簡易檢索 / 詳目顯示

研究生: 江師榮
CHIANG, SHIH-JUNG
論文名稱: 空載光達與二維數值地形圖的建物特徵自動化匹配研究
An Automatic Method for Building Feature Matching Based on Airborne Lidar Data and 2D Digital Topographic Map Information
指導教授: 尤瑞哲
YOU, Rey-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 54
中文關鍵詞: 花費函數匹配光達數值地形圖位相關係
外文關鍵詞: topological relation, Cost Function, matching, LIDAR, digital topographic map
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光達資料有著高精度與高密度的特性,其大量密佈三維點雲可描述細緻的面特徵,但光達點雲資訊為隱性資訊。數值地形圖可記錄精確的面特徵邊界線和屬性,卻無法詳細描述建物表面細節。為了整合這二種資料,本研究嘗試將此二類資料建物面特徵建立面群組,以面群組為匹配單位,以位相關係為匹配實體,配合花費函數建立匹配演算法,並以此演算法對成大校區不同時期的空載點雲和地形圖資料進行匹配測試。

    本研究對演算法的匹配平面數、位相關係數、偵錯機制三種影響匹配結果的因素進行探討。藉由實驗結果說明光達平面和地形圖平面數目不同的匹配處理方式。此外,亦證明演算法的偵錯機制可有效剔除錯誤的匹配平面對,提高匹配結果的可靠度。經過實驗測試分析,本文所提演算法對光達和地形圖建物面特徵可得到良好的匹配結果。

    Lidar data has high-precision, high-density characteristics.Clouds with high-density can describe detailed surface features.However, the geomatric information in point clouds are not explicit. Digital topographic maps record precise surface feature boundaries and attributes, but they are unable to give the detailed description of a building surface. To integrate both types of data, this study develops a matching algorithm with the help of the Cost Function.The algorithm organizes plane groups by building features.These plane groups are adopted for matching and topological relations between them are calculatedand are used as matching entities.In this article,we test the algorithm by matching different periods of airbone point clouds and topographic maps in National Cheng Kung University campus.

    This study discusses three major factors which affect the matching results, including the number of matching planes, the number of our experiment’s topological relations,and the debugging mechanism.The results show that the probability of successful matching is increased with the number presented of topological relations.The debugging mechanism in this study could remove erroneous matching planar pairs and improve the reliability of matching results.The algorithm developed here in effective for matching planar building features extracted from lidar data and digital topographic maps.

    中文摘要.................................................Ⅰ 英文摘要.................................................Ⅱ 致謝.....................................................Ⅲ 目錄.....................................................Ⅳ 圖目錄...................................................Ⅵ 表目錄...................................................Ⅶ 第一章 前言..............................................1 1.1 研究動機與目的....................................1 1.2 文獻回顧..........................................2 1.3 研究方法..........................................3 1.4 論文架構..........................................3 第二章 光達原理及張量投票法之特徵萃取....................5 2.1 空載光達原理......................................6 2.1.1 空載光達系統架構............................6 2.1.2 空載光達點雲性質............................9 2.2 張量投票法之特徵萃取.............................11 第三章 匹配理論探討.....................................14 3.1 灰值匹配.........................................14 3.2 特徵匹配.........................................18 3.3 關係/象徵式匹配..................................19 3.4 坐標轉換和粗差檢測...............................21 第四章 以面積、距離、角度位相關係為基礎的匹配演算法.....26 4.1 面特徵萃取.......................................26 4.2 位相關係和花費函數演算法.........................27 4.3 匹配資料預處理...................................30 4.4 最佳解求定.......................................32 4.5 建立轉換參數.....................................33 第五章 實驗與分析.......................................36 5.1 實驗資料.........................................36 5.2 實驗測試.........................................37 5.2.1 位相關係特性對匹配的影響...................37 5.2.2 偵錯機制測試...............................39 5.2.3 匹配平面數對應關係對匹配的影響.............41 5.3 成果分析與討論...................................46 第六章 結論與建議.......................................49 參考文獻.................................................50

    王聖鐸 (1997)。"近景攝影測量中人工標點的自動辨識與定位"。國 立成功大學測量工程研究所碩士論文。

    李德仁 (1988)。誤差處理和可靠性理論。測繪出版社。北京。

    吳華泰 (2003)。"整合特徵資訊的區域匹配法研究"。國立台灣大學 土木工程研究所碩士論文。

    徐偉城 (1999)。"空照彩色立體像對中人工建築物萃取之研究"。國立中央大學土木工程研究所碩士論文。

    賴志恆 (2003)。"雷射掃瞄點雲資料八分樹結構化之研究"。國立成功大學測量工程研究所碩士論文。

    羅頌濠 (2004)。"物件關連式空間資料庫之建置—利用大比例尺數值地形圖重組地理物件 "。國立成功大學測量工程研究所碩士論文。

    Ali, M.A. and Clausi, D.A. (2002). “Automatic registration of SAR and
    visible band remote sensing image.” Geoscience and Remote Sensing
    Symposium, 2002. IGARSS '02. 2002 IEEE International, Vol. 3,
    pp.1331 -1333.

    Besl, P.J. and McKay, N.D. (1992) . “A method for registration of 3D shapes. ” IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (2), pp. 239-256.

    Brown, L. (1992). “A survey of image registration techniques. ” ACM Computer Surveys, Vol.24,No.4,pp.325-376.

    BUREL,G. and AZOU,S. (2003). “A new receiver for chaotic digital transmissions:The symbolic matching approach.” WSEAS Transactions on Circuits and Systems, Vol. 2, Issue 3,July 2003,pp.638-642.

    Chang, B.C.H and Halgamuge, S.K. (2003). “Approximate Symbolic Pattern Matching for Protein Sequence Data. ” International Journal of Approximate Reasoning.

    Dare, P. and Dowman, I. (2001). “An improved model for automatic
    feature-based registration of SAR and SPOT images. ” ISPRS Journal of Photogrammetry & Remote Sensing 56, pp.13-28.

    Dold, C. and Brenner, C. (2004). “Automatic matching of terrestrial scan data as a basis for the generation of detailed 3D city models.”International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 35, pp. 1091-1096, ISPRS, Istanbul.

    Elaksher, A.F., Bethel, J. S. and Mikhail, E.M. (2002). “Building extraction using multiple images.” ACSM-ASPRS 2002 Annual Conference Proceedings.

    Godin, G., Laurendeau, D. and Bergevin, R. (2001). “A method for the registration of attributedrange images.” IEEE International Conference on 3D Imaging and Modeling, Quebec, May 28 – June 1, pp. 179-186.

    Gruen, A. and Li, H. (1996). “Linear feature extraction with LSB-Snakes from multiple images.” International Archives of Photogrammetry and Remote Sensing, 31 (3B), pp. 266-272.

    Haala, N. and Hahn, M. (1995). Data Fusion for the Detection and Reconstruction of Buildings. In A. Grün, O. Kübler and P. Agouris (eds), Automatic Extraction of Man-Made Objects from Aerial and Space Images. Birkhäuser Verlag, Berlin, pp.211-220.

    Hendrickx, M., Vandekerckhove, J., Frere, D., Moons, T. and van Gool, L. (1997). "3D reconstruction of house roofs from multiple aerial images of urban areas.” International Archives of Photogrammetry and Remote Sensing. ISPRS, Columbus,Ohio, USA, pp. 88-94.

    Hough, P.V.C. (1962). “methods and means for recognising complex patterns.” U.S.patent No.3069654.

    Maas, H. G. and Vosselman, G. (1999). “Two algorithms for extracting building models from raw laser altimetry data.” ISPRS Journal of Photogrammetry & Remote Sensing, vol.54, pp.153-163.

    Park,H.J. and Zinmmermann,P. (2000). “Colour image matching for DTM generation and house extraction”, International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B3., pp.697-704, Amsterdam.

    Schenk,T. (1999). Digital Photogrammetry,TerraScience,Ohio,USA.
    Schenk,T. (2001). “Modeling and analyzing systematic errors in airborne laser scanners. ”, Technical Notes in Photogrammetry No 19, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio,USA.

    Scholze, S.,Moons,T., Ade,F.andVan Gool, L.(2000)“Exploiting color for edge extraction and line segment stereo matching in high-resolution aerial imagery”, International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B3., pp.697-704, Amsterdam.

    Stafne, M. A., Mitchell, L. D. and R. L. West (2000). “Positional calibration of galvanometric scanners used in laser Doppler vibrometers”, Mesurement, vol.28 pp.47-59.

    Vosselman, G. and Dijkman, S. (2001). “3D building model reconstruction from point clouds and ground plans.” International Archives of Photogrammetry and Remote Sensing, vol.34, Part 3/W4 pp.37-43, Annapolis, Maryland.

    Woo, H., Kang, E, Wang, S. and Lee, K. H. (2002). “A new segmentation method for point cloud data.”, International Journal of Machine & Manufacture, vol.42, pp.167-178.

    You, R.J. and Lin B.C. (2007). “Building feature extraction from airborne lidar data using tensor voting algorithm.” ISPRS J.Photogrammetry and Remote Sensing (in review).

    下載圖示 校內:立即公開
    校外:2007-08-16公開
    QR CODE