簡易檢索 / 詳目顯示

研究生: 洪健嘉
Hung, Chien-Chia
論文名稱: 行經硫排放限制區域定期航線的路徑選擇 -碳稅與船速之情境分析
Ship Route Selection of Liner Shipping Sailing to Emission Control Areas - Scenario Analysis of Carbon Tax and Vessel Speed
指導教授: 廖俊雄
Liao, Chun-Hsiung
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系碩士在職專班
Department of Transportation and Communication Management Science(on-the-job training program)
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 78
中文關鍵詞: 碳稅船速路徑選擇硫排放限制區定期航線
外文關鍵詞: Carbon Tax, Vessel Speed, Route Selection, Emission Control Areas, Liner Shipping
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全世界的運輸經濟蓬勃發展,全球有80%的跨國境貿易與運輸都倚賴海運來達成,定期貨櫃運輸就是其中具有相當競爭力運輸方式。本研究探討碳稅徵收與船舶速度對於海運定期貨櫃運輸服務航線的路徑選擇之影響。研究數據係利用作業基礎模型建構在亞美線與亞歐線兩條服務航線上,並藉由「地理最短距離路徑」、「行經ECA限制區最短距離路徑」兩種設計行經硫排放限制區域路徑選項,計算三年間燃油價格變動、MGO與HSHFO油品碳排放係數,產生的燃油成本與碳排放量的影響,透過「無碳稅徵收」、「起始徵收碳稅價格」與「逐年遞增碳稅率」等三種碳稅模式及船舶速度的降速調整,納入情境分析中執行成本計算,檢視在各種情境下航商的船舶航行最適路徑選擇。
    從研究分析結果得知,減少行經ECA限制區內航行距離可以降低碳排放量,亞美線在ECA限制區內可降低44.8%,亞歐線也能夠降低37.6%的碳排放量,這樣的數據證實透過路徑選擇能夠有效減少在ECA限制區內的碳排放量及燃油、碳稅成本,但選擇「行經ECA限制區最短距離路徑」卻會使得總航次的航行距離增加,也會使總碳排放量增加,亞美線增漲5.9%,亞歐線的漲幅也達到6.4%,且油價的變化對於航行路徑選擇的影響,仍以實際航行距離為主要關鍵因素,因為MGO與HSHFO油價價差倍率不足以透過路徑選擇而有效降低成本。本研究中在亞美線與亞歐線的三種碳稅相關情境中,從航次燃油總成本做為考量,皆以「地理最短距離路徑」為最佳路徑選擇,且所產生的碳排放量都小於「行經ECA限制區最短距離路徑」所產生的碳排放量。而「船舶降低航行速度」仍是目前最有效的減少航次總成本與碳排放量,在未來面臨徵收國際交通碳稅時可以有效減少課徵稅額。

    This study investigates the impacts of carbon tax imposition and vessel speed on the route selection of liner shipping services. The research data are constructed using activity-based models for Asia–America and Asia–Europe routes. By planning routes through sulfur emission control areas (ECAs) with two options: “geographical shortest path” and “shortest path through ECA,” the study calculates the resulting fuel costs and carbon emissions using fuel prices and emission factors of MGO and HSHFO fuels. Scenario analyses using three carbon taxation models and reduction in vessel speed are incorporated into the cost calculations, to determine the optimal routing selection for shipping companies.
    The analysis results show that reducing the sailing distance within the ECAs significantly reduces carbon emissions and costs in these areas. The price difference between MGO and HSHFO is insufficient to impact the costs of route selection; rather, route selection remains primarily determined by actual sailing distance. In the three carbon tax scenarios for the Asia–America and Asia–Europe service lines, considering the fuel cost per voyage, the “geographical shortest path” was identified as the optimal route choice, producing lower carbon emissions than the “shortest path through ECA.”
    Additionally, “reducing vessel speed” remains the most effective method for reducing voyage costs and carbon emissions, and it can effectively reduce tax burdens when carbon taxes are imposed in the future.

    摘要 i Extended Abstract ii 致謝 v 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 10 第二章 文獻回顧 12 第一節 航線規劃與行經ECA路徑選擇 12 第二節 船舶航行速度及燃油成本 15 第三節 運輸碳費徵收狀況 18 第四節 船舶設備更新與新造船效能趨勢 20 第三章 研究方法 23 第一節 研究對象 23 第二節 研究架構 30 第四章 航次成本與碳排量的評估 37 第一節 資料說明 37 第二節 亞美線的航次成本與碳排量 40 第三節 亞歐線的航次成本與碳排量 45 第四節 亞美線與亞歐線減速後航次總成本與碳排量分析 50 第五章 結論與建議 54 第一節 結論與貢獻 54 第二節 管理意涵 55 第三節 研究限制與後續研究 56 參考文獻 58 附錄一 全球航運二氧化碳排放概況 64 附錄二 主要國家施行碳定價摘錄 65 附錄三 全球前五大重要航線 66 附錄四 硫排放限制區域及相關法規 67

    中文文獻
    1. 江岱錦 (2020)。硫排放管制區船舶航線與速度最佳化問題之研究,https://hdl.handle.net/11296/7v4y72
    2. 呂錦山(民100年12月7日)。生活中的運輸發展:通往世界之路-貨櫃航運,科技大觀園,檢自:https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=7cecd355-4b51-468f-b97c-c9bef02fd5d1
    3. 柯亮瑩 (2015)。船運結盟之效益-從油價變動對航運類股報酬率之影響分析,https://hdl.handle.net/11296/u6s77u
    4. 郭義隆 (2011)。燃油附加費變動對於定期航運業者航行速度之相關性探討,https://hdl.handle.net/11296/xkuce6
    5. 蔡銘源 (2009)。遠洋定期貨櫃航運之航線規劃,https://hdl.handle.net/11296/rpnk63
    英文文獻
    1. Alphaliner (2024). TOP 100. https://alphaliner.axsmarine.com/PublicTop100/
    2. Anderson, M., Salo, K., & Fridell, E. (2015). Particle and gaseous emissions from an LNG powered ship. Environmental Science & Technology, 49(20), 12568–12575. https://doi.org/10.1021/acs.est.5b02678
    3. Balland, O., Erikstad, S. O., Fagerholt, K., & Wallace, S. W. (2013). Planning vessel air emission regulations compliance under uncertainty. Journal of Marine Science and Technology, 18(3), 349–357. https://doi.org/10.1007/s00773-013-0212-7
    4. Bouman, E. A., Lindstad, E., Rialland, A. I., & Strømman, A. H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review. Transportation Research Part D: Transport and Environment, 52, 408–421. https://doi.org/10.1016/j.trd.2017.03.022
    5. Bureau, D., Fontagné, L., & Schubert, K. (2017). Commerce et climat: Pour une réconciliation. Notes du conseil d’analyse économique, 37(1), 1–12. https://doi.org/10.3917/ncae.037.0001
    6. Chen, L., Yip, T. L., & Mou, J. (2018). Provision of emission control area and the impact on shipping route choice and ship emissions. Transportation Research Part D: Transport and Environment, 58, 280–291. https://doi.org/10.1016/j.trd.2017.07.003
    7. Corbett, J. J., Wang, H., & Winebrake, J. J. (2009). The effectiveness and costs of speed reductions on emissions from international shipping. Transportation Research Part D: Transport and Environment, 14(8), 593–598. https://doi.org/10.1016/j.trd.2009.08.005
    8. Det Norske Veritas (DNV) (2023). https://www.dnv.com/tw/index.html
    9. Dominioni, G., Heine, D., & Martinez Romera, B. (2018). Regional Carbon Pricing for International Maritime Transport: Challenges and Opportunities for Global Geographical Coverage (SSRN Scholarly Paper 3494819). https://papers.ssrn.com/abstract=3494819
    10. Doudnikoff, M., & Lacoste, R. (2014). Effect of a speed reduction of containerships in response to higher energy costs in Sulphur Emission Control Areas. Transportation Research Part D: Transport and Environment, 28, 51–61. https://doi.org/10.1016/j.trd.2014.03.002
    11. Eide, M. S., Longva, T., Hoffmann, P., Endresen, Ø., & Dalsøren, S. B. (2011). Future cost scenarios for reduction of ship CO2 emissions. Maritime policy & management, 38(1), 11–37. https://doi.org/10.1080/03088839.2010.533711
    12. Fagerholt, K., & Psaraftis, H. N. (2015). On two speed optimization problems for ships that sail in and out of emission control areas. Transportation Research Part D: Transport and Environment, 39, 56–64. https://doi.org/10.1016/j.trd.2015.06.005
    13. Fagerholt, K., Gausel, N. T., Rakke, J. G., & Psaraftis, H. N. (2015). Maritime routing and speed optimization with emission control areas. Transportation Research Part C: Emerging Technologies, 52, 57–73. https://doi.org/10.1016/j.trc.2014.12.010
    14. Fremstad, A., & Paul, M. (2019). The Impact of a Carbon Tax on Inequality. Ecological Economics, 163, 88–97. https://doi.org/10.1016/j.ecolecon.2019.04.016
    15. Gkonis K. G., & Psaraftis H. A. (2012, October 24). Modeling Tankers’ Optimal Speed and Emissions. SNAME Maritime Convention. https://doi.org/10.5957/SMC-2012-A08
    16. Golias, M. M., Saharidis, G. K., Boile, M., Theofanis, S., & Ierapetritou, M. G. (2009). The berth allocation problem: Optimizing vessel arrival time. Maritime Economics & Logistics, 11(4), 358–377. https://doi.org/10.1057/mel.2009.12
    17. Great Lakes Seaway. (2023). Facts & Figures. https://greatlakes-seaway.com/en/
    18. Heine, D., & Gäde, S. (2018). Unilaterally removing implicit subsidies for maritime fuels. International Economics and Economic Policy, 15(2), 523–545. https://doi.org/10.1007/s10368-017-0410-6
    19. Heitmann, N., & Peterson, S. (2014). The potential contribution of the shipping sector to an efficient reduction of global carbon dioxide emissions. Environmental Science & Policy, 42, 56–66. https://doi.org/10.1016/j.envsci.2014.05.001
    20. International Maritime Organization (IMO) (2021). Fourth IMO GHG Study 2020 Full Report. https://www.maritimecyprus.com/wp-content/uploads/2021/03/4th-IMO-GHG-Study-2020.pdf
    21. International Maritime Organization (IMO) (2022) International Convention for the Prevention of Pollution from Ships (MARPOL) Annex VI SEEMP Part III and Carbon Intensity Indicator (CII) LR. (n.d.). https://www.lr.org/en/knowledge/class-news/11-22/
    22. International Maritime Organization (IMO) (2018). Marine Environment Protection Committee (MEPC), 72nd session, 9-13 April 2018. https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-72nd-session.aspx
    23. Jiang, L., Kronbak, J., & Christensen, L. P. (2014). The costs and benefits of sulphur reduction measures: Sulphur scrubbers versus marine gas oil. Transportation Research Part D: Transport and Environment, 28, 19–27. https://doi.org/10.1016/j.trd.2013.12.005
    24. Li, L., Gao, S., Yang, W., & Xiong, X. (2020). Ship’s response strategy to emission control areas: From the perspective of sailing pattern optimization and evasion strategy selection. Transportation Research Part E: Logistics and Transportation Review, 133, 101835. https://doi.org/10.1016/j.tre.2019.101835
    25. Lindstad, H. E., Rehn, C. F., & Eskeland, G. S. (2017). Sulphur abatement globally in maritime shipping. Transportation Research Part D: Transport and Environment, 57, 303–313. https://doi.org/10.1016/j.trd.2017.09.028
    26. Lindstad, H., & Eskeland, G. S. (2015). Low carbon maritime transport: How speed, size and slenderness amounts to substantial capital energy substitution. Transportation Research Part D: Transport and Environment, 41, 244–256. https://doi.org/10.1016/j.trd.2015.10.006
    27. Livaniou, S., Chatzistelios, G., Lyridis, D. V., & Bellos, E. (2022). LNG vs. MDO in marine fuel emissions tracking. Sustainability, 14(7), Article 7. https://doi.org/10.3390/su14073860
    28. Ma, W., Ma, D., Ma, Y., Zhang, J., & Wang, D. (2021). Green maritime: A routing and speed multi-objective optimization strategy. Journal of Cleaner Production, 305, 127179. https://doi.org/10.1016/j.jclepro.2021.127179
    29. Martin A. (2021,Sep 1) step forward for “green” methanol and its potential to deliver deep GHG reductions in maritime shipping. International Council on Clean Transportation. https://theicct.org/a-step-forward-for-green-methanol-and-its-potential-to-deliver-deep-ghg-reductions-in-maritime-shipping /
    30. Nikopoulou, Z. (2017). Incremental costs for reduction of air pollution from ships: A case study on North European emission control area. Maritime Policy & Management, 44(8), 1056–1077. https://doi.org/10.1080/03088839.2017.1342878
    31. Notteboom, T. E. (2006). The Time Factor in Liner Shipping Services. Maritime Economics & Logistics, 8(1), 19–39. https://doi.org/10.1057/palgrave.mel.9100148
    32. Notteboom, T. E., & Vernimmen, B. (2009). The effect of high fuel costs on liner service configuration in container shipping. Journal of Transport Geography, 17(5), 325–337. https://doi.org/10.1016/j.jtrangeo.2008.05.003
    33. Organization for Economic Co-operation and Development (OECD) (2019). ITF Transport Outlook 2019. Organization for economic co-operation and development. https://www.oecd-ilibrary.org/transport/itf-transport-outlook-2019_transp_outlook-en-2019-en
    34. Papadakis, N. A., & Perakis, A. N. (1989). A nonlinear approach to the multiorigin, multidestination fleet deployment problem. Naval Research Logistics (NRL), 36(4), 515–528. Scopus. https://doi.org/10.1002/1520-6750(198908)36:4<515::AID-NAV3220360413>3.0.CO;2-J
    35. Psaraftis, H. N., & Kontovas, C. A. (2010). Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D: Transport and Environment, 15(8), 458–462. https://doi.org/10.1016/j.trd.2010.05.001
    36. Psaraftis, H. N., & Kontovas, C. A. (2011). Corrigendum: Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D: Transport and Environment, 16(3), 270–271. https://doi.org/10.1016/j.trd.2010.12.007
    37. Psaraftis, H. N., & Kontovas, C. A. (2013). Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transportation Research Part C: Emerging Technologies, 26, 331–351. https://doi.org/10.1016/j.trc.2012.09.012
    38. Psaraftis, H. N., & Kontovas, C. A. (2014). Ship speed optimization: Concepts, models and combined speed-routing scenarios. Transportation Research Part C: Emerging Technologies, 44, 52–69. https://doi.org/10.1016/j.trc.2014.03.001
    39. Psaraftis, H. N., & Kontovas, C. A. (2009). Ship emissions: logistics and other tradeoffs. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=91e9a78d6bb069572df041cb7acea5af0430022b
    40. Ronen, D. (2011). The effect of oil price on containership speed and fleet size. Journal of the Operational Research Society, 62(1), 211–216. https://doi.org/10.1057/jors.2009.169
    41. Schinas, O., & Butler, M. (2016). Feasibility and commercial considerations of LNG-fueled ships. Ocean Engineering, 122, 84–96. https://doi.org/10.1016/j.oceaneng.2016.04.031
    42. Schinas, O., & Stefanakos, C. (2013). The Cost of SOx Limits to Marine Operators; Results from Exploring Marine Fuel Prices. TransNav, International Journal on Marine Navigation and Safety Od Sea Transportation, 7(2), 275–281. https://doi.org/10.12716/1001.07.02.15
    43. Ship&bunker. (2023). Ship&bunker price. https://shipandbunker.com/
    44. The world bank. (2023). Carbon pricing dashboard. https://carbonpricingdashboard.worldbank.org/
    45. United Nations Conference on Trade and Development (UNCTAD) (2019). Trade and development report 2019. https://unctad.org/system/files/official-document/tdr2019_en.pdf
    46. United Nations Conference on Trade and Development (UNCTAD) (2021). Trade and development report 2021. https://unctad.org/system/files/official-document/tdr2021_en.pdf
    47. United Nations Conference on Trade And Development (UNCTAD) (2022). Review of maritime transport 2022. https://unctad.org/rmt2022
    48. Veenstra, A. W., & Ludema, M. W. (2006). The relationship between design and economic performance of ships. Maritime Policy & Management, 33(2), 159–171. https://doi.org/10.1080/03088830600612880
    49. Vernimmen, B., Dullaert, W., & Engelen, S. (2007). Schedule Unreliability in Liner Shipping: Origins and Consequences for the Hinterland Supply Chain. Maritime Economics & Logistics, 9(3), 193–213. https://doi.org/10.1057/palgrave.mel.9100182
    50. Wang, C., & Chen, J. (2017). Strategies of refueling, sailing speed and ship deployment of containerships in the low-carbon background. Computers & Industrial Engineering, 114, 142–150. https://doi.org/10.1016/j.cie.2017.10.012
    51. Wang, XT., Liu, H., Lv, ZF. et al (2021). Trade-linked shipping CO2 emissions. Nat. Clim. Chang. 11, 945–951. https://doi.org/10.1038/s41558-021-01176-6
    52. Wattum, M. (2011). LNG as fuel in global trades for Höegh car carriers [Master thesis, Norges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for marin teknikk]. https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/238066
    53. Worldometers (2023). CO2 Emissions. https://www.worldometers.info/co2-emissions/
    54. Zhu, M., Huang, L., Huang, Z., Shi, F., & Xie, C. (2022). Hazard analysis by leakage and diffusion in Liquefied Natural Gas ships during emergency transfer operations on coastal waters. Ocean & Coastal Management, 220, 106100. https://doi.org/10.1016/j.ocecoaman.2022.106100

    無法下載圖示 校內:2029-07-23公開
    校外:2029-07-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE