簡易檢索 / 詳目顯示

研究生: 游槐呈
Yu, Huai-Cheng
論文名稱: 降低電洞傳輸層PEDOT:PSS中PSS與熱蒸鍍式碘化鉛的介面反應以提升鈣鈦礦太陽能電池轉換效率
Enhance Perovskite solar cell power conversion efficiency by reducing the interaction of PSS in PEDOT:PSS with thermal evaporation PbI2 on the interfacial
指導教授: 賴韋志
Lai, Wei-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 鈣鈦礦太陽能電池物理氣相沉積碘化鉛PEDOT:PSS
外文關鍵詞: Perovskite Solar Cell, Physical vapor deposition, PbI2, PEDOT:PSS
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在找出熱蒸鍍PbI2在以PEDOT:PSS作為電洞傳輸層之P-i-N結構鈣鈦礦太陽能電池元件效率不佳的問題,實驗製程採用物理氣相沉積成長PbI2薄膜再進行化學氣象沉積(CVD)反應,使PbI2在充滿MAI的氣氛下低溫緩慢形成鈣鈦礦薄膜。首先我們藉由改變不同碘化鉛(PbI2)的蒸鍍速率與MAI之的反應溫度,找出形成鈣鈦礦薄膜的最佳環境,並利用XPS分析來探討熱蒸鍍PbI2與電洞傳輸層PEDOT:PSS間產生的介面問題,利用兩種不同方法來改善元件效率,方法一利用DMSO溶液處理法改善PEDOT:PSS傳輸層特性,一方面提升其導電率,一方面降低絕緣材料PSS與熱蒸鍍PbI2直接接觸的機會進而減少從熱蒸鍍PbI2 中牽引、聚集出的Pb metal以提升鈣鈦礦太陽能電池之元件特性。方法二我們利用在PEDOT:PSS上預先蒸鍍一層MAI,利用合成MAPbI3的原始材料,一方面能夠阻止PbI2與PEDOT:PSS中的PSS直接接觸,大幅提升元件特性,一方面能夠避免影響CH3NH3PbI3組成。最終形成厚度超過400nm之鈣鈦礦薄膜並成功提升太陽能電池光電轉換效率從3.8%到12.7%.

    The purpose of this thesis is to find out the problem of the unideal power convert efficiency in Perovskite Solar Cell fabricated by the Physical vapor deposition (PVD) of PbI2 on the hole transport layer PEDOT:PSS then convert to MAPbI3 by Chemical vapor deposition(CVD) process. First, we change the PbI2 evaporation rate and CVD temperature to find out the best condition to form the MAPbI3 and used XPS analysis to know the interaction of PSS in PEDOT:PSS with thermal evaporation PbI2 on the interfacial and take two different method to solve the problem.The method one we used DMSO solution treat on the PEDOT:PSS to improve the conductivity ,on the other hand, reducing the opportunity of PSS directly contact to PbI2 caused Pb metal accumulated on the interface then reduce the power convert efficiency of Perovskite Solar Cell.
    The second method, we use MAI as buffer layer deposit on the interface of PEDOT:PSS and PbI2 to prevent PSS directly contact PbI2.Finally,we successfully improve the power convert efficiency from 3.8% to 12.74% .

    摘要 I 誌謝 X 目錄 XII 圖目錄 XV 表目錄 XX 第一章 緒論 1 1.1 簡介 1 1.2 研究目的與動機 4 第二章 太陽能電池原理 5 2.1 太陽能電池簡介 5 2.1-1 太陽能電池之工作原理 6 2.1-2 太陽能電池等效電路模型 7 2.2 太陽能電池參數 9 2.2-1 短路電流ISC(Short-circuit current) 9 2.2-2開路電壓VOC(Open-circuit voltage) 10 2.2-3最大輸出功率Pmax(Maximum output power) 10 2.2-4填充因子FF(Fill factor) 11 2.2-5轉換效率η(Conversion efficiency) 11 2.2-6串聯電阻(Series resistance) 12 2.2-7並聯電阻(Parallel resistance) 12 2.3鈣鈦礦太陽能電池發展與製程技術 15 2.4本章結論 21 第三章 材料與實驗流程 22 3.1前言 22 3.2 材料介紹 22 3.2-1 PEDOT:PSS 22 3.2-2 鈣鈦礦 Perovskite 26 3.2-3 甲基碘化胺(MAPbI3) 29 3.3 實驗流程 31 3.4特性量測 38 3.4-1 I-V curve 38 3.4-2 Absorbance & Transmittance 38 3.4-3 Photoluminescence(光致發光) 39 3.4-4 IPCE 41 3.4-5 X-ray diffraction 42 3.4-6.ScanningElectronMicroscope (SEM) 44 3.4-7 X-ray photoelectron spectroscopy (XPS) 45 3.4-8 Atomic Force Microscope(AFM) 45 3.5本章結論 46 第四章 實驗結果與討論 47 4.1 前言 47 4.2 Pristine Perovskite solar cell 48 4.2.1 PbI2蒸鍍電流最佳化 48 4.2.2不同PbI2鍍率下之元件特性 53 4.2.3 CVD製程溫度最佳化 54 4.2.4不同反應溫度下之元件特性 56 4.2.5結論 58 4.3 Perovskite solar cell with DMSO solven washing 59 4.3.1 PEDOT:PSS經DMSO溶液處理前/後特性分析 60 4.3.2 PEDOT:PSS經溶液處理前/後元件特性 69 4.3.3經DMSO處理後成長之鈣鈦礦薄膜分析 72 4.3.4結論 76 4.4 Perovskite solar cell with MAI covered on PEDOT:PSS 78 4.4.1 預沉積MAI厚度最佳化 79 4.4.2 鈣鈦礦薄膜特性量測 82 4.4.3結論 89 4.5本章結論 89 第五章 結論與未來展望 91 5.1結論 91 5.2未來展望 92 參考文獻 93

    [1]. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, Journal of the American Chemical Society, 131, 17, 6050-6051 (2009).
    [2]. W. S. Yang, J. H. Noh, N. J. Jeon , “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange”, Science, 348, 6240, 1234–1237 (2015).
    [3]. X. Li, D. Bi, C. Yi, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells” , Science, 353, 6294, 58–62 ( 2016).
    [4]. Science News, “Newcomer Juices Up the Race to Harness Sunlight”, Science, 342, 1438–1439 (2013).
    [5]. N. G. Park, “Perovskite solar cells: an emerging photovoltaic technology”, Material, 18, 2, March (2015)
    [6]. Best Research Cell Efficiencies, National Renewable Energy Laboratory (2018).
    [7]. http://www.greenrhinoenergy.com/solar/radiation/characteristics.php.
    [8]. D. D. Meo, S. M. Naughton, S. Sonkusale, T. Vandervelde, “Electrodeposited Copper Oxide and Zinc Oxide Core-Shell Nanowire Photovoltaic Cells”, INTECH Open Access Publisher (2011).
    [9]. E.M.G. Rodrigues, R. Melício, V. M. F. Mendes, J. P. S. Catalão, “Simulation of a Solar Cell considering Single-Diode Equivalent Circuit Model Reserch Gate” , May (2011).
    [10]. E. Karatepe , M. Boztepe, M. Colak, “Neural network based solar cell model”, Energy Conversion and Management, 47, 1159–1178 (2016).
    [11]. J. Chen, C. S. Hsu, “Conjugated polymer nanostructures for organic solar cell applications”, Polym. Chem, 2, 2707 (2017).
    [12]. Photovoltaic Education Network
    [13]. C. Riordan, R. Hulstron, “What is an air mass 1.5 spectrum? ”, IEEE Xplore, August (2002).
    [14]. J. Chen, J. Xu, L. Xiao, B. Zhang, S. Dai, J. Yao, “Mixed-Organic-Cation (FA)x(MA)1−xPbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process”, ACS Appl. Mater. 9, 2449−2458 (2017).
    [15]. D. Zhou , T. Zhou, Y. Tian, X. Zhu, Y. Tu, “Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives”, Journal of Nanomaterials , 8148072 (2018).
    [16]. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am., Chem. Soc, 131, 6050–6051 (2009)
    [17]. S. D. Yang, W. F. Fu, Z. Q. Zhang, H. Z. Chen, C. Z. Li, “Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite”, Mater. Chem. A, 5, 11462 (2017).
    [18]. Y. Yang, J. You, Z. Hong et al., “Low-temperature solution processed perovskite solar cells with high efficiency and flexibility”, ACS Nano, 8, 2, 1674–1680 (2014).
    [19]. P. Qin, S. Tanaka, S. Ito, “Inorganic hole conductor based lead halide perovskite solar cells with 12.4% conversion efficiency”, Nature Communications, 5, 3834 (2014).
    [20]. N. Ahn , D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, N. G. Park, J. Am, Chem. Soc, 137, 8696–8699 (2015).
    [21]. T. B. Song, Q. Chen, H. Zhou, C. Jiang, H. H. Wang, Y. Yang, Y. Liu, J. You, Y. Yang, J. Mater.Chem. A, 3, 9032–9050 (2015).
    [22]. K. Liang, D. B. Mitzi, M. T. Prikas, “Synthesis and characterization of organic−inorganic perovskite thin films prepared using a versatile two-step dipping technique”, Chemistry of Materials, 10, 1, 403–411 (1998).
    [23]. J. Burschka, N. Pellet, S. Moon , “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature, 499, 7458, 316–319 (2013).
    [24]. H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells”, The Journal of Physical Chemistry Letters, 4, 21, 3623–3630 (2013).
    [25]. M. A. Green, H. B. Anita, H. J. Snaith, “The emergence of perovskite solar cells”, Nature Photonics, 8, 7, 506–514 (2014).
    [26]. M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapor deposition ”,Nature, 501, 7467, 395–398 ( 2013).
    [27]. C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, H. W. Lin, “Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition”, Advanced Materials, 26, 38, 6647–6652 (2014).
    [28]. D. Forg’acs, G. E. Lidon, D. P. D. Rey , “Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells”, Advanced Energy Materials, 7, 8 (2017).
    [29]. Q. Chen, H. P. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. S. Liu, G. Li, Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process”, Journal of the American Chemical Society, 136, 2, 622–625 (2014).
    [30]. Y. H. Kim , C. Sachse , M. L. Machala , C. May , M. M. Lars , K. Leo, “Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells”, Adv. Funct. Mater, 21, 1076–1081 (2011).
    [31]. J. Y. Kim , J. H. Jung , D. E. Lee , J. Joo , Synth Met, 126, 311 (2012).
    [32]. S. K. M. Jonsson , J. Birgerson , X. Crispin , G. Greczynski , W. Osikowicz , A. W. Denier vanderGon , W. R. Salaneck, M. Fahlman, Synth Met, 139, 1, (2013).
    [33]. R. Po, C. Carbonera, A. Bernardi, F. Tinti, N. Camaioni, Energy Mater. Sol. 100, 97–114 (2012).
    [34]. J.Y. Kim, J. H. Jung, D. E. Lee, J. Joo,”Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents”, Synthetic Metals 126, 311–316 (2002).
    [35]. D. Alemu, H. Y. Wei, K. C. Hod, C. W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells”, Energy Environ Sci , 5, 9662 (2012).
    [36]. H. W. Heuer, R. Wehrmann, S. Kirchmeyer, “Electro chromic Window Based on Conducting Poly(3,4-ethylenedioxythiophene)±
    Poly(styrene sulfonate)”, Funct. Mater. 12, 2, February (2012).
    [37]. M. A. Green, H. B. Anita , H. J. Snaith, “The emergence of perovskite solar cells“, Nature Photonics 8, 506–514 (2014).
    [38]. G. Li, Z. K. Tan, D. Di, M. L. Lai, L. Jiang, H. W. Lim, R. H. Friend, N. C. Greenham, “Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix”, Nano Lett, 15, 2640−2644 (2015).
    [39]. P. F. Li ,Y. Chen ,T. S. Yang, Z. Y. Wang, H. Lin, Y. H. Xu , L. Li, H. Mu, B. N. Shivananju, Y. P. Zhang, Q. L. Zhang , A. Pan, S. J. Li, D. Y. Tang, B. Jia, H. Zhang, Q. L. Bao,” Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers”, ACS Appl. Mater. 9, 12759−12765 (2017).
    [40]. H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, C. Y. Su, ”In Situ Growth of 120 cm2 CH3NH3PbBr3 Perovskite Crystal Film on FTO Glass for Narrowband-Photodetectors”, Adv. Mater. 29, 1602639 (2017).
    [41]. X. Guo, C. McCleese, C. Kolodziej, A. C. S. Samia, Y. X. Zhao, C. Burda, “Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite” Dalton Trans., 45, 3806 (2015).
    [42]. K. T. Butler, J. M. Frost, A. Walsh, “Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3”, Mater. Horiz , 2, 228–2 (2015).
    [43]. T. Baikie , Y. Fang , J. M. Kadro , M. Schreyer , F. X. Wei , S. G. Mhaisalkar , M. Graetzel and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell”, J. Mater. Chem. A, 1, 5628-5641 (2013).
    [44]. S. Aharon, B. E. Cohen, L. Etgar, ”Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell”, J. Phys. Chem.C, 118, 17160−17165 (2014).
    [45]. S. T. Ha , X. F. Liu , Q. Zhang , D. Giovanni , T. C. Sum , Q. Xiong, “Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices”, Adv. Optical Mater. 2, 838–844 (2014).
    [46]. W. Zhou, P. C. Zhou, X. Y. Lei, Z. Fang, M. M. Zhang, Q. Liu, T. Chen, H. L. Zeng, L. M. Ding, J. Zhu, S. Y. Dai, S. F. Yang, “Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH3NH3PbI3 to Phase-Pure CH3NH3PbCl3 via Hydrochloric Acid Vapor Annealing Post-Treatment”, ACS Appl. Mater, 10, 1897−1908 (2018).
    [47]. S. Y. Hsiao, H. L. Lin, W. H. Lee , W. L. Tsai, K. M. Chiang, W. Y. Liao , C. Z. R. Wu, C. Y. Chen, H. W. Lin, “Efficient All-Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum”, Adv. Mater. 28, 7013–7019 (2016).

    下載圖示 校內:2023-08-22公開
    校外:2023-08-22公開
    QR CODE