簡易檢索 / 詳目顯示

研究生: 陳育嫻
Chen, Yu-Hsien
論文名稱: 基於 HRZT 建立??與??有限元素公式應用於三明治複合樑之線性與非線性靜態分析
The development of ?? and ??finite element formulations based on Higher-order refined zigzag theory (HRZT) for the linear and nonlinear static analysis of sandwich composite beams
指導教授: 陳重德
Chen, Chung-De
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 116
中文關鍵詞: Higher-order zigzag theory三明治樑有限元素法幾何非線性挫曲
外文關鍵詞: Higher-order zigzag theory, Sandwich beam, Finite element method, geometry nonlinearity, buckling analysis
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期,有研究學者提出 higher-order refined zigzag theory (HRZT)理論。此理論是
    以 refined zigzag theory (RZT)為基礎並引入高階剪力變形項,以更準確描述面內的剪
    力變形。HRZT 之解析解已被證實在三明治複合樑之線性靜態結果的表現上具有優
    越性,而本研究目標是基於 HRZT 理論發展有限元素公式,用於分析三明治複合樑
    之線性靜態彎矩分析。基於上述所提出之樑元素,另外發展出幾何非線性之有限元
    素公式用以分析三明治複合樑的大位移與挫曲現象。
    本研究所提出之 HRZT 樑元素包含 C0-2N11(具有 11 個自由度之C0連續兩節點元素)、C1-2N14(具有 14 個自由度之C1連續兩節點元素)、C0-3N16(具有 16 個自由度之C0連續三節點元素)、C1-3N21(具有 21 個自由度之C1連續三節點元素)。研究表明上述所提出之 HRZT 樑元素皆無發生剪力自鎖。此外,透過與二維解析解、HRZT 理論解以及二維 ANSYS 模型的結果進行比較,驗證了 HRZT 樑元素在三明治複合樑中包含軸向位移、撓度、正向應力及剪應力之結果的準確性。接著,將HRZT 樑元素與其它樑理論,包含一階剪力變形理論(FSDT)、高階剪力變形理論(HSDT)、RZT 和高階轉折理論(Higher-order zigzag theory)的樑元素進行比較,並討論不同長寬比、厚度比及剛度比之參數的影響。而為了準確描述幾何非線性的現象,本研究使用牛頓法(Newton-Raphson method)分析大位移,得出與二維 ANSYS 模型一致的結果。此外,也討論在不同邊界條件與厚度比下對臨界挫曲負載的影響。為了進一步分析挫曲前之非線性大位移現象,考慮各種初始幾何缺陷形狀與不同的最大初始撓度值,並探討其對於挫曲前之非線性負載-撓度曲線的影響。根據本研究中呈現的數值結果,證明了 HRZT 樑元素能夠準確描述三明治複合樑的線性與幾何非線性的現象,有限元素公式及其數值結果可應用於航空、軍事、土木工程和機械工程等領域中。

    Recently, a novel higher-order refined zigzag theory (HRZT) was developed. This
    theory is an extension of the refined zigzag theory (RZT) by incorporating a higher-order term in the axial displacement kinematics to account for higher-order shear deformation. The analytical solutions were proposed and were proven to have superior performance in solving the linear static response of a sandwich beam. This study aims at developing finite element formulations based on HRZT to analyze the linear static bending behavior of sandwich composite beams. Based on the beam elements developed in this study, the beam element formulations with geometric nonlinearity are also developed to solve sandwich composite beams with large deflections and solve the buckling behavior of the beam.
    The HRZT beam element formulations developed in this study include C0-2N11 (2-node C0 continuity element with 11 DOFs), C1-2N14 (2-node C1 continuity element with 14 DOFs), C0-3N16 (3-node C0 continuity element with 16 DOFs) and C1-3N21 (3-node C1 continuity element with 21 DOFs). A comprehensive study on the numerical performance shows that all the developed beam elements are free of shear locking. By comparing with 2D analytical solutions, analytical solutions of HRZT, and 2D ANSYS models, the results by the HRZT beam elements including axial displacements, deflections, normal stresses, and shear stresses in sandwich composite beams are validated. Furthermore, the study compared different beam elements based on various beam theories such as First-order shear deformation theory (FSDT), Higher-order shear deformation theory (HSDT), RZT, and another type of higher-order zigzag theory. The influence of parameters such as aspect ratio, thickness ratio, and stiffness ratio are also discussed. To investigate geometry nonlinearity, the Newton-Raphson method was employed, yielding consistent results with 2D ANSYS models. Moreover, the study analyzed critical buckling loads under various thickness ratios and boundary conditions. For nonlinear buckling analysis, various shapes for initial imperfections and varying maximum initial deflection values are considered to investigate nonlinear load-deflection curves before buckling.
    Based on the numerical results presented in this study, it is proven that the HRZT beam elements can accurately calculate the linear and geometric nonlinear responses of the sandwich composite beams. The formulations and results developed in this study can be applicable to engineering fields such as aviation, military, civil engineering and mechanical engineering.

    Abstract I 中文摘要 III 誌謝 IV Contents V List of tables VII List of figures IX Nomenclature XVI Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature review 1 1.3 Motivation and organization of the thesis 4 Chapter 2 Finite element formulations of the sandwich composite beam based on HRZT 6 2.1 Displacement assumptions in Higher-order refined zigzag theory 6 2.2 Finite element formulations 10 2.2.1 C0 element with Lagrange interpolation functions 11 2.2.2 C1 element with Hermite and Lagrange interpolation functions 15 Chapter 3 The finite element results of the sandwich composite beam 22 3.1 Descriptions of various approaches for static sandwich beam analysis 25 3.2 Convergence and Shear locking 26 3.2.1 Convergence 26 3.2.2 Shear locking 35 3.3 Static deflection and stress solutions by various beam elements 38 3.3.1 Validation of the beam elements with 2D analytical solutions and HRZT analytical solutions 38 3.3.2 The comparison between the beam elements and the 2D ANSYS model 48 3.3.3 Case studies for various parameters 50 Chapter 4 finite element formulations of the sandwich composite beam by considering geometric nonlinearity 71 4.1 Geometry nonlinearity 72 4.2 Nonlinear load-deflection curves before buckling 76 Chapter 5 Results and discussions of nonlinear analysis 81 5.1 Geometry nonlinear analysis 81 5.2 Buckling analysis 85 5.2.1 Critical buckling analysis 85 5.2.2 Nonlinear load-deflection curves before buckling 90 Chapter 6 Conclusions and future works 103 6.1 Conclusions 103 6.2 Future works 106 References 108 Appendix A 112 Appendix B 113

    [1] Cowper, G. (1966). The shear coefficient in Timoshenko’s beam theory. Journal of applied mechanics, 33(2), 335-340.
    [2] Friedman, Z., & Kosmatka, J. B. (1993). An improved two-node Timoshenko beam finite element. Computers & structures, 47(3), 473-481.
    [3] Goyal, V. K., & Kapania, R. K. (2007). A shear-deformable beam element for the analysis of laminated composites. Finite Elements in Analysis and Design, 43(6-7), 463-477.
    [4] Lo, K. H., Christensen, R. M., & Wu, E. M. (1977). A high-order theory of plate deformation—Part 1: Homogeneous plates 44(4), 663-668.
    [5] Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates.
    [6] Mahi, A., & Tounsi, A. (2015). A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Applied Mathematical Modelling, 39(9), 2489-2508.
    [7] Sayyad, A. S., Ghugal, Y. M., & Naik, N. S. (2015). Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory. Curved and Layered Structures, 2(1), 279-289.
    [8] Kant, T., & Manjunath, B. S. (1989). Refined theories for composite and sandwich beams with C0 finite elements. Computers & structures, 33(3), 755-764.
    [9] Subramanian, P. (2001). Flexural analysis of symmetric laminated composite beams using C1 finite element. Composite structures, 54(1), 121-126.
    [10] Vo, T. P., & Thai, H. T. (2012). Static behavior of composite beams using various refined shear deformation theories. Composite Structures, 94(8), 2513-2522.
    [11] Tahani, M. (2007). Analysis of laminated composite beams using layerwise displacement theories. Composite Structures, 79(4), 535-547.
    [12] Murakami, H. (1986). Laminated composite plate theory with improved in-plane responses.
    [13] Di Sciuva, M. (1986). Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model. Journal of Sound and Vibration, 105(3), 425-442.
    [14] Tessler, A., Di Sciuva, M., & Gherlone, M. (2009). A refined zigzag beam theory for composite and sandwich beams. Journal of Composite Materials, 43(9), 1051-1081.
    [15] Gherlone, M., Tessler, A., & Di Sciuva, M. (2011). C0 beam elements based on the refined zigzag theory for multilayered composite and sandwich laminates. Composite Structures, 93(11), 2882-2894.
    [16] Di Sciuva, M., Gherlone, M., Iurlaro, L., & Tessler, A. (2015). A class of higher order C0 composite and sandwich beam elements based on the refined zigzag theory. Composite Structures, 132, 784-803.
    [17] Nallim, L. G., Oller, S., Oñate, E., & Flores, F. G. (2017). A hierarchical finite element for composite laminated beams using a refined zigzag theory. Composite Structures, 163, 168-184.
    [18] Ascione, A., & Gherlone, M. (2020). Nonlinear static response analysis of sandwich beams using the Refined Zigzag Theory. Journal of Sandwich Structures & Materials, 22(7), 2250-2286.
    [19] Ascione, A., Gherlone, M., & Orifici, A. C. (2022). Nonlinear static analysis of composite beams with piezoelectric actuator patches using the Refined Zigzag Theory. Composite Structures, 282, 115018.
    [20] Di Sciuva, M. (1992). Multilayered anisotropic plate models with continuous interlaminar stresses. Composite Structures, 22(3), 149-167.
    [21] Cho, M., & Parmerter, R. R. (1993). Efficient higher order composite plate theory for general lamination configurations. AIAA journal, 31(7), 1299-1306.
    [22] Icardi, U. (2001). A three-dimensional zig-zag theory for analysis of thick laminated beams. Composite structures, 52(1), 123-135.
    [23] Zhao, D., Wu, Z., & Ren, X. (2019). New Sinusoidal Higher-Order Theory Including the Zig-Zag Function for Multilayered Composite Beams. Journal of Aerospace Engineering, 32(3), 04019009.
    [24] Chanda, A., & Sahoo, R. (2021). Static and dynamic responses of simply supported sandwich plates using non-polynomial zigzag theory. Structures, 29, 1911-1933.
    [25] Garg, A., & Chalak, H. D. (2021). Novel higher-order zigzag theory for analysis of laminated sandwich beams. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(1), 176-194.
    [26] Pandit, M. K., Sheikh, A. H., & Singh, B. N. (2008). An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core. Finite elements in analysis and design, 44(9-10), 602-610.
    [27] Chakrabarti, A., Chalak, H. D., Iqbal, M. A., & Sheikh, A. H. (2011). A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft core. Composite Structures, 93(2), 271-279.
    [28] Pandit, M. K., Singh, B. N., & Sheikh, A. H. (2008). Buckling of laminated sandwich plates with soft core based on an improved higher order zigzag theory. Thin-Walled Structures, 46(11), 1183-1191.
    [29] Chakrabarti, A., Chalak, H. D., Iqbal, M., & Sheikh, A. H. (2012). Buckling analysis of laminated sandwich beam with soft core. Latin American Journal of Solids and Structures, 9, 1-15.
    [30] Chen, C. D., & Huang, B. F. (2023). A novel higher-order refined zigzag theory for static bending analysis in sandwich composite beam. Applied Mathematical Modelling, 119, 586-604.
    [31] 蘇柏文(2021),應用 RZT 理論於功能梯度複合樑之振動與臨界屈曲分析,台南市,國立成功大學碩士論文。
    [32] Pagano, N. J. (1969). Exact solutions for composite laminates in cylindrical bending. Journal of composite materials, 3(3), 398-411.
    [33] Vo, T. P., Thai, H. T., Nguyen, T. K., Maheri, A., & Lee, J. (2014). Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Engineering structures, 64, 12-22.
    [34] Bambole, A. N., & Desai, Y. M. (2007). Hybrid-interface finite element for laminated composite and sandwich beams. Finite Elements in Analysis and Design, 43(13), 1023-1036.
    [35] Liou, W. J., & Sun, C. T. (1987). A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates. Computers & Structures, 25(2), 241-249.
    [36] Yunhua, L. (1997). On shear locking in finite elements (Doctoral dissertation), Stockholm, Sweedon, KTH Royal Institute of Technology.
    [37] Chattopadhyay, B., Sinha, P. K., & Mukhopadhyay, M. (1995). Geometrically nonlinear analysis of composite stiffened plates using finite elements. Composite Structures, 31(2), 107-118

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE