., Kersch, A., Werner, C., and Schafer, H., J. Electrochem. Soc., 142, 259, 1995
    111. Habuka, H., Nagoya, T., Mayusumi, M., Katayama, M., Shimada, M., Okuyama, K., J. Crystal Growth, 169, 61, 1996
    112. Angermaier, D., Monna, R., Slaoui, A., and Muller, J. C., J. Electrochem. Soc., 144, 3256, 1997
    113. Ho, P., Chacin, J. M., Thilderkvist, A., Haas, B., and Comita, P. B., Proc. Electrochem. Soc., 98, 23
    114. Kamins, T. I., J. Electrochem. Soc., 121, 681, 1974
    115. Martins, R., Ferreira, I., Fernandes, F. B., and Fortunato, E., J. Non-Crystalline Solids, 227-230, 901, 1998
    116. Ferreira, I., Carbrita, A., Fernandes, F. B., Fortunato, E., and Martins, R., Materials Science and Engineering C, 15, 141, 2001
    117. Xia, Y., and Yang, P., Adv. Mater., 15, 353, 2003
    118. Wu, J-J., and Liu, S-S., J. Phys. Chem. B, 106, 9546, 2002
    119. Wagner, R. S., and Ellis, W. C., Appl. Phys. Lett., 4, 89, 1964
    120. Hiruma, K., Appl. Phys. Lett., 59, 431, 1991
    121. Alivisatos, A. P, Nature, 404, 59, 2000
    122. Alivisatos, A. P, J. Am. Chem. Soc., 122, 12700, 2000
    123. Tang, C. C., Fan, S. S., Chapelle, M. L., and Li, P., Chem. Phys. Lett., 333, 12, 2001
    124. Wang, N., Tang, Y. H., Zhang, Y. F., Lee, C. S., and Lee, S. T., Physical Review B, 58, R16024, 1998
    125. Zhang, R. Q., Chu, T. S., Cheung, H. F., Wang, N., and Lee, S. T., Physical Review B, 64, 113304, 2001
    126. Zhang, R. Q., Chu, T. S., Cheung, H. F., Wang, N., and Lee, S. T., Materials Science and Engineering C, 16, 31, 2001
    127. Peng, H. Y., Pan, Z. W., Xu, L., Fan, X. H., Wang, N., Lee, C. S., and Lee, S. T., Adv. Mater., 13, 317, 2001
    128. Zhang, R. Q., Lifshitz, Y., and Lee, S. T., Adv. Mater., 15, 635, 2003
    129. Meng, X-M., Hu, J-Q., Jiang, Y., Lee, C-S., and Lee, S-T., Appl. Phys. Lett., 83, 2241, 2003
    130. Lee, S. T., Zhang, Y. F., Wang, N., Tang, Y. H., Bello, I., and Lee, C. S., J. Material Research, 14, 4503, 1999
    131. Zhang, Y. F., Tang, Y. H., Wang, N., Lee, C. S., Bello, I., Lee, S. T., J. Crystal Growth, 197, 136, 1999
    132. Sanders, G. D., and Chang, Y. C., Appl. Phys., Lett., 60, 2525, 1991
    133. Lehmann, V., and Gosele, U., Appl. Phys., Lett., 58, 856, 1991
    134. Givargizov, E. I., J Crystal growth, 31, 20, 1975
    135. Wu, Y., Yan, H., Huang, M., Messer, B., Song, J. H., and Yang, P., Chem. Euri. J., 8, 1261, 2002
    136. Westwater, J., Gosain, D. P., Tomiya, S., and Usui, S., J. Vac. Sci. Techno. B, 15, 554, 1997
    137. Wang, N., Zhang, Y., and Zhu, J., J. Materials Science Letters, 20, 89, 2001
    138. Zhang, Y., Zhang, Q., Wang, N., Yan, Y., Zhou, H., and Zhu, J., J Crystal Growth, 226, 185, 2001
    139. Liu, Z. Q., Zhou, W. Y., Sun, L. F., Tang, D. S., Zou, X. P., Wang, G., and Xie, S. S., Chem. Phys. Lett., 341, 523, 2000
    140. Holmes, J. D., Johnston, K. P., Doty, R. C., and Korgel, B. A., Science, 287, 1471, 2000
    141. Yu, D. P., Xing, Y. J., Hang, Q. L., Yan, H. F., Xu, J., Xi, Z. H., and Feng, S. Q., Physica E., 9, 305, 2001
    142. Peng, X. S. J. Mater. Chem., 12, 1602, 2002
    143. Peng, W. S., Appl. Phys. A, 74, , 437, 2001
    144. Frank, F. C., Discover Faraday Soc., 5, 48, 1949
    145. Cheong, W. S., Hwang, N. M., and Yoon, D. Y., J. Crystal Growth, 204, 52, 1999
    146. Hwang, N. M., Hahn, J. H., and Yoon, D. K., J. Crystal Growth, 162, 55, 1996
    147. Hwang, N. M., J. Crystal Growth, 199/198, 945, 1999
    148. Hwang, N. M., Cheong, W. S., and Yoon, D. Y., J. Crystal Growth, 206, 177, 1999
    149. Hwang, N. M., Cheong, W. S., Yoon, D. Y., Kim, D. Y., Journal of Crystal Growth, 218, 33, 2002
    150. Dohnalek, Z., Kimmel, G. A., McCready, D. E., Young, J. S., J. Phys. Chem. B, 106, 3526, 2002
    151. Harris, K. D., Westra, K. L., and Brett, M. J., Electrochemical and Solid-State Letters, 4, C39, 2001
    152. Smy, T., Vick, D., Brett, M. J., Dew, S. K., Wu, A. T., Sit, J. C., and Harris, K. D., J. Vac. Sci. Techno. A., 18, 2507, 2000
    153. Messier, R. Venugopal, V. C., and Sunal, P. D., J. Vac. Sci. Technol. A, 18, 1538, 2000
    154. Malac, M., Egerton, R. F., Brett, M. J., and Dick, B., J. Vac. Sci. Technol. B, 17, 2671, 1999
    155. Liu, F., Umlor, M. T., Shen, L., Weston, J., Eads, W., Barnard, J. A., and Mankey, G. J., Appl. Phys., 85, 5486, 1999
    156. Robbie, K., Brett, M. J., and Lakhtakia, A., Nature, 384, 616, 1996
    157. Robbie, K., and Brett, M. J., J. Vac. Sci. Technol. A, 15, 1460, 1997
    158. Lo, H. C., Das, D., Hwang, J. S., Chan, K. H., Hsu, C. H., Chen, C. F., Chen, L. C., Appl. Phys. Lett., 83, 1420, 2003
    159. Cao, L., Zhang, Z., Sun, L., Gao, C, He, M., Wang, Y., Li, Y., Zhang, X., Li, G., and Wang, W., Adv. Mater., 13, 1701, 2001
    160. Kittel, C., Introduction to Solid State Physics, Wiley, New York, 7th, 1996
    161. Holmes, J. D., Ziegler, K. J., Doty, R. C., Pell, L. E., Johnston, K. P., and Korgel, B. A., J. Am. Chem. Soc., 123, 3743, 2001
    162. Brus, L., J. Phys. Chem., 98, 3575, 1994
    163. Streetman, B. G., Solid State Electronic Devices, Prentice-Hall, London, 4th, 1995
    164. Kanemitsu, Y., J. Luminesence, 70, 333, 1996
    165. Canham, L., Nature, 408, 411, 2000
    166. Canham, L., Nature, 409, 974, 2001
    167. Takagi, H., Ogawa, Y., Yamazaki, Y., and Nakagiri, T., Appl. Phys. Lett., 56, 2379, 1990
    168. Ruckschloss, M., Landkammer, B., and Veprek, S., Appl. Phys. Lett., 63, 1474, 1993
    169. Kanzawa, Y., Kageyama, T., Takeoka, S., Fujii, M., and Yamamoto, K., Solid Stat Communications, 102, 533, 1997
    170. Tripathy, S., Soni, R. K., Ghoshal, S. K., and Jain, K. P., Bull. Mater. Sci., 24, 285, 2001
    171. Liao, L. S., Bao, X. M., Li, N. S., Zheng, X. Q., and Min, N. B., J. Luminescence, 68, 199, 1996
    172. Nayfeh, M. H., Barry, N., Therrien, J., Gratton, E., and Belomoin, G., Appl. Phys. Lett., 78, 78, 2001
    173. 鄭振東, 光纖與無線通訊系統, 全華, 台灣, 1990
    174. Kik, P. G., Dood, M. J. A., Kikoin, K., and Polman, A., Appl. Phys. Lett., 70, 1721, 1997
    175. Kik, P. G., and Polman, A., Mat. Res. Soc. Bull., 23, 48, 1998
    176. Kik, P. G., and Polman, A., J. Appl. Phys., 88, 1992, 2000
    177. Zhao, X., Komuro, S., Fujita, S., Isshiki, H., Aoyagi, Y., and Sugano, T., Materials Science and Engineering B, 51, 154, 1998
    178. Pivin, J. C., Castro, J., Hofmeister, H., and Vassileva, M., Materials Science and Engineering B, 97, 13, 2003
    179. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K., Appl. Phys. Lett., 71, 1198, 1997
    180. Coffer, J. L., Ji, J., Chen, Y., and Senter, R. A., Chem. Mater., 13, 4783, 2001
    181. Coffer, J. L., Senter, R. A., and Chen, Y., Nano Letters, 1, 383, 2001
    182. Lee, W. H., Shin, J. H., and Seo, S. Y., J. Korea Physical Society, 34, S16, 1999
    183. Iacona, F., Pacific, D., Irrera, A., Priolo, F., Sanfilippo, D., and Fallica, P. G., Appl. Phys. Lett., 81, 3242, 2002
    184. 行政院國家委員會精密儀器發展中心, 儀器總覽, 基本物理量測儀器
    185. 汪建民, 材料分析, 中國材料科學學會, 台灣, 1998
    186. Warren, B. E., X-ray Diffraction, Assison-Wesley, USA, 253, 1989
    187. Ichikawa, M., Takeshita, J., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys., 38, L24, 1999
    188. Okada, T., Iwaki, T., Kasahara, H., and Yamamoto, K., Jpn. J. Appl. Phys., 24, 161, 1985
    189. Kakinuma, H., Mohri, M., Sakamoto, M., and Tsuruoka, T., J. Appl. Phys., 70, 7374, 1991
    190. Guo, L., Toyoshima, Y., Kondo, M., and Matsuda, A., Appl. Phys. Lett., 75, 515, 1999
    191. Skoog, D. A., Holler, F. J., and Nieman, T. A., Principles of Instrumental Analysis, Harcourt Brace, 5th, USA, 1998
    192. Miller, P. E., and Denton, M. B., Anal. Chem., 63, 619, 1986
    193. Chang, J. P., Arnold, J. C., Zau, G. C. H., and Shin, H. S., J. Vac. Sci. Technol. A, 15, 1853, 1997
    194. Ogryzio, E. A., Ibbotson, D. E., Fiamm, D. L., and Mucha, J. A., J. Appl. Phys., 67, 3115, 1990
    195. Walker, Z. H., and Ogryzlo, E. A., J. Appl. Phys., 69, 548, 1991
    196. Pastor, G., and Dominguez, E., J. Electrochem. Soc., 134, 199, 1987
    197. Suzuki, K., Hiraoka, S., and Nishimatsu, S., J. Appl. Phys., 64, 3697, 1998
    198. Chung, C. H., Rhee, S. W., and Moon, S. H., J. Electrochem. Soc., 142, 2405, 1995
    199. Sugino, R., Nara, Y., Horie, H., and Ito, T., J. Appl. Phys., 76, 5498, 1994
    200. Ozawa, N., Matsui, T., and Kanamori, J., Jpn. J. Appl. Phys., 34, 6815, 1995
    201. Franklin, N. R., and Dai, H., Adv. Mater., 12, 890, 2000
    202. Wang, Y. W., Liang, C. H., Meng, G. W., Peng, X. S., and Zhang, L. D., J. Mater. Chem., 12, 651, 2002
    203. Peng, X. S., Wang, X. F., Zhang, J., Wang, Y. W., and Zhang, L. D., Appl. Phys. A, 741, 831, 2002
    204. Nishikawa, H., Shiroyama, T., Nakamura, R., and Ohki, Y., Physical Review B, 45, 586, 1992
    205. Liao, L. S., Bao, X. M., and Zheng, X. Q., Appl. Phys. Lett., 68, 850, 1995
    206. Nishikawa, H., Watanabe, E., and Ito, D., J. Appl. Phys., 78, 842, 1995
    207. Nalwa, H. S., Silicon-Based Materials and Devices 2, Academic, USA, 2001
    208. Pinizzotto, R. F., Yang, H., and Perez, J. M., J. Appl. Phys., 75, 4486, 1994
    209. Kautsky, H. and Herzberg, G., Anorg. Allg. Chem., 139, 135, 1924
    210. Kanemitsu, Y., and Okamoto, S., Materials Science and Engineering B, 48, 108, 1997
    211. Wang, Z., and Coffer, J. L., Nano Letters, 2, 1303, 2002
    212. 尤啟中, 國立成功大學化工研究所碩士論文, 2003

    下載圖示 校內:2005-03-11公開
    校外:2005-03-11公開
    QR CODE