簡易檢索 / 詳目顯示

研究生: 謝承翰
Hsieh, Cheng-Han
論文名稱: 垂直軸風力機扭力與功率的檢測與模擬
Experimental and Numerical Studies of Torque and Power Generation in a Vertical Axis Wind Turbine
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: 動態失速多流管模型垂直軸風力機
外文關鍵詞: VAWT, Double-Multiple Streamtubes, Dynamic stall
相關次數: 點閱:47下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 垂直軸風力機葉片的非定常空氣動力特性由複雜的流體行為所主導,造成此動態氣動力特性的原因,主要來自隨著旋轉角度變化的相對攻角、速度向量和雷諾數,而這些動態效應將導致垂直軸風力機無法自行啟動,這項缺點仍待克服。
    本研究實際量測Darrieus風力機的功率輸出和Giromill風力機提供的扭力,功率量測結果用於驗證Matlab所撰寫的多流管模型(Double Multiple Streamtubes Model)模型,再應用此多流管模型預測各風速下垂直軸風力機的啟動扭力,動態失速的影響則使用修正過的Gormont模型來校正,扭力量測結果用於討論低風速下垂直軸風力機提供的Reaction Torque和Rotary Torque對啟動能力的影響,接著參考Oler的實驗結果驗證商業計算流體力學(Computational Fluid Dynamics)套裝軟體計算模擬的可靠度,最後再針對本研究之Giromill風力機進行模擬,討論尖端速度比為1及2下,葉片附近的二維無因次渦量場,此外也使用相位平均(phase-locked average)計算出各旋轉角度葉片提供的平均切線推力來判斷產生負扭力的區域,並分析各葉片之切線推力對淨值貢獻的大小。

    The main objective is to analysis the self starting problem. This research investigated the torque and power generation of the vertical axis wind turbine (VAWT) using experimental and numerical method. The VAWT has an inherent unsteady aerodynamic behavior due to the variance of angle of attack angle with the angle of rotation, perceived velocity and consequentially Reynolds Number. The phenomenon of dynamic stall has a significant impact on VAWT in the starting ability and torque output at the low tip speed ratio.
    The experimental method was developed to measures the reaction torque and rotary torque varying with angle of rotation. Moreover, A numerical method, the Double-Multiple Streamtube (DMS) model was employed to predict the torque coefficient by five levels wind speed. Furthermore, in order to clearly visualize the development of the flow field of the airfoil, efforts were carried out with Computational Fluid Dynamics (CFD). The flow configuration of a 2D model was created to represent the three bladed VAWT with infinite aspect ratio. The phase-locked average of tangential force shows the negative regimes. The pressure and vorticity fields shows the evolution of the tangential force with the vortex shedding.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1.1 風力機發展歷史 1 1.2 研究動機與目的 2 1.3 文獻回顧 4 1.4 啟動能力的定義 9 第二章 基礎理論 10 2.1 座標系統 10 2.2 理論功率係數上限 10 2.2.1 動量理論與Betz極限 10 2.2.2 Darrius風力機功率係數極限 11 2.3 垂直軸風力機氣動特性 12 2.3.1 無因次分析 12 2.3.2 雷諾數影響(Reynolds number) 14 2.3.3 相對功角 (Relative AOA)變化 14 2.3.4 動態失速(Dynamic stall)影響 15 2.3.5 流動曲率影響(Flow curvature) 16 第三章 實驗設備與模型 17 3.1 風洞設備 17 3.2 垂直軸風力機與發電機 17 3.3 量測設備 18 第四章 研究方法 20 4.1 風力機功率與扭力的量測 20 4.1.1 風力機扭力平衡 20 4.1.2 扭力計訊號之擷取 21 4.1.3 風洞阻塞比影響 22 4.1.4 功率量測之不確定度分析 23 4.2 多流管模型(Double Multiple-Streamtubes Model) 24 4.2.1 動態失速模型 27 4.3 計算模擬 28 4.3.1 數值方法與紊流模型 28 4.3.2 模型尺寸與計算網格 29 4.3.3 模擬流況與邊界條件 30 第五章 結果與討論 31 5.1 風力機量測 31 5.1.1 輸出功率 31 5.1.2 扭力量測 32 5.2 多流管模型 34 5.2.1 多流管模型驗證 34 5.2.2 啟動扭力分析 35 5.3 數值模擬 37 5.3.1 數值模擬驗證 37 5.3.2 模擬結果 38 第六章 結論與建議 43 6.1 結論 43 6.2 建議 45 第七章 參考文獻 47

    [1] Darrieus, G. J. M., United States Patent, No.1835018, Dec. 8,1931.
    [2] Deglaire, P., Engbom, S., Agren, O., and Bernhoff, H., Analytical Solutions for a Single Blade in Vertical Axis Turbine Motion in Two-Dimensions, European J. of Mechanics B/Fluids, Volume 28, Issue 4, pp. 506-520, July-August 2009.
    [3] Touryan, K. J., Strickland, J. H. and Berg, D E., Electric Power from Vertical Axis Wind Turbine, Journal of Propulsion and Power, Vol. 3, pp. 481-493, Nov.-Dec. 1987.
    [4] Staelens, Y., Saeed, F. and Paraschivoiu, I., A Straight-Bladed Variable-Pitch VAWT Concept For Improved Power Generation, 41st Aerospace Sciences Meeting and Exhibit, AIAA-2003-0524, January 2003.
    [5] Bussel, G.J.W. van, Mertens, S., Polinder, H. and Sidler, H.F.A., TURBY: concept and realisation of a small VAWT for the built environment, EAWE/EWEA Special Topic Conference, The Science of making Torque from Wind, pp. 509-516, April 2004.
    [6] Vertical Axis Wind Turbines - The History of the DOE Program, Sandia National Laboratories Staff.
    [7] Islam, M., Ting, D. S.-K.,and Fartaj, Desirable Airfoil Features for Smaller-Capacity Straight-Bladed VAWT, Wind Engineering Vol. 31, No. 3, pp 165-196, 2007.
    [8] Islam, M., Fartaj, A. and Carriveau, R., Analysis of the Design Parameters related to a Fixed-pitch Straight-Bladed Vertical Axis Wind Turbine, Wind Engineering Vol. 32, no. 5, pp 491-507, 2008.
    [9] Islam, M., Ting, D. S.-K.,and Fartaj, Design of a Special-purpose Airfoil for Smaller-Capacity Straight-Bladed VAWT, Wind Engineering Vol. 31, No. 6, pp 401-424, 2007.
    [10] Islam, M., Ting, D. S.-K.,and Fartaj, A., Aerodynamic Models for Darrieus-Type Straight-Bladed Vertical Axis Wind Turbines, Renewable & Sustainable Energy Reviews, Vol. 12, No. 4, pp. 1087-1109, 2008.
    [11] Strickland, J. H., The Darrieus Turbine: A Performance Prediction Model Using Multiple Streamtubes, SAND75-0431, 1975.
    [12] Worstell, M. H., Aerodynamic Performance of the 17meter Diameter Darrieus Wind Turbine in the Three-bladed Configuration: addendum, SAND79-1753, 1982.
    [13] Worstell, M. H., Aerodynamic Performance of the 17meter Diameter Darrieus Wind Turbine, report SAND78-1737, 1978.
    [14] Migliore, P. G. and Wolfe, W. P., Flow Curvature Effects on Darrieus Turbine Blade Aerodynamic, Journal of Energy, Vol.4, pp. 49–55, 1980.
    [15] Jesch, L. F., and Walton, D., Reynolds number effects on the aerodynamic performance of a vertical axis wind turbine, International Symposium on Wind Energy Systems, 3rd, Lyngby, Denmark, August 26-29, 1980.
    [16] Brochier, G., Fraunie, P., Beguier, C., and Paraschivoiu, I., Water Channel Experiments of Dynamic Stall on Darrieus Wind Turbine Blades, Journal of Propulsion and Power, Vol.2, pp. 445-449., Sept.-Oct. 1986.
    [17] Carr, L. W., Progress in Analysis and Prediction of Dynamic Stall, J. Aircraft, Vol.25, No.1, pp. 1–25, 1988.
    [18] Berg, D. E., Klimes, P. C., and Stephenson, W. A., Aerodynamic Design and Initial Performance Measurements For the Sandia 34-m Diameter Vertical-Axis Wind Turbine, Proceedings of the Ninth ASME Wind Energy Symposium, ASME, 1990.
    [19] Tchon, Ko-Foa and Paraschivoiu, I., Navier-Stokes Simulation of the Flow Around an Airfoil in Darrieus Motion, Journal of Fluids Engineering, Vol. 116, pp. 870-876., ASME, 1994.
    [20] Masson, C., Leclerc, C., and Paraschivoiu, I., Performance Predictions of VAWTs With NLF Airfoil Blades, Journal of Solar Energy Engineering, Vol.119, pp. 97-99, Technical Brief, 1997.
    [21] Mertens S., Kuik, G. van, and Bussel, G. van, Performance of A High Tip Speed Ratio H-Darrieus In the Skewed Flow On A Roof, 41st Aerospace Sciences Meeting and Exhibit, AIAA-2003-0523, January 2003.
    [22] Kirke, B.K. and Lazauskas, L., Variable pitch Darrieus water turbines, J. Fluid Science and Tech., Vol. 3, No. 3, pp. 430-438., June 2008.
    [23] Horiuchi, K., Ushiyama, I., and Seki, K., Straight Wing Vertical Axis Wind Turbine: A Flow Analysis, Wind Engineering, Vol. 29, No.3, pp. 243-252, May 2005.
    [24] Guerri, O., Sakout, A. and Bouhadef, K., Simulations of the Fluid Flow around a rotating Vertical Axis Wind Turbine, Wind Engineering Vol. 31, no. 3, pp 149-163, 2007.
    [25] Lida, A., Kato, K., and Mizuno, A., Numerical Simulation of Unsteady Flow and Aerodynamic Performance of Vertical Axis Wind Turbines with LES, 16th Australasian Fluid Mechanics Conference, 2007.
    [26] Ferreira, C. S., Scarano, F., Bussel, G. V., Kuik, G. V., 2D CFD simulation of dynamic stall on a vertical axis wind turbine : verification and validation with PIV measurements, 45th AIAA Aerospace sciences meeting and exhibit, AIAA 2007-1367, 2007.
    [27] Ferreira, C. S., Scarano, F., Bussel, G. V., Kuik, G. V., Aerodynamic Force on a VAWT in Dynamic Stall by Integration of the Velocity Field from 3C Particle Image Velocimetry, In The Proceedings of the 3rd Phd Seminar on Wind Energy In Europe, Spain, pp. 1-5. , 10 & 11 October 2007 Pamplona.
    [28] Zannetti, L., Gallizio, F. and Ottino, G. M., Vortex motion in doubly connected domains, J. Fluid Mech., Vol. 612, pp. 143–152, 2008.
    [29] Hamada, K., Smithb, T., Durrani, N., Qind, N. and Howell, R., Unsteady Flow Simulation and Dynamic Stall around Vertical Axis Wind Turbine Blades , AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 7-10 January 2008.
    [30] Hwang, S., Lee, Y. H., and Kim, S. J., Optimization of Cycloidal Water Turbine and the Performance Improvement by Individual Blade Control, Applied Energy, Vol. 86, Issue 9, 2009.
    [31] Ferreira, C. S., Scarano, F., Bussel, G. V., Kuik, G. V., Visualization by PIV of dynamic stall on a vertical wind turbine, Experiments in Fluids, Vol. 46, No. 1., pp. 97-108., 2009.
    [32] Kirke, B.K., Evaluation of self-starting VAWT for Stand-Alone Applications, Ph. D thesis, Griffith University, 1998.
    [33] South, P., Mitchell, R., Jacobs, E., “Strategies for the Evaluation of Advanced Wind Energy Concepts,” Solar Energy Research Institute USA, SERI/SP-635-1142, 1983.
    [34] Wilson, R. E., Applied Aerodynamics of Wind Power Machines, Oregon State University Corvallis, 1974.
    [35] Lissaman, P. B. S., Low Reynolds Number Airfoils, Ann. Rev. Fluid Mech., No. 15, pp. 223-39, 1983.
    [36] Sheldahl R. E. and Klimes P. C., Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbine, SAND80-2114, 1981.
    [37] McCroskey, W. H., Unsteady Airfoil, Ann. Rev. Fluid Mech., No. 14, 1982.
    [38] Fujisawa, N. and Shibuya, S., Observations of Dynamic Stall on Darrieus Wind Turbine Blades, Journal of Wind Engineering and Industrial Aerodynamic 89, 2001.
    [39] Francis, M. S. and Keesee, J. E., Airfoil Dynamic stall performance with Large-Amplitude motions, AIAA Journal, Vol. 23, No.11, 1985.
    [40] Patel, R. Mukund, Wind and Solar Power Systems Designm Analysis, and Operation, second edition, CRC, 2005.
    [41] Frequently Asked Questions : Torque sensor, Honeywell Sensotec
    [42] Jenkins, Nick, Allan, Ron, Crossley, Peter, Kirschen, David,and Strbac, Goran, Embedded Generation, Baker & Taylor Books, 2000.
    [43] Sheldahl, R. E., Comparison of field and Wind Tunnel Darrieus Wind Turbine Data, SAND80-5469, 1981.
    [44] Sheldahl, Robert E. and Blackwell, B. F., Wind Tunnel Perfoemance Data for the Darrieus Wind Turbine with NACA0012 Blades, SAND76-0130, 1977.
    [45] Pope, A. and Barlow, H., Low-Speed Wind Tunnel Testing, John Wiley&Sons, 1999.
    [46] Templin, R. J., Aerodynamic Performance Theory for the NRC VAWT, National Reaserch Council of Canada, LTR-LA-160, June 1974.
    [47] Kline, S.J. and McClintock , F. A., Describing Uncertainties in single-sample experiments, Mechanical Engineering, vol. 75, pp. 3, 1953.
    [48] Homicz, G.F., Numerical Simulation of VAWT Stochastic Aerodynamic Loads Produced by Atmospheric Turbulence: VAWT-SAL Code, SAND91-1124, 1991
    [49] Lanzafame, R. and Messina, M., Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory, Renewable Energy, Vol. 32, pp. 2291–2305, 2007.
    [50] Buhl Jr, L., A new empirical relationship between thrust coefficient and induction factor for the turbulent windmill state, Technical report NREL/TP-500-36834, August 2005.
    [51] Paraschivoiu, I. and Desy, P., Aerodynamic of small-scale Vertical Axis Wind Turbine, Journal of Propulsion and Power, vol. 2, pp. 282-288. , May-June 1986.
    [52] Larsen, J., Nielsen, S., Krenk, S., Dynamic stall model for wind turbine airfoils, Journal of Fluids and Structures, Volume 23, Issue 7, pp. 959-982, October 2007.
    [53] Brahimi, M.T. and Paraschivoiu, I., Darrieus rotor aerodynamic in Turbulent Wind, Transactions of the ASME, Vol.117, May 1995.
    [54] Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605, August 1994.
    [55] Ekaterinaris, J. A. and Platzer, M. F., Computational prediction of airfoil dynamic stall, Prog. Aerospace Sci. Vol. 33, pp.759~846, 1997.
    [56] Reuter, R. C. and Worstell, M. H., Torque Ripple in a Vertical Axis Wind Turbine, SAND78-0577, 1978.
    [57] Kyozuka, Y., An Experimental Study on the Darrieus -Savonius Turbine for the Tidal Current Power Generation, Journal of Fluid Science and Technology, Vol.3, No.3, 2008.
    [58] Liu, Wen-Qing, Three-Dimensional Aerodynamic Model With Viscous Turbulent Effects On Vertical-Axis Wind Turbine, Ph.D thesis, Department De Genie Mecanique, Universite De Montreal.
    [59] Oler, J. W., Strickland, J. H., Im, B. J. and Graham, G. H., Dynamic Stall Regulation of the Darrieus Turbine, SAND83-7029, 1983.
    [60] Moser, A. E. and Sullivan, P. E., Boundary Layer Investigation over Rotating Airfoils, AIAA 2007-4511, 37th AIAA Fluid Dynamics Conference and Exhibit 25-28 Miami, June 2007.
    [61] Hofemann, C., Ferreira, C. S., Dixon, K. , Bussel, G. V., Kuik, G. V., Scarano, F., 3d Stereo PIV Study of Tip Vortex Evolution on a VAWT, European Wind Energy Conference, 2008.

    下載圖示 校內:立即公開
    校外:2009-07-27公開
    QR CODE