| 研究生: |
彭世豪 Peng, Shih-hao |
|---|---|
| 論文名稱: |
實心與中空圓桿在扭力作用下之端點效應 End effects in circular bar and tube under torsion |
| 指導教授: |
譚建國
Tarn, Jian-quo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 功能性材料 、材料異向性 、聖維南原理 、狀態空間法 |
| 外文關鍵詞: | State space formalism, Saint-Venant's principle, anisotropic, functionally graded material |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討圓斷面桿件在扭力作用下端點效應的影響,並探討在不同的邊界條件、材料異向性、功能性材料,與多層材料問題聖維南原理的適用性,以及端點效應是否可以忽略。材料力學的解只包含聖維南解的部分,僅解析徑向無束制之邊界條件問題。依據彈性力學理論,利用狀態空間法,首先對均質材料問題與材料力學的解做比較,再針對功能性材料以及雙層之複合材料圓桿的扭轉問題,探討端點效應的影響範圍。
End effects in circular bar and tube under torsion, compare with different boundary conditions, anisotropic, functionally graded material and multilayersproblem, the usability of Saint-Venant’s principle, in what situation, the end effect can be neglected. The shear stress formula in “Material Machenics” only including the non-decay term, and lateral boundary condition is traction free. According to elasticity theory, in using state space method, compare with homogeneous material problem and the shear stress formula in “Material Machenics”, then consider the functionally graded material and multilayers under torsion, the region of the end effect.
1. C.O. Horgan and A.M. Chen, Torsion of functionally graded isotropic linearly elastic bars., Journal of Elasticity 52, pp.181-199, (1999).
2. J.Q. Tarn and H.H. Chang, Torsion of anisotropic elastic circular bars with radial inhomogeneity:some exact solutions and end effect.,
International Journal of Solids and Structures 45, pp.303-319, (2008).
3. S.G. Lekhnitskii, Theory of elasticity of an anisotropic body., Mir Publishers, Moscow, (1981).
4. M.J. Folkes and R.G.C. Arridge, The measurement of shear modulusin highly anisotropic materials: the validity of St Venant's principle.,
Journal of Physics D: Applied Physics, Vol.8, pp.1053-1064, (1975).
5. G.N. Watson, A Treatise on the Theory of Bessel Functions., Camb
ridge mathematical Library edition, Cambridge University Press, Cambridge, (1966).
6. X.S. Xu, W.X. Zhong and H.W. Zhang, The Saint-Venant problem and principle in elasticity., International Journal of Solids and Structures Vol.34, No.22, pp.2815-2827, (1997).
7. 張錫宏, 異向性與功能材料壓電熱彈性力學之狀態空間模式與應用.,國立成功大學土木工程研究所博士論文, (2006).