簡易檢索 / 詳目顯示

研究生: 林進宸
Lin, Jin-Chen
論文名稱: 具備以閒置時間為基礎的過濾機制之新型蜜蜂群演算法求解開放式工廠排程問題
A New Bee Colony Optimization Algorithm with an Idle-Time-Based Filtering Scheme for the Open Shop Scheduling Problem
指導教授: 黃悅民
Huang, Y.M.
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 62
中文關鍵詞: 開放式工廠排程蜜蜂群最佳化
外文關鍵詞: Open shop scheduling, Bee Colony Optimization
相關次數: 點閱:82下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開放式工廠排程問題(Open Shop Scheduling Problem; OSSP)
    是排程問題中最為耗費時間的工作之一。時至今日,許多人工智慧
    演算法已經可以將解題時間縮短到可接受的時間範圍,甚至可以進
    一步縮小解空間範圍。例如,由 Goncalves 等人提出了一個「參
    數化主動式排程產生演算法」可以透過控制延遲時間來縮小解空間
    範圍。D. Y. Sha 等人修改了計算延遲時間的函數而發表了mP-ASG
    演算法以便更有效的控制解空間範圍。

    雖然解空間範圍被技術性地縮小了,但是在大部份的排程演算
    法裡每個部份解仍然必須完全被解完才可以被評估好壞。例如,有
    一個排程包含了一百項動作,那麼在排程器評估此排程的適合度之
    前,所有的一百項動作必須全部被排好。因此不必要的部份解所須
    耗費的時間就無法被節省下來。

    為了改進上述缺點,本文根據「閒置時間愈小的部份解,愈可
    能得到較小的總完工時間」的推論,提出了一個具備以閒置時間為
    基礎的過濾機制之新型蜜蜂群演算法,可以在排程器求取新解的過
    程中自動停止搜尋收益率不足的解並因此節省了大量的求取剩餘的
    部份解所耗費的時間。

    Open Shop Scheduling Problem (OSSP) is one of
    the most time-consuming works in scheduling problems.
    Current days, many artificial intelligence algorithms
    can reduce the problem solving time to an acceptable
    time range and even can further downsize the range
    of solution space. For example, Goncalves proposed
    a Parameterized Active Schedule Generation (P-ASG)
    algorithm. This algorithm can downsize the solution
    space by controlling the delay-time. D. Y. Sha et al.
    modified the delay-time function and proposed a
    Modified Parameterized Active Schedule Generation
    (mP-ASG) algorithm to control the range of solution
    space more effectively.

    Although the range of solution space is technically
    downsized but in most of the scheduling algorithms
    every partial solution still need to be solved
    completely before this solution can be evaluated.
    For example, if there is a schedule with 100 operations
    then all 100 operations must be scheduled before the
    scheduler can evaluate its fitness. Therefore the
    time-cost for unnecessary partial solution can not be
    saved anymore.

    In order to improve the weakness described above,
    this paper proposed A New Bee Colony Optimization
    Algorithm with an Idle-Time-Based Filtering Scheme
    according to the inference of“the smaller idle-time
    a partial solution is, the smaller makespan (Cmax)
    will be". It can automatically stop searching the
    partial solution with unsuffient profitability while
    the scheduler is making up a new scheduling solution
    and therefore save a lot of time-cost for rest partial solution.

    中文摘要 II Abstract III 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1研究背景 1 1-2研究動機及目的 2 1-3 論文架構 3 第二章 文獻探討 4 2-1基因演算法 5 2-2螞蟻群最佳化演算法 6 2-3粒子群最佳化演算法 8 2-4蜜蜂群最佳化演算法 10 2-4-1蜜蜂群演算法:原理與應用 12 2-4-2蜜蜂群演算法:零工式工廠排程 15 2-4-3蜜蜂群演算法:人工蜜蜂群演算法 18 2-5開放式工廠排程問題 20 2-6主動式排程產生演算法 24 2-6-1半主動式排程 25 2-6-2主動式排程 26 2-6-3不延遲排程 28 2-7其他參考文獻 30 第三章 實驗架構 33 3-1粒子群演算法 33 3-1-0粒子群演算法:流程圖 34 3-2蜜蜂演算法 35 3-2-0蜜蜂演算法:流程圖 36 3-2-1蜜蜂演算法:前進過程 37 3-2-2蜜蜂演算法:一個以閒置時間為基礎的過濾機制 38 3-2-3蜜蜂演算法:折返過程 40 3-3修改後的參數化主動式排程演算法 42 第四章 實驗設計 44 4-0實驗用軟硬體 44 4-1實驗程序 44 4-2實驗用試題說明 45 4-3 實驗公平性測試 47 4-3-1 PSO-mP-ASG於指定時間內可獲得的解答個數 47 4-3-2不含ITBF之BCO-mP-ASG於指定時間內可獲得的解答個數 48 4-3-3 PSO-mP-ASG與不含 ITBF 的 BCO-mP-ASG的評測結果 49 4-3-4加入ITBF對於指定時間內可獲得的解答個數的影響 50 4-4包含ITBF 的BCO-mP-ASG與 PSO-mP-ASG 之評比 51 4-4-1 實驗用PSO參數設定 51 4-4-2 實驗用BCO參數設定 51 第五章 實驗結果比較與分析 52 結論與建議 57 參考文獻 58

    [1] Teodorovic, Dusan; Lucic, Panta; Markovic, Goran; Orco, Mauro Dell'.
    Bee Colony Optimization: Principles and Applications.
    NEUREL 2006.8th Seminar on 25-27 Sept.2006;151-156.

    [2] D. Y. Sha, Cheng-Yu Hsu.
    A new particle swarm optimization for the open shop scheduling problem.
    Computers & Operations Research. 2008;35:3243-3261.

    [3] D. Y. Sha, Cheng-Yu Hsu.
    A modified parameterized active schedule generation algorithm for the job shop scheduling problem. The 36th CIE Conference on Computers & Industrial Engineering.2006;

    [4] Garey MR, Johnson DS.
    Computers and Intractability: a guide to the theory of NP-completeness.
    Freeman, San Francisco.1979;

    [5] Gonzalez T, Sahni S.
    Open shop scheduling to minimize finish time.
    Journal of the Association for Computing Machinery.1976;23(4):665-679.

    [6] Brucker P, Hurink J, Jurisch B,Wostmann B.
    A branch & bound algorithm for the open-shop problem.
    Discrete Applied Mathematics.1997;76:43–59.

    [7] Christelle Gueret, Christian Prins.
    Classical and new heuristics for the open-shop problem: A computational evaluation.European Journal of Operational Research.1998;107:306-314.

    [8] Ching-Fang Liaw.
    A tabu search algorithm for the open shop scheduling problem.
    Computers & Operations Research.1999;26:109-126.

    [9] Giffler B, Thompson GL.
    Algorithms for solving production scheduling problems.
    Operations Research.1960;8(4):487–503.

    [10] Christian Blum.
    Beam-ACO - hybridizing ant colony optimization with beam search: an application to open shop scheduling.
    Computers & Operations Research.2005;32:1565-1591.

    [11] Frisch, Karl von.
    The Dance Language and Orientation of Bees.
    The Belknap Press of Harvard University Press.1967;

    [12] Wenner, Adrian M., and Patrick H. Wells.
    Anatomy of a Controversy: The Question of a "Language" Among Bees.
    Columbia University Press.1990;

    [13] David R. Tarpy.
    THE DANCE LANGUAGE OF THE HONEY BEE.
    Dissertation, NC state university.2009;
    http://www.cals.ncsu.edu/entomology/apiculture/Dance_language.html
    http://en.wikipedia.org/wiki/Honey_bee

    [14] S. Camazine, J. Sneyd,
    A Model of Collective Nectar Source by Honey Bees: Self-organization Through Simple Rules.Journal of Theoretical Biology.1991;149:547-571.

    [15] Sushil J. Louis, Zhijie Xu.
    Genetic algorithms for open shop scheduling and re-scheduling.
    Dissertation. Department of Computer Science. University of Nevada.1996;

    [16] Christian Prins.
    Competitive genetic algorithms for the open-shop scheduling problem.
    Dissertation. University of Technology of Troyes, Department of GSI.2000;

    [17] Ching-Fang Liaw.
    A hybrid genetic algorithm for the open shop scheduling problem.
    European Journal of Operational Research.2000;124:28-42.

    [18] Chin Soon Chong, Appa Iyer Sivakumar, Malcolm Yoke Hean Low, Kheng Leng Gay.
    A bee colony optimization algorithm to job shop scheduling.
    Proceedings of the 38th conference on Winter simulation, Winter Simulation Conference, IEEE.2006;

    [19] Li-Pei Wong, Chi Yung Puan, Malcolm Yoke Hean Low, Chin Soon Chong.
    Bee Colony Optimization algorithm with Big Valley landscape exploitation for Job Shop Scheduling problems.
    Simulation Conference, 2008. WSC 2008. Winter 7-10 Dec,IEEE.2008;2050 - 2058.

    [20] Wiest, J.D.
    Some properties of schedules for large projects with limited resources.
    Operations Research.1964;12:395-418.

    [21] Arno Sprecher, Rainer Kolisch, Andreas Drexl.
    Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem.
    European Journal of Operational Research.1995;80:94-102.

    [22] Gonçalves JF, Mendes JJ, de M, ResendeMGC.
    A hybrid genetic algorithm for the job shop scheduling problem.
    European Journal of Operational Research.2005;167(1):77–95.

    [23] Taillard E.
    Benchmarks for basic scheduling problems.
    European Journal of Operations Research.1993;64:278–85.
    http://ina2.eivd.ch/collaborateurs/etd/problemes.dir/ordonnancement.dir/ordonnancement.html

    [24] Michael L. Pinedo
    Scheduling Theory, Algorithms, and Systems.Springer.2008.

    [25] Dervis Karaboga, Bahriye Basturk.
    A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm.J Glob Optim.2007;39:459-471.

    [26] Marco Dorigo, Vittorio Maniezzo, Albert Colorni.
    Ant System: Optimization by a Colony of Cooperating Agents.
    IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B CYBERNETICS.1996;26:NO 1.

    [27] James Kennedy and Russell Eberhart
    Particle Swarm Optimization.IEEE.1995.

    [28] John Henry Holland.
    Adaptation in Natural and Artificial Systems:
    An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence.,
    Ann Arbor, MI: The University of Michigan Press, 1975

    [29] Brian Huang.
    Genetic Algorithm.
    Dissertation. MMN Lab., Department of E.S., NCKU.2008.

    [30] Marco Dorigo.
    Ant Algorithms Solve Difficult Optimization Problems.
    Lecture Notes In Computer Science;
    Proceedings of the 6th European Conference on Advances in Artificial Life.
    2001;2159:11-22.

    [31] Y. M. Huang.
    Particle Swarm Optimization.
    Dissertation. MMN Lab., Department of E.S., NCKU.2008.

    [32] Marco Dorigo, Luca Maria Gambardella.
    Ant colonies for the travelling salesman problem.
    BioSystems.1997;43:73–81.
    [33] Giffler J, Thompson GL.
    Algorithms for solving production scheduling problems.
    Operations Research.1960;8:487–503.

    [34] Brucker P, Hurink J, Jurisch B, Wostmann B.
    New benchmark instances for the open shop problem.
    ftp://ftp.mathematik.uni-osnabrueck.de/pub/osm/preprints/software/openshop/

    [35] Christelle Gueret, Christian Prins.
    Hard instances for the open shop problem.
    http://www.emn.fr/x-auto/gueret/OpenShop/hard-os.zip

    [36] Reeves, C. R.
    Landscapes, operators and heuristic search.
    Annals of Operations Research 86(0):473-490. 1999.

    [37] Jason Chao-Hsien Pan, Han-Chiang Huang
    A hybrid genetic algorithm for no-wait job shop scheduling problems.
    Expert Systems with Applications.2009.36:5800–5806.

    [38] Changsheng Zhang, Jigui Sun
    An alternate two phases particle swarm optimization algorithm for flow shop scheduling problem.
    Expert Systems with Applications.2009.36:5162–5167.

    [39] I-Hong Kuo, Shi-Jinn Horng, Tzong-Wann Kao, Tsung-Lieh Lin, Cheng-Ling Lee, Takao Terano, Yi Pan.
    An efficient flow-shop scheduling algorithm based on a hybrid particle swarm optimization model.
    Expert Systems with Applications.2009.36:7027–7032.

    下載圖示 校內:2014-07-30公開
    校外:2014-07-30公開
    QR CODE