| 研究生: |
林依靜 Lin, Yi-Jing |
|---|---|
| 論文名稱: |
鈦鐵礦MTiO3(M=Ni, Co)摻雜Ag之合成與光催化特性研究 The synthesis and photocatalytic properties of Ag doped ilmenite MTiO3(M=Ni,Co) |
| 指導教授: |
張炎輝
Chang, Yen-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | CoTiO3 、光催化 、鈦鐵礦 、光觸媒 、NiTiO3 |
| 外文關鍵詞: | NiTiO3, CoTiO3, photocatalysts, ilmenite, photocatalytic |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係以鈦鐵礦結構之鈦酸鎳(NiTiO3)及鈦酸鈷(CoTiO3)材料作為光觸媒之研究,並進一步以銀離子分別取代鎳或鈷離子,製備成(Ag1-XNiX)TiO3及(Ag1-XCoX)TiO3之奈米光觸媒材料。本研究主要由五個部份所構成:(1) 有機酸前導物製程之參數探討;(2) 以檸檬酸前導物法合成 NiTiO3粉末及其基礎特性探討;(3) 以檸檬酸前導物法合成摻雜銀之NiTiO3粉末及其光催化特性研究;(4) 以檸檬酸前導物法合成CoTiO3粉末及其基礎特性探討;(5) 以檸檬酸前導物法合成摻雜銀之CoTiO3粉末及其光催化特性研究。
實驗結果顯示,以檸檬酸前導物法製備NiTiO3及CoTiO3粉末,其前導物於煆燒過程中,可分為脫水反應、燃燒分解反應與鈦鐵礦結晶化三個步驟。其中,NiTiO3與CoTiO3之結晶溫度分別為620C及588C,而最適合作為光觸媒之煆燒條件則為600C下持溫3小時,於此條件下之表面型態為球狀顆粒且分散較均勻並擁有最大之比表面積,因此晶粒很容易為了降低表面能而進一步經由Ostwald Ripening及Oriented Attachment之成長機制成長為一顆顆大單晶。經計算,NiTiO3及CoTiO3之結晶活化能分別為3896與2532 kJ/mol;晶粒成長活化能則分別為 8.84與13.23 kJ/mol。利用1-10 at%銀離子取代鈦鐵礦結構中之鎳離子或鈷離子後發現,對於典型光催化試劑-亞甲基藍之吸附能力而言,係隨銀離子之摻雜而有所提升,且對亞甲基藍之光降解效應亦有相當程度之影響。NiTiO3與CoTiO3摻雜銀系列之試樣於紫外光下以10W、365 nm之光源照射12小時後最高可分別解降63.71%及32.42%之亞甲基藍;而於可見光下以0.5W、400-500 nm之光源照射60小時後,對亞甲基藍之光降解效率分別可達65.74%及35.59%。進一步計算包含吸附於光觸媒表面之亞甲基藍,經摻雜7-10 at%銀離子之NiTiO3光觸媒催化後,其於紫外光及可見光下之整體光解降效率可分別高達97.48%與99.84%,而亞甲基藍溶液於摻雜銀之CoTiO3系列光觸媒催化下之最大效率分別為57.05%與57.28%,效率遠較純NiTiO3 和CoTiO3光觸媒為高,足見摻雜銀能有效提升光催化之效益。
The present investigation mainly focused on the ilmenite structure materials, NiTiO3 and CoTiO3, which may be the potential materials for photocatalysis. In advanced, the silver ions were used to substitute for part of nickel or cobalt ions, so as to prepare the photocatalysts as (Ag1-XNiX)TiO3 and (Ag1-XCoX)TiO3 nano-sized powders. This research can be divided into five sections, including changing the parameters of the organic acid precursor method which was modified from the Pechini process, preparing NiTiO3 and CoTiO3 powders by the citric acid precursor method, and also investigating the photocatalytic properties of silver doped NiTiO3 and CoTiO3 powders for the degradation of methylene blue (MB). In the experiments, nano-sized NiTiO3 and CoTiO3 powders were successfully prepared by the citric acid precursor method and the crystalline temperature of NiTiO3 and CoTiO3 powders were 620C and 588C. It is also found that NiTiO3 and CoTiO3 powders heated to 600C for 3 hours in air would be the candidates for photocatalysts. Moreover, the crystalline activation energy of NiTiO3 and CoTiO3 was estimated as 383 and 251 kJ/mol; the activation energy of grain growth was also calculated as 8.84 and 13.23 kJ/mol for NiTiO3 and CoTiO3.
When silver ions were in substitution for nickel or cobalt ions, the ability for NiTiO3 and CoTiO3 to adsorb MB molecules was improved, and the photo-degradation of MB was also influenced by the dopants of silver ions. Silver-doped NiTiO3 and CoTiO3 photocatalysts shows the best photodegradation rate of MB up to 63.71% and 32.42% under the UV light irradiation for 12 hours, and also presents the best photodegradation rate of MB as 65.74% and 35.59% under the visible light irradiation for 60 hours. Including the degradation of MB from the adsorbability of NiTiO3 and CoTiO3 in the dark, the concentration of the reacted MB solution was mostly decreased about 97.48% and 99.84% of the initial MB concentration for Ag-NiTiO3 series, and also decreased about 57.05% and 57.28% for Ag-CoTiO3 series after the UV and visble light irradiation. Therefore, silver ions used to place nickel or cobalt ions can substantially improve the photocatalysis for the degradation of MB.
[1] J. M. Serratosa, J. A. Rausell-Colom and J. Sanz, J. Mole. Catal. , 27 (1984) 255.
[2] G. Alberti and U. Costantiono, J. Mole. Catal. , 27 (1984) 235.
[3] R. Setton, J. Mole. Catal. , 27 (1984) 263.
[4] T. A. Pecoraro and R. R. Chianelli, J. Catal. , 67 (1981) 430.
[5] B. Ravean and Revue De Chimie Minerale, Tome 21 (1981) 391.
[6] R. E. Kirk, D. F. Othmer, M. Grayson and D. Eckroth, “Kirk-Othmer Encyclopedia of chemical Technology” 3rd ed, J. Wiley and Sons, New York, 6 (1978) 192.
[7] R. M. Barrer and D. M. Macleod, Trans. Faraday. Soc., 51 (1955) 1290.
[8] P. Cheyssac, R. Koofman, G. Mattei, P. G. Merli, A. Migliori and A. Stella, SUPMI, 17 (1995) 47.
[9] G. Bertsch, Science, 277 (1997) 1619.
[10] S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, and L. H. Ailen, Phys. Rev. Lett, 77 (1996) 99.
[11] T. S. Ahmadi, S. L. Logunov and M. A. El-Sayed, J. Phys. Chem, 100 (1996) 8053.
[12] S. L. Logunov, T. S. Ahmadi, J. T. Khoury, R. L. Whetten and M. A. El-Sayed, J. Phys. Chem, 101 (1997) 3713.
[13] S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai and C. R. C. Wang, Langmuir, 15 (l999) 701.
[14] B. M. I. Van der Zande, M. R. Bohmer, L. G. J. Fokkink and C. Schonenberger, Langmuir, 16 (2000) 451.
[15] R. Dagani, Chem. Eng. News, 23 (1992) 18.
[16] J. Abellan, A. Arenas, R. Chicon and F. Reyes, Surface Science, 372 (1997) 315.
[17] S. D. Brorson, J. G. Fujimoto and E. P. Ippen, Phys. Rev. Lett, 59 (1987) 1962.
[18] K. Kalyanasundaram, E. Borgarello, D. Duonghong and M. Gratzel, Angew. Chem. Int. Ed. Engl, 20 (1981) 987.
[19] 賴宏仁,林景正,「奈米材料與技術專題」,工業材料153期,88年9月,頁94。
[20] A. Fujishima, K. Honda, Nature, 238 (1972) 37.
[21] M. P. Dare-Edwards, J. B. Goodenough, A, Hamnet and N. D. Nicholson, J. Chem. Soc., Faraday 2, 77 (1981) 643.
[22] Y. M. Chiang, Dunbar P. Birnie III, and W. David Kingery, “Physical Ceramics”, J. Wiley and Sons, New York (1996) 35.
[23] Jan. F. Rabek., “Mechanisms of Photophysical Processes and Photochemical Reaction in Polymers”, Theory and Applications, John Wiley and Son, New York (1989).
[24] G. W. Castellan, “Physical Chemistry”, 2nd ed., University of Maryland (1971) 806.
[25] S. H. Maron and J. B. Lando, “Fundamentals of Physical Chemistry”, Macmillan Publishing Co. Inc., New York (1974) 720.
[26] Nick. Serpone, and Ezio. Pelizzetti, “Photocatalysis : Fundamentals and Application”, a Wiley-Interscience Publication, Canada (1989).
[27] C. M. Doede and C. A. Walker, Chem. Eng. News (1955) 159.
[28] 盧明俊, 阮國棟,「危害性有機物之催化光分解技術」,工業污染防治第四十四期,81年10月,頁131。
[29] D. A. Skoog and D. M. West, “Fundamentals of Analytical Chemistry”, CBS College Publishing, 4th ed. (1982) 528.
[30] Zafiriou O. C., J. Joussot-Dubien, R. G. Zepp and R. G. Zika., E. S. & T., 18 (1984) 358.
[31] 胡振國譯,半導體元件與技術物理,全華圖書公司,民國 80年.
[32] 杜玫芬,安丹在二氧化鈦懸浮溶液中之催化光分解反應,國立交通大學環境工程研究所碩士論文,1995.
[33] J. G. Krishna and J. E. Casida, J. Agric. Food Chem., 14 (1966) 98.
[34] T. Sakata and T. Kawai, “Energy Resources through Photochemistry and Catalysis”, Photosynthesis and Photocatalysis with Semiconductor Powder, Academic Press (1983) 331.
[35] 黃振麟譯,半導體物理導論,徐氏基金會,民國 80年.
[36] 王玉珍,半導體,亞東書局,民國 81年.
[37] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes., Elsevier (1998) 334.
[38] A. J. Bard, Integrated Chemical Systems, chap. 6, John Wiley & Sons, Inc., New York (1994) 240.
[39] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier (1998) 334.
[40] James P. Schaffer, Ashok Saxena, Stephen D. Antolovich, Thomas H. Sanders, Jr., Steven B. Warner, “The Science and Design of Engineering Materials”, (1995) 33.
[41] A. Kudo, H. Kato, and I. Tsuji, Chem. Lett. 33 (2004) 1534.
[42] I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, J. Am. Chem. Soc., 126 (2004) 13406.
[43] H. K. Park, D. K. Kim and C. H. Kim, J. Am. Cera. Soc., 80 (1997) 743.
[44] S. D. Park, Y. H. Cho, W. W. Kim and S. J. Kim, J. Solid State Chem., 146 (1999) 230.
[45] H. K. Park, Y. T. Moon, D. K. Kim and C. H. Kim, J. Am. Cera. Soc., 79 (1996) 2727.
[46] Y. Wei, R. Wu and Y. Zhang, Materials Letters, 41(1999) 101.
[47] D. J. Shaw, Introduction to colloid and surface chemistry, 4th ed., Butterworths (1997).
[48] J. J. Ebelmen, Ann., 57, 1846, 331.
[49] K. S. Matediyasni, R. T. Dollof, J. S. Smith, J. Amer. Ceram. Soc., 52, (1969) 513.
[50] R. Roy, J. Am. Ceram. Soc., 39(1956) 145.
[51] D. E. Fain, MRS Bulletin, April (1994) 40.
[52] K. Sato, Surface Technology, 22 (1984) 101.
[53] S. F. Cogan, N. M. Ngnyen, S. J. Perrotti, J. Appl. Phys., 66 (1989) 1333.
[54] E. Andrukaitis, E. A. Bishenden, and P. W. M. Jacobs, J. Power Source, 26 (1989) 475.
[55] R. Baddour, J. P. Pereira-Ramos, R. Messina, J. Perichon, J. Electronal. Chem., 277 (1990) 359.
[56] C. William, Lacourse, Mater. Res. Soc. Symp. Proc., 32 (1984) 53.
[57] K. R. Speck, H. S. Hu, M. E. Sherwin and R. S. Potember, Thin Solid Films, 165 (1988) 317.
[58] C. J. Brinker and G. W. Scherer, “Sol -Gel Science”, Acadmic Press 2 (1990).
[59] T. Y. Tseng, J. M. Huang, J. G. Lin, J. Mater. Sci. 24 (1989) 2735.
[60] R. C. Mehrotra, J. Non-Cryst. Solid, 100 (1988) 1.
[61]周念萍,“特用化學技術發展應用計劃精密陶瓷粉末碳化的製程研發計劃”, CSSIRR-850-CA-05-001.
[62] D. C. Bradley, R. C. Mehrota, C. P. Gaur, Acadmic Press, 1978.
[63] M. Kakihana, J. Sol-Gel Sci. Tech., 6 (1996) 7.
[64] M. P. Pechini, U. S. Pat. No.3 231 328, (1966).
[65] D. Hennings and W. Mayr, J. Solid State Chem., 26 (1978) 329.
[66] M. P. Pechini, U. S. Pat. No.3 330 697, (1967).
[67] M. Kruk, and M. Jaroniec, J. Phys. Chem. B, 104 (2000) 7960.
[68] S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 60 (1938) 390.
[69] W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy, Wiley Interscience, New York (1966).
[70] Andrew Mills and Jishun Wang, Journal of Photochemistry and Photobiology A: Chemistry, 127 (1999) 123.
[71] H. Yoneyama, Y. Toyoguchi, and H. Tamura, Reduction of Methylene Blue on Illuminated Titanium Dioxide in Methanolic and Aqueous Solutions,” J. Phys. Chem., 76 (1972) 3460.
[72] J. D. J. Ingle and S. R. Crouch, Spectrochemical Analysis, Prentice Hall, New Jersey (1988).
[73] D. C. Bradley and R. C. Mehrotra, Metal Alkoxides, Academic Press, New York (1978) 150.
[74] Y. Ozaki, Ferroelectrics, 49 (1983) 285.
[75] E. A. Barringer and H. K. Bowen, Langmuir, 1 (1985) 414.
[76] J. Livage and C. Sanchez, J. Non-Cryst. Solids, 145 (1992) 11.
[77] Y. Teraoka, H. Kakebayashi, I. Moriguchi, S. Kagawa, Chem. Lett. 88 (1991) 673.
[78] C. J. Brinker and G. W. Scherer, Sol-Gel Science, Academic Press, New York (1990) 43.
[79] D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 4th ed., Mcgraw-Hill, London (1989) 29.
[80] D. L. Pavia, G. M. Lampman and G. S. Kriz, Introduction to Spectroscopy, 2nd edition, Saunders College Publishing, Orlando (1996) 14.
[81] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., John Wiley & Sons, U. S. A. (1986) 231.
[82] Jerry Workman, “Handbook of organic compounds : NIR, IR, Raman, and UV-Vis spectra featuring polymers and surfactants”, San Diego : Academic Press (2001).
[83] M. Kakihana, T. Nagumo, M. Okamoto and H. Kakihana, J. Phys. Chem, 91 (1987) 6128.
[84] B. Lee and J. Zhang, Thin Solid Films 388 (2001) 107.
[85] J. P. Coutures, P. Odier and C. Proust, “Barium Titanate Formation by Organic Resins Formed with Mixed Citrate”, J. Mater. Sci., 27 (1992) 1849.
[86] L. W. Tai and Paul A. Lessing, J. Mater. Res., 7 (1992) 502.
[87] D. Hennings and W. Mayr, J. Solid State Chem., 26 (1978) 329.
[88] C. P. Udawatte, M. Kakihana and M. Yoshimura, Solid State Ionics, 108 (1998) 23.
[89] C. P. Udawatte, M. Kakihana and M. Yoshimura, Solid State Ionics, 128 (2000) 217.
[90] W. A. Johnson and K. F. Mehl, Trans. Am. Inst. Mining Met. Eng., 135 (1981) 315.
[91] M. Avrami, J. Chem. Phys. 7 (1939) 1103.
[92] M. Avrami, J. Chem. Phys. 8 (1940) 212.
[93] M. Avrami, J. Chem. Phys. 9 (1941) 177.
[94] D. W. Henderson, J. Non-Cryst. Solids, 30 (1979) 301.
[95] J. Vazquez, R. A. Ligero, P. Villares and R. Jimenez-Garay, Thermochim. Acta, 157(1990) 181.
[96] J. Vazquez, R. L. Lopez-Alemany, P. Villares and R. Jimenez-Garay, J. Phys. Chem. Solids, 61 (2000) 493.
[97] T. Ozawa. J. Thermal Anal. 2 (1970) 301.
[98] T. Ozawa. J. Thermal Anal. 9 (1976) 369.
[99] K. Matusita, T. Komatsu and R. Yokota, J. Mater. Sci., 19 (1984) 291.
[100] D. J. Taylor, P. F. Flrig, and R. A. Page, Thin Solid Films 408 (2002) 104.
[101] K. P. Lopes, L. S. Cavalcante, A. Z. Simes b, J. A. Varela b, E. Longo b, and E. R. Leite, J. Alloys and Compounds 468 (2009) 327.
[102] B. D. Cullity, Elements of X-RAY Diffraction, 2nd ed., Addison-Wesley, Publishing Company, Inc., Reading, MA (1978).
[103] W. S. Cho, , J. Phys. Chem. Solids, 59 (1998) 659.
[104] R. L. Coble, J. Appl. Phys., 32 (1961) 793
[105] M. Jarcho, C.H. Bolen, R.H. Doremus, J. Mater. Sci. 11 (1976) 2027.
[106] G. K. Williamson and W. H. Hall, X-RAY line broadening from field aluminum and wolfram, Acta Meat. 1 (1953) 22.
[107] W. Ostwald, Lehrbruck der Allgemeinen Chemie, vol. 2, part 1. Leipzig, Germany (1896).
[108] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Science 289 (2000) 751.
[109] R. L. Penn, J. F. Banfield, American Mineralogist, 83 (1998) 1077.
[110] J. Anderson, Structure of Metallic Catalysts, Academic Press, London, U.K. (1975) 359.
[111] R. M. German, International journal of powder metallurgy, 32 (1996) 365.
[112] E. Cartmell, G. W. A. Fowles, Valency and Molecular Structure, ELBS and Butterworths, London, 1977.
[113] S. Sen, S. Mahantya, S. Roya, O. Heintz, S. Bourgeois, and D. Chaumont, Thin Solid Films, 474 (2005) 245.
[114] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, (Physical Electronics Inc., Minnesota (1995).
[115] F. H. Spedding, and K. Gschneidner, Crystal ionic radii of the elements, in: CRC Handbook of Chemistry and Physics, 53rd ed., CRC Press, Cleveland, Ohio (1972) 177.
[116] J. C. Weaver and Y. A. Chizmadzhev, J Bioelectrochemistry and Bioenergetics. 41(1996) 135.
[117]S. Link, Z. L. Wang and M. A. EI-Sayed, J. Phys. Chem. B. 103 (1999) 3529.
[118] P. Mulvaney, Langmuir. 12 (1996) 788.
[119] M. Giersig and P. Mulvaney, Langmuir. 9 (1993) 3408.
[120] M. Giersig and P. Mulvaney, J. Phys. Chem. 97 (1993) 6334.
[121] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 107 (2003) 668.
[122] C. Kittel, "Introduction to Solid State Physics", 7th ed. Wiley, New York (1996)..
[123] U. Kreibig and M. Vollmer, Optical Properties of Metal Springer, Berlin, (1995)
[124] G. Zhao, H. KoZuka, and T. Yoko, Thin Solid Films, 277 (1996) 147.
[125] J. M. Herrmann , H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. Gonzales-Elipe, A. Fernandez, Appl. Catal. B, 13 (1997) 219.
[126] G. Lassaletta, A. R. Gonzales-Elipe, A. Justo, A. Fernandez, M. A. Respaldiza, J. G. Soares, M. F. Da Silva, J. Mat. Sci., 31 (1996) 2325.
[127] J. Ghasemi, S. Asadpour, J. Chem. Thermodynamics, 39 (2007) 967.
[128] Chihiro Yogi, Kazuo Kojima, Noriyuki Wada, Hiroshi Tokumoto, Tomoo Takai, Tadashi Mizoguchi, and Hitoshi Tamiaki, Thin Solid Films, 516 (2008) 5881.
[129] K. Bergmann, C. T. O’Konski, J. Phys. Chem., 67 (1963) 2169.
[130] H. W. Wang, H. C. Lin, C. H. Kuo, Y. L. Cheng, and Y. C. Yeh, J. Phys. Chem. Solids, 69 (2008) 633.
[131] L. G. J. de Haart, A. J. de Vries and G. Blasse, Mat. Res. Bull., 19 (1984) 817.
[132] Xiangfeng Chu, Xingqin Liu, Guozhong Wang, and Guangyao Meng, Materials Research Bulletin, 34 (1999) 1789.
[133] S. H. Lim, C. Ferraris, M. Schreyer, K. Shih, J. O. Leckie and T. J. White, Journal of Solid State Chemistry, 180 (2007) 2905.
[134] R. N. Schwartz, B. A. Wechsler, R. A. McFarlane, Phy. Rev. B, 46 (1992) 3263.
[135] A. Sclafani and J. M. Herrmann, J. Photochem. Photobiol. A : Chem., 113 (1998) 181.
[136] Y. Badr, M. A. Mahmoud, J. Phys. Chem. Solids., 68 (2007) 413-419.
校內:2108-07-07公開