| 研究生: |
曹志豪 Tsao, Chih-Hao |
|---|---|
| 論文名稱: |
離子傳導型高分子之合成及鑑定與其於鋰電池黏著劑及膠態電解質之應用 Synthesis and Characterization of Ionic Conducting Polymer Used as Binder and Gel Polymer Electrolytes for Lithium Battery |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 鋰電池 、高分子電解質 、接著劑 、聚丙烯腈 、聚氧乙烯 、無機添加物 、離子液體。 |
| 外文關鍵詞: | lithium battery, polymer electrolytes, binder, poly(ethylene oxide), poly(acrylonitrile), ceramic, ionic liquid. |
| 相關次數: | 點閱:134 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此論文中,我們製備出具離子傳導功能之高分子,並應用於鋰電池的高分子電解質及接著劑部分。此論文可分為五部分:(1)含苯氧基之聚磷腈高分子電解質之合成與鑑定;(2)孔洞結構之聚矽氧烷複合高分子膠態電解質其鋰電池應用;(3)離子傳稿與表面活性之嵌段(聚丙烯腈-聚氧乙烯)共聚高分子於鋰電池接著劑應用;(4) 穩定鋰金屬鈍化層生成之陶瓷材料交聯高分子其鋰電池膠態電解質應用;(5)寡聚離子液體新穎聚合法及其耐燃與高效能鋰電池膠態電解質應用。
第一部分,利用了一個新穎的合成法去製備含苯氧基之聚磷腈高分子電解質並利用於鋰電池電解質,此高奔子電解質在聚磷腈主鏈上修飾聚氧乙烯與苯氧官能基並利用三聚氰胺交聯劑與其進行反應製備交聯之高分子電解質,此反應可以簡單地進行並且有效控制交聯之程度並直接至被柔軟的高分子薄膜。在30 ˚C時6 %的交聯程度下我們可得到最佳的導電度約在5.36 x 10-2 mS cm-1,並且由鋰固態核磁共振圖譜可發現,導電度合高分子鏈段移動高度相關。此外,本研究發現提高交聯程度能有效的提高電化學視窗,在交聯程度18 %的高分子電解質可發現,即使到了7 V也不會有明顯的氧化還原電流產生,因此含苯氧基之聚磷腈高分子電解質可以簡單且方便的讓我們探討高分子交聯程度與離子之間的傳導能力。
在第二部份我們利用聚矽氧烷與嵌段(聚丙烯腈-聚氧乙烯)共聚高分子製備聚孔洞性之膠態電解質,由於聚矽氧烷的存在,因此破壞了聚丙烯腈鏈段的結晶鋰離子的傳導度由0.41提升至0.58。此外聚矽氧烷會使得相分離的情形發生,造成高分子膜具有孔洞的特性,此一特性讓膠態電解質能吸附大量的電解液,使得相較於對照組導電度能夠大幅提升,因此具有聚矽氧烷的複合高分子電解質鋰電池效能測試結果放電電容於 3 C 也維持114 mAh g-1 電容值,而無添加之對照組則只有70 mAh g-1 電容值。從實驗結果可知聚矽氧烷的複合高分子電解質為一提升鋰離子傳導度且有隔離膜功能之高分子鋰電池電解質。
本研究第三部分利用嵌段(聚丙烯腈-聚氧乙烯)共聚高分子做為鋰電池正極材料的接著劑,此共聚高分子不僅提供了鋰離子傳導的路徑也可以做為正極漿料的分散劑,並大幅提升電池在快速放電時的性能。由於聚丙烯腈與聚氧乙烯具有表面活性幫助分散,因此有效的增加了活物與導電碳的接觸面積及降低了電子傳導的阻抗,此外由於此高分子具有離子傳導功能,因而有效降低了極化現象與介面阻抗並增強了整體活物電化學反應之活性。因此,在10C高速放電測試中此接著劑之電池表現出傑出放電效能達101 mAh g−1,較傳統PVDF接著劑對照組高出許多,因此整體而言其具有良好電化學特性與電池效能表現。
第四部分,利用的新穎的合成方法從一般商用環氧樹脂製備寡聚型離子液體,這離子液體再和PVdF-co-HFP 混傪以製備高性能、耐燃性膠態電解質,此膠態電解質電解液含量少(< 50%),但仍有高離子導電度在30 ˚C時導電度有2.0 mS cm-1,而從交流阻抗分析可發現此膠態電解質擁有好的介面阻抗,且在長效穩定性測試在100圈後仍有99%的庫倫效率質。此外此膠態電解質展現了良好的尺寸穩定性,經過150 oC高溫測試其尺寸變化小於1%。最重要的是,此膠態電解質極限氧指數高達29,代表其在大氣環境下為不燃,可用以製備高安全性的鋰電池,從這些特性可以知道,此膠態電解質可做為高安全鋰離子傳導介質以及鋰電池隔離膜。
本論文最後一部分我們利用表面修飾將無機物修飾上具有環氧基之交聯劑,並利用其與聚氧乙烯高分子交聯作為膠態電解質主體,此有機無機複合膠態電解質對於鋰金屬表面鋰析與行成穩定的鈍化層具有卓越的幫助。對比一般膠態電解質,此奈米複合膠態電解質對於電解液有較好的親和性、更高的電化學視窗(5V)並且在快速充放電與長效的循環壽命上有更優越的表現,由DSC的圖譜可發現無機物修飾過後作為交聯劑可以讓聚氧乙烯型成理離子的傳導通道也可以增加理離子遷移數達0.5,因此此膠態電解質具有較低的極化現象與較小的介面阻抗,並且有效益至電解液對於鋰金屬的腐蝕與行成不穩定的鈍化層等問題。更者由SEM的照片可更清楚證實鋰金屬表面的鈍化層的確因為奈米複合膠態電解質達到穩定化的效果。綜合以上此複合膠態電解質可做為高效能的鋰金屬電池傳導介質。
This dissertation, the ionic conducting polymers were prepared, and it is applied as gel polymer electrolytes (GPEs) and polymer binder for lithium battery. This monograph is divided into five parts: (1) Synthesis and Characterization of Polymer Electrolytes based on Cross-linked Phenoxy-containing Polyphosphazenes. (2) Poly(dimethylsiloxane) (PDMS) hybrid GPEs of a porous structure for lithium ion battery. (3) Ionic conducting and surface active binder of poly(ethylene oxide)-block-poly(acrylonitrile) (PEO-b-PAN) for high power lithium-ion battery. (4) Stable lithium deposition generated from ceramic-crosslinked GPEs for lithium-metal batteries. (5) A new strategy for preparing oligomeric ionic liquid GPEs for high-performance and nonflammable lithium ion batteries.
In the first part, a new method to prepare the polymer electrolytes for lithium-ion batteries is proposed. The polymer electrolytes were prepared by reacting poly(phosphazene)s (MEEPP), which have 2-(2-methoxyethoxy)ethoxy and 2-(phenoxy)ethoxy units with 2,4,6-tris[bis(methoxymethyl)amino]-1,3,5-triazine (CYMEL) as a cross-linking agent. This method is simple and reliable for controling the cross-linking extent, thereby providing a straightforward way to produce a flexible polymer electrolyte membrane. The 6 mol% cross-linked polymer electrolyte (ethylene oxide unit (EO)/Li = 24/1) exhibited a maximum ionic conductivity of 5.36 x 10-2 mS cm-1 at 30 ˚C. The 7Li linewidths of solid-state static NMR showed that the ionic conductivity was strongly related to polymer segment motion. Moreover, the electrochemical stability of the MEEPP polymer electrolytes increased with an increasing extent of cross-linking, the highest oxidation voltage of which reached as high as 7.0 V. Moreover, phenoxy-containing polyphosphazenes are very useful model polymers to study the relationship between the cross-linking extent; that is, the polymer flexibility and the mobility of metal ions.
The second part, a porous fabric membrane (XSAE) was prepared from the crosslinked hybrid composite of PDMS / PEO-b-PAN copolymer to simultaneously act as a separator and functionalized GPEs. The addition of PDMS induces phase segregation to form a porous morphology and deteriorates the crystallization of PAN. Owing to these effects, the lithium transport number increased from 0.41 up to 0.58. The porous structure enables hybrid membranes (XSAE) to absorb a large amount of electrolyte solution, thereby significantly increases the ionic conductivity of GPEs. Therefore, compared with a membrane without PDMS (XAE), the capacities of XSAE can reach 114 mAh g-1, significantly higher than that of XAE (70 mAh g-1) at high C rate (3C). Moreover, the aforementioned properties of the XSAE membrane allow this composite to act as both an ionic conductor and separator.
The third part reports on PEO-b-PAN copolymer is used as a binder for LiFePO4 cathodes, where PEO-b-PAN not only conducts Li+ inside the cathode but also acts as a dispersant to disperse LiFePO4. This binder significantly increases the capacity under high discharge rate and overcome the limitation of LiFePO4 for high power density application. Due to the surface active properties of the PEO and PAN, PEO-b-PAN obviously increases the effective contact area and reduces electronical resistance. In addition to the surface active properties, this binder provides Li+ pathway; thus, it features low polarization, less interfacial resistance and good activity for electrochemical reaction. Consequently, even at a 10 C rate, the PEO-b-PAN binder still delivers extraordinary discharge capacities of 101 mAh g−1, significantly higher than that of the conventional Poly(vinylidene fluoride) (PVDF) binder (32 mAh g−1). Overall, this binder exhibits good electrochemical properties and excellent high rate performance.
Forth part provides a new strategy is used to synthesize an oligomeric ionic liquid from conventional phenolic epoxy resin. This oligomeric ionic liquid is further blended with Poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-co-HFP) and organic liquid electrolyte to prepare a high performance, nonflammable gel polymer membrane. Although the liquid electrolyte uptake is low (< 50%) for this novel GPE, it possesses high ionic conductivities of 2.0 mS cm-1 at 30 ˚C, and the AC impedance results show that the interfacial compatibility between this gel polymer electrolyte and the electrodes is good. Moreover, cell-cycle stability after being charged and discharged 100 cycles is also demonstrated with the columbic efficiency to be up to 99%. Further, this novel GPE exhibits superior dimensional stability; that is, at 150 oC the dimensional change is less than 1%. Notably, the electrolyte’s limiting oxygen index can be as high as 29, meaning that it achieves the flame-retardant requirement under a normal atmosphere, which is essential to the safety of lithium ion batteries. These features allow this novel GPE to function as a high performance and high safety lithium ionic conductor as well as a separator for lithium-ion batteries.
In the final part, a composite gel electrolyte comprising ceramic crosslinker and PEO matrix is shown to have superior resistance to lithium dendrite growth and be applicable to gel polymer lithium batteries. In contrast to pristine gel electrolyte, these nanocomposite gel electrolytes show good compatibility with liquid electrolytes, wider electrochemical window and a superior rate and cycling performance. These silica crosslinkers allow the PEO to form the lithium ion pathway and reduce anion mobility. Therefore, the gel not only features lower polarization and interfacial resistance, it suppresses electrolyte decomposition and lithium corrosion. Further, these nanocomposite gel electrolytes increase the lithium transference number to 0.5, and exhibit superior electrochemical stability up to 5.0 V. Moreover, the SEM image of the lithium metal surface after the cycling test shows that the composite gel electrolyte forms a uniform passivation layer on the lithium surface. Accordingly, these features allow this GPE with ceramic crosslinker to function as a high-performance lithium-ionic conductor and reliable separator for lithium metal batteries.
1. Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 9994−10024.
2. Tarascon, J.-M.; Armand, M. Nature 2001, 414, 359−367.
3. Thackeray, M. M.; Wolverton C.; Isaacs E. D. Energy Environ. Sci. 2012, 5, 7854−7863.
4. Dunn, B.; Kamath, H.; Tarascon, J.-M. Science 2011, 334, 928-935
5. Deng, D. Energy Sci. Eng. 2015, 3, 385–418.
6. Chen, Z.; Hsu, P.-C.; Lopez, J.; Li, Y.; To, J. W. F.; Liu, N.; Wang, C.; Andrews, S. C.; Liu, J.; Cui, Y.; Bao, Z. Nature Energy 2016, 1, 15009.
7. Park, S.-J.; Zhao, H.; Ai, G.; Wang, C.; Song, X.; Yuca, N.; Battaglia, V. S.; Yang, W.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2565−2571.
8. Alan C. Luntz, A. C.; Voss, J.; Reuter, K. J. Phys. Chem. Lett. 2015, 6, 4599−4604.
9. Patel, M.; Bhattacharyya, A.J. Energy Environ. Sci. 2011, 4, 429–432.
10. Song, J. Y.; Wang, Y. Y.; Wan, C. C. J. Power Sources 1999, 77, 183−197.
11. Fergus, J. W. J. Power Sources 2010, 195, 4554−4569.
12. Raghavan, P.; Zhao, X.; Shin, C.; Baek, D.H.; Choi, J.W.; Manuel, J. M.; Heo, Y.; Ahn, J.H.; Nah, C. J. Power Sources 2010, 195, 6088–6094.
13. Palacı´n, M. R. Chem. Soc. Rev. 2009, 38, 2565–2575.
14. Abraham, K. M. J. Phys. Chem. Lett. 2015, 6, 830−844.
15. Whittingham, M. S. Chem. Rev. 2014, 114, 11414−11443.
16. Goodenough, J. B.; Park, K.-S. J. Am. Chem. Soc. 2013, 135, 1167–1176.
17. Goriparti, S.; Miele, E.; Angelis, F. D.; Fabrizio, E. D.; Zaccaria, R. P.; Capiglia, C. J. Power Sources 2014, 257, 421−443.
18. Obrovac, M. N.; Chevrier, V. L. Chem. Rev. 2014, 114, 11444−11502.
19. Elia, G. A.; Park, J.-B.; Sun, Y.-K.; Scrosati, B.; Hassoun, J. ChemElectroChem 2014, 1, 47–50.
20. Young, W.-S.; Albert, J. N. L.; Schantz, A. B.; Epps, T. H.III. Macromolecules 2011, 44, 8116–8123.
21. Li, F.-S.; Wu, Y.-S.; Chou, J.; Winter, M.; Wu, N.-L. Adv. Mater. 2015, 27, 130–137.
22. He, Q.; e Xu, C.; Luo, J.; Wu, W.; Shi, J. Chem. Commun. 2014, 50, 13944−13947.
23. Wu, H.; Shevlin, S. A.; Meng, Q.; Guo, W.; Meng, Y.; Lu,K.; Wei, Z.; Guo, Z. Adv. Mater. 2014, 26, 3338–3343.
24. Kim, S.; Hwang, C.; Park, S. Y. Ko, S.-J.; Park, H.; Choi, W. C.; Kim, J. B.; Kim, D. S.; Park, S.; Kim, J. Y.; Song, H.-K. J. Mater. Chem. A 2014, 2, 18070-18075.
25. Islam, M. S.; Fisher, C. A. J. Chem. Soc. Rev. 2014, 43, 185−204.
26. Strobridge, F. C.; Orvananos, B.; Croft, M.; Yu, H.-C.; Robert, R.; Liu, H.; Zhong, Z.; Connolley, T.; Drakopoulos, M.; Thornton, K.; Grey, C. P. Chem. Mater. 2015, 27, 2374−2386.
27. Nishimura, S.-I.; Natsui, R.; Yamada, A. Angew. Chem. Int. Ed. 2015, 54, 8939 –8942.
28. Chen, Y.; Xie, K.; Zheng, C.; Ma, Z.; Chen, Z. ACS Appl. Mater. Interfaces 2014, 6, 16888–16894.
29. Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. Energy Environ. Sci. 2011, 4, 269–284.
30. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, 3243–3262.
31. 4. Luo, W.; Zhou, L.; Fu, K.; Yang, Z.; Wan, J.; Manno, M.; Yao, Y.; Zhu, H.; Yang, B.; Hu, L. Nano Lett. 2015, 15, 6149−6154.
32. Zhang, P.; Li, M.; Yang, B.; Fang, Y.; Jiang, X.; Veith, G. M.; Sun, X.-G.; Dai, S. Adv. Mater. 2015, 22, 8088−8094.
33. Tsao, C. H.; Kuo, P. L. J. Membr. Sci. 2015, 489, 36–42.
34. Kuo, P. L.; Tsao, C. H.; Hsu, C. H.; Chen, S. T.; Hsu, H. M. J. Membr. Sci. 2016, 499, 462−269.
35. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. ChemSusChem 2015, 8, 2154–2175.
36. Chang, H. J.; Trease, N.M.; Ilott, A. J.; Zeng, D.; Du, L. S.; Jerschow, A.; Grey, C. P. J. Phys. Chem. C 2015, 119, 16443−16451.
37. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2015, 3, 1500213.
38. Marcinek,M.; Syzdek, J.; Marczewski, M.; Piszcz, M.; Niedzicki, L.; Kalita, M.; Plewa-Marczewska, A.; Bitner, A.; Wieczorek, P.; Trzeciak, T.; Kasprzyk, M.; Łężak, P.; Zukowska, Z.; Zalewska, A.; Wieczorek, W. Solid State Ionics 2015, 276, 107−126.
39. Xu, K. Chem. Rev. 2014, 114, 11503−11618.
40. Xu, K. Chem. Rev. 2004, 104, 4303.
41. Goodenough, J.B.; Kim, Y. Chem. Mater. 2010, 22, 587–603.
42. Quartarone, E.; Mustarelli, P. Chem. Soc. Rev. 2011, 40, 2525–2540.
43. Hayamizu, K.; Aihara, Y.; Machida, N. Solid State Ionics 2014, 259, 59-64.
44. Ma, C.; Rangasamy, E.; Liang, C.; Sakamoto, J.; More, K. L.; Chi, M. Angew. Chem. 2015, 127, 131–135.
45. Liang, W.J.; Kuo, P.L. Macromolecules 2004, 37, 840−845.
46. Sharova, V.; Kim, G.-T.; Giffin, G. A.; Lex-Balducci, A. Passerini, S. Macromol. Rapid Commun. 2016, DOI: 10.1002/marc.201600025.
47. Li, Q.; Ardebili, H. J. Power Sources 2016, 303, 17−21.
48. Chou, S. L.; Pan, Y.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Phys. Chem. Chem. Phys. 2014, 16, 20347−20359.
49. Zaghib, K.; Striebel, K.; Guerfi, A.; Shim, J.; Armand, M.; Gauthier, M. Electrochim. Acta 2004, 50, 263−270.
50. Li, J.; Christensen, L.; Obrovac, M. N.; Hewitt, K. C.; Dahn, J. R. J. Electrochem. Soc. 2008, 155, A234− A238.
51. Nishi, Y. J. Power Sources 2001, 100, 101-106.
52. Loeffler, N.; Kopel, T.; Kim, G.-T.; Passerini, S. J. Electrochem. Soc. 2015, 162, A2692−A2698.
53. Loeffler, N.; Zamory, J. V.; Laszczynski, N.; IDoberdo, I.; Kim, G.-T.; Passerini, S. J. Power Sources 2014, 248, 915-922.
54. Tran, B.; Oladeji, I. O.; Wang, Z.; Calderon, J.; Chai, G.; Atherton, D.; Zhai, L. Electrochim. Acta 2013, 88, 536−542.
55. Zhong, H.; Sun, M.; Li, Y.; He, J.; Yang, J.; Zhang, L. J Solid State Electrochem 2016, 20, 1-8.
56. Zhao, H.; Jia, Z.; Yuan, W.; Hu, H.; Fu, Y.; Baker, G. L.; Liu, G. ACS Appl. Mater. Interfaces 2015, 7, 19335−19341.
57. Pan, Q.; Smith, D. M.; Qi, H.; Wang, S.; Li, C. Y. Adv. Mater. 2015, 27, 5995–6001.
58. Tsao, C. H.; Ueda, M.; Kuo, P. L. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 352–358.
59. Delacroix, S.; Sauvage, F.; Reynaud, M.; Deschamps, M.; Bruyère, S.; Becuwe, M.; Postel, D.; Tarascon, J. M.; Nhien, A.N. V. Chem. Mater. 2015, 27, 7926–7933.
60. Kuo, P.L.; Wu, C.A.; Lu, C.Y.; Tsao, C.H.; Hsu, C.H.; Hou, S.S. ACS Appl. Mater. Interfaces 2014,6 , 3156–3162.
61. Xue, Z.; He D.; Xie, X. J. Mater. Chem. A 2015, 3, 19218–19253.
62. Ratner, M. A.; Shriver, D. F. Chem. Rev. 1988, 88, 109–124
63. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. Energy Environ. Sci. 2014, 7, 3857–3886
64. Costa, C.M.; Ribelles, J. L. G.; Lanceros-Méndez, S.; Appetecchi, G.B.; Scrosati, B. J. Power Sources 2014, 245, 779–786
65. Huang, L. Y.; Shih, Y. C.; Wang, S. H.; Kuo, P. L.; Teng, H.S. J. Mater. Chem. A 2014, 2, 10492–10501.
66. Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I. J. Appl. Polym. Sci. 1982, 27, 4191–4198.
67. Tu, Z.; Kambe, Y.; Lu, Y.; Archer, L. A. Adv. Energy Mater. 2014, 4, 1300654
68. Lia, W.; Xing, Y.; Xing, X.; Li, Y.; Yang, G.; Xu, L. Electrochim. Acta 2013, 112, 183–190.
69. Wang, Q.; Song, W .L.; Wang, L.; Song, Y.; Shi, Q.; Fan, L.Z. Electrochim. Acta 2014, 132, 538– 544.
70. Shi, J.; Hu, H.; Xia, Y.; Liu, Y.; Liu, Z. J. Mater. Chem. A 2014, 2, 9134–9141.
71. Wei, Z.; Xue, L.; Nie, F.; Sheng, J.; Shi, Q.; Zhao, X. J. Power Sources 2014, 256, 28–31.
72. Shi, Q.; Xue, L.; Wei, Z.; Liu, F.; Du, X.; DesMarteau D. D. J. Mater. Chem. A 2013, 1, 15016–15021.
73. Chiu, K. F.; Su, S. H.; Leu, H. J.; Chen, Y. S. Electrochim. Acta 2014, 117, 134–138.
74. Qiu, L.; Shao, Z.; Wang, D.; Wang, F.; Wang, W.; Wang J. Electrochim. Acta 2014, 145, 11–18.
75. Stephan, A. M. Eur. Polym. J. 2006, 42, 21–42.
76. Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer 1973, 14, 589.
77. Wright, P. V. Br. Polym. J. 1975, 7, 319–327.
78. Xue, Z.; He, D.; Xie, X. J. Mater. Chem. A 2015, 3, 19218–19253.
79. Bruce, P. G. Electrochim Acta 1995, 40, 2077.
80. Hayamizu, K.; Sugimoto, K.; Akiba, E. J. Phys. Chem. B 2002, 106, 547-554.
81. Robitaille, C. D.; Fauteux, D. J. Electrochem. Soc. 1986, 133, 315–325.
82. Johansson, A.; Tegenfeldt, J. Macromolecules 1992, 25, 4712–4715.
83. Borodin, O.; Smith, G. D. Macromolecules 1998, 31, 8396–8406.
84. Doeff, M. M.; Reed, J. S. Solid State Ionics 1998, 113–115, 109–115.
85. Frech, R.; Chintapalli, S.; Bruce, P. G.; Vincent, C. A. Macromolecules 1999, 32, 808–813.
86. Edman, L. J. Phys. Chem. B 2000, 104, 7254–7258.
87. Kuppa, V.; Manias, E. Chem. Mater. 2002, 14, 2171–2175.
88. Christie, A. M.; Lilley, S. J.; Staunton, E.; Andreev, Y. G.; Bruce, P. G. Nature 2005, 433, 50–53.
89. Hanson, B.; Pryamitsyn, V.; Ganesan, V. ACS Macro Lett. 2013, 2, 1001–1005.
90. Fonseca, C. P.; Neves, S. J. Power Sources 2002, 104, 85–89.
91. Pawłowska, M.; ˙Zukowska, G. Z.; Kalita, M.; Sołgała, A.; Parzuchowski, P.; Siekierski, M. J. Power Sources 2007, 173, 755–764.
92. Singh, M.; Odusanya, O.; Wilmes, G. M.; Eitouni, H. B.; Gomez, E. D.; Patel, A. J.; Chen, V. L.; Park, M. J.; Fragouli, P.; Iatrou, H.; Hadjichristidis, N.; Cookson, D.; Balsara, N. P. Macromolecules 2007, 40, 4578–4585.
93. Wang, X.-L.; Mei, A.; Li, X.-L.; Lin, Y.-H.; Nan, C.-W. J. Power Sources 2007, 171, 913–916.
94. Panday, A.; Mullin, S.; Gomez, E. D.; Wanakule, N.; Chen, V. L.; Hexemer, A.; Pople, J.; Balsara, N. P. Macromolecules 2009, 42, 4632–4637.
95. Young, W.-S.; Albert, J. N. L.; Schantz, A. B.; Epps, T. H. Macromolecules 2011, 44, 8116–8123.
96. Lu, Q.; Fang, J.; Yang, J.; Yan, G.; Liu, S.; Wang, J. J. Membr. Sci. 2013, 425–426, 105–112.
97. Niitani, T.; Shimada, M.; Kawamura, K.; Kanamura, K. J. Power Sources 2005, 146, 386–390.
98. Borodin, O.; Smith, G. D. Macromolecules 2007, 40, 1252–1258.
99. Kim, S.-K.; Kim, D.-G.; Lee, A.; Sohn, H.-S.; Wie, J. J.; Nguyen, N. A.; Mackay, M. E.; Lee, J.-C. Macromolecules 2012, 45, 9347–9356.
100. Jo, G.; Ahn, H.; Park, M. J. ACS Macro Lett. 2013, 2, 990–995.
101. Gray, F. M.; MacCallum, J. R.; Vincent, C. A.; Giles, J. R. M. Macromolecules 1988, 21, 392–397.
102. Alloin, F.; Sanchez, J. Y.; Armand, M. Solid State Ionics 1993, 60, 3–9.
103. Jannasch, P. Chem. Mater. 2002, 14, 2718–2724.
104. Niitani, T.; Shimada, M.; Kawamura, K.; Dokko, K.; Rho, Y.-H.; Kanamura, K. Electrochem. Solid-State Lett. 2005, 8, A385–A388.
105. Niitani, T.; Shimada, M.; Kawamura, K.; Kanamura, K. J. Power Sources 2005, 146, 386–390.
106. Wanakule, N. S.; Panday, A.; Mullin, S. A.; Gann, E.; Hexemer, A.; Balsara, N. P. Macromolecules 2009, 42, 5642–5651.
107. Gomez, E. D.; Panday, A.; Feng, E. H.; Chen, V.; Stone, G. M.; Minor, A. M.; Kisielowski, C.; Downing, K. H.; Borodin, O.; Smith, G. D.; Balsara, N. P. Nano Lett. 2009, 9, 1212–1216.
108. Young, W.-S.; EppsIII, T. H. Macromolecules 2012, 45, 4689–4697.
109. Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R. W.; Kunze, M.; Passerini, S.; Winter, M.; Lex-Balducci, A. Electrochim. Acta 2011, 56, 7530 –7535.
110. Tasaki, K.; Goldberg, A.; Winter, M. Electrochim. Acta 2011, 56, 10424 –10435.
111. Markevich, E.; Sharabi, R.; Gottlieb, H.; Borgel, V.; Fridman, K.; Salitra, G.; Aurbach, D.; Semrau, G.; Schmidt, M. A.; Schall, N.; Bruenig, C. Electrochem. Commun. 2012, 15, 22–25.
112. Voigt, N.; Isken, P.; Lex-Balducci, A.; Wüllen, L. V. ChemPhysChem 2013, 14, 3113–3120.
113. Kidd, B.E.; Forbey, S. J.; Steuber, F. W.; Moore, R. B.; Madsen, L. A. Macromolecules 2015, 48, 4481−4490.
114. Gavelin, P.; Jannasch, P. Macromolecules 2002, 35, 5097−5104.
115. Patrik Gavelin, P.; Ostrovskii, D.; Adebahr, J.; Jannasch, P.; Wesslen B. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 1519–1524.
116. Sugihara, N.; Tominaga, Y.; Takeshi Shimomura, T.; Ito, K. Electrochim. Acta 2015, 169, 433–439.
117. Baskakova, Y. V.; Yarmolenko, O. V.; Efimov, O. N. Russ. Chem. Rev. 2012, 81, 367−380.
118. Starkey, S. R.; Frech, R. Electrochim Acta 1997, 42, 471–474.
119. Chen-Yang, Y. W.; Chen, H. C.; Lin, F. J.; Chen, C.C. Solid State Ionics 2002, 150, 327– 335.
120. Wang, Z.; Huang, B.; Xue, R.; Huang, X.; Chen, L. Solid State Ionics 1999, 121, 141–156.
121. Pan, Y.-C.; Saikia, D.; Fang, J.; Tsai, L.-D.; Fey, G. T. K.; Kao, H.-M. RSC Adv. 2014, 4, 13293–13303.
122. Junga, B.; Yoona, J. K.; Kim, B.; Rhee, H.-W. J. Membr. Sci. 2005, 246, 67–76.
123. Appetecchi, G.B.; Scrosati, B. Electrochim. Acta 1998, 43, 1105–1012.
124. Koseki, Y.; Aimi, K.; Ando, S. Polymer Journal 2012, 44, 757–763.
125. Olsen, I.I.; Koksbang, R.; Skou, E. Electrochim. Acta 1995, 40, 1701–1706.
126. Wieczorek, W.; Florjanczyk, Z.; Stevens, J. R. Electrochim. Acta 1995, 40, 2251–2258.
127. Wieczorek, W.; Stevens, J. R. J. Phys. Chem. B 1997, 101, 1529–1534.
128. Capiglia, C.; Saito, Y.; Kataoka, H.; Kodama, T.; Quartarone, E,; Mustarelli, P. Solid State Ionics 2001, 131, 291–299.
129. Stephan, A. M.; Kumar, S. G.; Renganathan, N. G.; Kulandainathan, M. A. Eur Polym J 2005, 41, 15–21.
130. Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Fagnoni, M.; Protti, S.; Gerbaldi, C.; Spinella, A. J. Power Sources 2010, 195, 559–566.
131. Tarascon, J. M.; Gozdz, A. S.; Schmutz, C.; Shokoohi, F.; Warren, P. C. Solid State Ionics 1996, 86–88, 49–54.
132. Kim, J. R.; Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, B. C. Electrochim. Acta 2004, 50, 69–75.
133. Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, Y. R. Adv. Mater. 2003, 15, 2027–2032.
134. Gopalana, A. I.; Lee, K.-P.; Manesh, K. M.; Santhosh, P. J. Membr. Sci. 2008, 318, 422–428.
135. Zhou, R.; Liu, W.; Leong, Y. W.; Xu, J.; Lu, X. ACS Appl. Mater. Interfaces 2015, 7, 16548−16557.
136. Zhang, F.; Ma, X.; Cao, C.; Li, J.; Zhu, Y. J. Power Sources 2014, 251, 423−431.
137. Costa, C. M.; Silva, M. M.; Lanceros-Me´ndez, S. RSC Adv. 2013, 3, 11404–11417.
138. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. Energy Environ. Sci. 2014, 7, 3857–3886.
139. Li, X.; Cheruvally, G.; Kim, J. K.; Choi, J. W.; Ahn, J. H.; Kim, K. W.; Ahn, H. J. J. Power Sources 2007, 167, 491–498.
140. Cheruvally, G.; Kim, J. K.; Choi, J. W.; Ahn, J. H.; Shin, Y. J.; Manuel, J.; Raghavan, P.; Kim, K. W.; Ahn, H. J.; Choi, D. S.; Song, C. E. J. Power Sources 2007, 172, 863–869.
141. Zhao, H.; Asfour, F.; Yanbao Fu, Y.; Jia, Z.; Yuan, W.; Bai, Y.; Ling, M.; Hu, H.; Baker, G.; Liu, G. ACS Appl. Mater. Interfaces 2015, 7, 19494−19499.
142. Lin, D.; Liu, W.; Liu, Y.; Lee, H. R.; Hsu, P.-C.; Liu, K.; Cui, Y. Nano Lett. 2016, 16, 459–465.
143. Tu, Z.; Lu, Y.; Archer, L. small 2015, 11, 2631–2635.
144. Shim, J.; Kim, D.-G.; Kim, H. J.; Lee, J. H.; Lee, J.-C. ACS Appl. Mater. Interfaces 2015, 7, 7690−7701.
145. Zhu, Z.; Hong, M.; Guo, D.; Shi, J.; Tao, Z.; Chen, J. J. Am. Chem. Soc. 2014, 136, 16461−16464.
146. Stephan, A. M.; Nahm, K.S. Polymer 2006, 47, 5952−5964.
147. Lee, Y.-S.; Lee, J. H.; Choi, J.-A.; Yoon, W. Y.; Kim, D.-W. Adv. Funct. Mater. 2013, 23, 1019–1027.
148. Jiawei Zhang, J.; Huang, X.; Wei, H.; Fu, J.; Huang, Y.; Tang, X. J Appl Electrochem 2010, 40, 1475–1481.
149. Srivastava, S.; Schaefer, J. L.; Yang, Z.; Tu, Z.; Archer, L. A. Adv. Mater. 2014, 26, 201–234.
150. Nugent, J. L.; Moganty, S. S.; Archer, L. A. Adv. Mater. 2010, 22, 3677–3680.
151. Pfaffenhuber, C.; Göbel, M.; Popovica, J.; Maier, J. Phys. Chem. Chem. Phys. 2013, 15, 18318-18335.
152. Das, S. K.; Mandal S. S.; Bhattacharyya, A. J. Energy Environ. Sci. 2011, 4, 1391-1399.
153. Zhou, J.; Fedkiw, P. S. Solid State Ionics 2004, 166, 275–293.
154. Jayathilaka, P. A. R. D.; Dissanayake, M. A. K. L.; Albinsson, I.; Mellander, B.-E. Electrochim. Acta 2002, 47, 3257–3268.
155. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. J. Phys. Chem. B 1999, 103, 10632–10638.
156. Popovic, J.; Hasegawa, G.; Igor Moudrakovski, I.; Maier, J. J. Mater. Chem. A 2016, 4, 7135–7140.
157. Zhang, Q.; Shreeve, J. M. Chem. Rev. 2014, 114, 10527–10574.
158. Mandai, T.; Yoshida, K.; Ueno, K.; Dokko, K.; Watanabe, M. Phys.Chem.Chem.Phys. 2014, 16, 8761–8772.
159. Ye, Y.-S.; Rick, J.; Hwang, B.-J. J. Mater. Chem. A 2013,1, 2719-2743.
160. MacFarlane, D. R.; Tachikawa, N.; Forsyth, M.; Pringle, J. M.; Howlett, P. C.; Elliott, G. D.; Davis, J. H.; Watanabe, J. M.; Simon, P.; Angell, C. A. Energy Environ. Sci. 2014, 7, 232 -250
161. Lu, Y.; Moganty, S. S.; Schaefer, J. L.; Archer, L. A. J. Mater. Chem. 2012,22, 4066-4072
162. Yin, K.; Zhang, Z.; Yang, L.; Hirano, S. I. J. Power Source 2014,258, 150-154
163. Lu, Y.; Korf, K.; Kambe, Y.; Tu, Z.; Archer, L. A. Angew. Chem. 2014, 126, 498 –502
164. Pont, A. L.; Marcilla, R.; Meatza, I. D.; Grande, H.; Mecerreyes, D. J. Power Sources 2009, 188, 558–563.
165. Lombardo, L.; Brutti, S.; Navarra, M. A.; Panero, S.; Reale, P. J. Power Sources 2013, 227, 8–14.
166. Yin, K.; Zhang, Z.; Yang, L.; Hirano, S. I. J. Power Sources 2014,258, 150–154.
167. Pitawala, J.; Navarra, M. A.; Scrosati, B.; Jacobsson, P.; Matic, A. J. Power Sources 2014, 245, 830–835.
168. Yang, P. X.; Liu, L.; Li, L. B.; Hou, J.; Xu, Y. P.; Ren, X.; An, M. Z.; Li, N. Electrochim. Acta 2014, 115, 454–460.
169. Li, M.; Yang, L.; Fang, S.; Dong, S.; Hirano, S.; Tachibana, K. J. Power Sources 2011, 196, 8662–8668.
170. Stepniak, I.; Andrzejewska, E.; Dembna, A.; Galinski, M. Electrochim. Acta 2014, 121, 27– 33.
171. Döbbelin, M.; Azcune, I.; Bedu, M.; Luzuriaga, A. R. D.; Genua, A.; Jovanovski, V.; Cabañero, G.; Odriozola, I. Chem. Mater. 2012, 24, 1583−1590.
172. Li, X.; Zhang, Z.; Li, S.; Yang, L.; Hirano, S.-I. J. Power Sources 2016, 307, 678–683.
173. . Meek, K. M.; Elabd, Y. A. J. Mater. Chem. A 2015, 3, 24187–24194.
174. Li, M.; Yang, B.; Wang, L.; Zhang, Y.; Zhang, Z.; Fang, S.; Zhang, Z. J. Membr. Sci. 2013, 447, 222–227.
175. Matsumi, N.; Sugai, K.; Miyake, M.; Ohno, H. Macromolecules 2006, 39, 6924-6927.
176. Pont, A.-L.; Marcilla, R.; Meatza, I. D.; Grande, H.; Mecerreyes, D. J. Power Sources 2009, 188, 558–563.
177. Hu, H.; Yuan, W.; Zhao, H.; Baker, G. L. J. Polym. Sci. A Polym. Chem. 2014, 52, 121–127.
178. Yuana, J.; Mecerreyes, D.; Antonietti, M. Prog. Polym. Sci. 2013, 38, 1009–1036.
179. Bernhard, R.; Latini, A.; Panero, S.; Scrosati, B.; Hassoun, J. J. Power Sources 2013, 226, 329-333.
180. Chinnam, P. R.; Wunder, S. L. J. Mater. Chem. A 2013, 1, 1731-1739.
181. Li, J.; Lin, Y.; Yao, H.; Yuan, C.; Liu, J. ChemSusChem 2014, 7, 1–9.
182. Mauroa, V.; D’Apranoa, A.; Croceb, F.; Salomonc, M. J. Power Sources 2005, 141, 167–170.
183. Chen, C.C.; Liang, W.J.; Kuo, P.L. J. Polym. Sci. Pol. Chem. 2002, 40, 486–495.
184. Liang, W. J.; Chen, Y. P.; Wu, C. P.; Kuo; P. L. J. Phys. Chem. B 2005, 109, 24311‐ 24318
185. Sun, X. G.; Kerr, J. B. Macromolecules 2006, 39, 362‐372.
186. Forsyth, M.; Huang, J.; MacFarlane, D. R. J. Mater. Chem. 2000, 10, 2259‐2265.
187. Kuo, H. M.; Chao, S. W.; Chang, P. C. Macromolecules 2006, 39, 1029‐1040.
188. Chung, S. H.; Jeffrey, K. R.; Steven, J. R. J. Chem. Phys. 1991, 94 , 1803.
189. Wu, H. Y.; Saikia, D.; Chao, H. Y.; Fang, J.; Tsai, L. D.; Kao, H. M. Electrochimica Acta 2014, 138, 30–40.
190. Saikia, D.; Wu, C. G.; Fang, J.; Tsai, L. D.; Kao, H. M. J. Power Sources 2014, 269, 651‐660
191. Saikia, D.; Pan, Y. C.; Wu, C. G.; Fang, J.; Tsai, L. D.; Kao, H. M. J. Mater. Chem. C 2014, 2, 331-343
192. Wu, H. Y.; Chen, Y. H.; Saikia, D.; Pan, Y. C.; Fang, J.; Tsai, L. D.; Kao, H. M. J. Membr. Sci. 2013, 447, 274–286
193. Junga, B.; Yoon, J.K.; Kim, B.; Rhee, H.W. J. Membr. Sci. 2005, 246, 67–76.
194. Chen, B.; Gao, W.; Shen, J.; Guo, S. Compos. Sci. Technol. 2014, 93, 54–60.