| 研究生: |
游槐呈 Yu, Huai-Cheng |
|---|---|
| 論文名稱: |
降低電洞傳輸層PEDOT:PSS中PSS與熱蒸鍍式碘化鉛的介面反應以提升鈣鈦礦太陽能電池轉換效率 Enhance Perovskite solar cell power conversion efficiency by reducing the interaction of PSS in PEDOT:PSS with thermal evaporation PbI2 on the interfacial |
| 指導教授: |
賴韋志
Lai, Wei-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、物理氣相沉積 、碘化鉛 、PEDOT:PSS |
| 外文關鍵詞: | Perovskite Solar Cell, Physical vapor deposition, PbI2, PEDOT:PSS |
| 相關次數: | 點閱:59 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在找出熱蒸鍍PbI2在以PEDOT:PSS作為電洞傳輸層之P-i-N結構鈣鈦礦太陽能電池元件效率不佳的問題,實驗製程採用物理氣相沉積成長PbI2薄膜再進行化學氣象沉積(CVD)反應,使PbI2在充滿MAI的氣氛下低溫緩慢形成鈣鈦礦薄膜。首先我們藉由改變不同碘化鉛(PbI2)的蒸鍍速率與MAI之的反應溫度,找出形成鈣鈦礦薄膜的最佳環境,並利用XPS分析來探討熱蒸鍍PbI2與電洞傳輸層PEDOT:PSS間產生的介面問題,利用兩種不同方法來改善元件效率,方法一利用DMSO溶液處理法改善PEDOT:PSS傳輸層特性,一方面提升其導電率,一方面降低絕緣材料PSS與熱蒸鍍PbI2直接接觸的機會進而減少從熱蒸鍍PbI2 中牽引、聚集出的Pb metal以提升鈣鈦礦太陽能電池之元件特性。方法二我們利用在PEDOT:PSS上預先蒸鍍一層MAI,利用合成MAPbI3的原始材料,一方面能夠阻止PbI2與PEDOT:PSS中的PSS直接接觸,大幅提升元件特性,一方面能夠避免影響CH3NH3PbI3組成。最終形成厚度超過400nm之鈣鈦礦薄膜並成功提升太陽能電池光電轉換效率從3.8%到12.7%.
The purpose of this thesis is to find out the problem of the unideal power convert efficiency in Perovskite Solar Cell fabricated by the Physical vapor deposition (PVD) of PbI2 on the hole transport layer PEDOT:PSS then convert to MAPbI3 by Chemical vapor deposition(CVD) process. First, we change the PbI2 evaporation rate and CVD temperature to find out the best condition to form the MAPbI3 and used XPS analysis to know the interaction of PSS in PEDOT:PSS with thermal evaporation PbI2 on the interfacial and take two different method to solve the problem.The method one we used DMSO solution treat on the PEDOT:PSS to improve the conductivity ,on the other hand, reducing the opportunity of PSS directly contact to PbI2 caused Pb metal accumulated on the interface then reduce the power convert efficiency of Perovskite Solar Cell.
The second method, we use MAI as buffer layer deposit on the interface of PEDOT:PSS and PbI2 to prevent PSS directly contact PbI2.Finally,we successfully improve the power convert efficiency from 3.8% to 12.74% .
[1]. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, Journal of the American Chemical Society, 131, 17, 6050-6051 (2009).
[2]. W. S. Yang, J. H. Noh, N. J. Jeon , “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange”, Science, 348, 6240, 1234–1237 (2015).
[3]. X. Li, D. Bi, C. Yi, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells” , Science, 353, 6294, 58–62 ( 2016).
[4]. Science News, “Newcomer Juices Up the Race to Harness Sunlight”, Science, 342, 1438–1439 (2013).
[5]. N. G. Park, “Perovskite solar cells: an emerging photovoltaic technology”, Material, 18, 2, March (2015)
[6]. Best Research Cell Efficiencies, National Renewable Energy Laboratory (2018).
[7]. http://www.greenrhinoenergy.com/solar/radiation/characteristics.php.
[8]. D. D. Meo, S. M. Naughton, S. Sonkusale, T. Vandervelde, “Electrodeposited Copper Oxide and Zinc Oxide Core-Shell Nanowire Photovoltaic Cells”, INTECH Open Access Publisher (2011).
[9]. E.M.G. Rodrigues, R. Melício, V. M. F. Mendes, J. P. S. Catalão, “Simulation of a Solar Cell considering Single-Diode Equivalent Circuit Model Reserch Gate” , May (2011).
[10]. E. Karatepe , M. Boztepe, M. Colak, “Neural network based solar cell model”, Energy Conversion and Management, 47, 1159–1178 (2016).
[11]. J. Chen, C. S. Hsu, “Conjugated polymer nanostructures for organic solar cell applications”, Polym. Chem, 2, 2707 (2017).
[12]. Photovoltaic Education Network
[13]. C. Riordan, R. Hulstron, “What is an air mass 1.5 spectrum? ”, IEEE Xplore, August (2002).
[14]. J. Chen, J. Xu, L. Xiao, B. Zhang, S. Dai, J. Yao, “Mixed-Organic-Cation (FA)x(MA)1−xPbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process”, ACS Appl. Mater. 9, 2449−2458 (2017).
[15]. D. Zhou , T. Zhou, Y. Tian, X. Zhu, Y. Tu, “Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives”, Journal of Nanomaterials , 8148072 (2018).
[16]. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am., Chem. Soc, 131, 6050–6051 (2009)
[17]. S. D. Yang, W. F. Fu, Z. Q. Zhang, H. Z. Chen, C. Z. Li, “Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite”, Mater. Chem. A, 5, 11462 (2017).
[18]. Y. Yang, J. You, Z. Hong et al., “Low-temperature solution processed perovskite solar cells with high efficiency and flexibility”, ACS Nano, 8, 2, 1674–1680 (2014).
[19]. P. Qin, S. Tanaka, S. Ito, “Inorganic hole conductor based lead halide perovskite solar cells with 12.4% conversion efficiency”, Nature Communications, 5, 3834 (2014).
[20]. N. Ahn , D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, N. G. Park, J. Am, Chem. Soc, 137, 8696–8699 (2015).
[21]. T. B. Song, Q. Chen, H. Zhou, C. Jiang, H. H. Wang, Y. Yang, Y. Liu, J. You, Y. Yang, J. Mater.Chem. A, 3, 9032–9050 (2015).
[22]. K. Liang, D. B. Mitzi, M. T. Prikas, “Synthesis and characterization of organic−inorganic perovskite thin films prepared using a versatile two-step dipping technique”, Chemistry of Materials, 10, 1, 403–411 (1998).
[23]. J. Burschka, N. Pellet, S. Moon , “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature, 499, 7458, 316–319 (2013).
[24]. H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells”, The Journal of Physical Chemistry Letters, 4, 21, 3623–3630 (2013).
[25]. M. A. Green, H. B. Anita, H. J. Snaith, “The emergence of perovskite solar cells”, Nature Photonics, 8, 7, 506–514 (2014).
[26]. M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapor deposition ”,Nature, 501, 7467, 395–398 ( 2013).
[27]. C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, H. W. Lin, “Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition”, Advanced Materials, 26, 38, 6647–6652 (2014).
[28]. D. Forg’acs, G. E. Lidon, D. P. D. Rey , “Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells”, Advanced Energy Materials, 7, 8 (2017).
[29]. Q. Chen, H. P. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. S. Liu, G. Li, Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process”, Journal of the American Chemical Society, 136, 2, 622–625 (2014).
[30]. Y. H. Kim , C. Sachse , M. L. Machala , C. May , M. M. Lars , K. Leo, “Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells”, Adv. Funct. Mater, 21, 1076–1081 (2011).
[31]. J. Y. Kim , J. H. Jung , D. E. Lee , J. Joo , Synth Met, 126, 311 (2012).
[32]. S. K. M. Jonsson , J. Birgerson , X. Crispin , G. Greczynski , W. Osikowicz , A. W. Denier vanderGon , W. R. Salaneck, M. Fahlman, Synth Met, 139, 1, (2013).
[33]. R. Po, C. Carbonera, A. Bernardi, F. Tinti, N. Camaioni, Energy Mater. Sol. 100, 97–114 (2012).
[34]. J.Y. Kim, J. H. Jung, D. E. Lee, J. Joo,”Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents”, Synthetic Metals 126, 311–316 (2002).
[35]. D. Alemu, H. Y. Wei, K. C. Hod, C. W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells”, Energy Environ Sci , 5, 9662 (2012).
[36]. H. W. Heuer, R. Wehrmann, S. Kirchmeyer, “Electro chromic Window Based on Conducting Poly(3,4-ethylenedioxythiophene)±
Poly(styrene sulfonate)”, Funct. Mater. 12, 2, February (2012).
[37]. M. A. Green, H. B. Anita , H. J. Snaith, “The emergence of perovskite solar cells“, Nature Photonics 8, 506–514 (2014).
[38]. G. Li, Z. K. Tan, D. Di, M. L. Lai, L. Jiang, H. W. Lim, R. H. Friend, N. C. Greenham, “Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix”, Nano Lett, 15, 2640−2644 (2015).
[39]. P. F. Li ,Y. Chen ,T. S. Yang, Z. Y. Wang, H. Lin, Y. H. Xu , L. Li, H. Mu, B. N. Shivananju, Y. P. Zhang, Q. L. Zhang , A. Pan, S. J. Li, D. Y. Tang, B. Jia, H. Zhang, Q. L. Bao,” Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers”, ACS Appl. Mater. 9, 12759−12765 (2017).
[40]. H. S. Rao, W. G. Li, B. X. Chen, D. B. Kuang, C. Y. Su, ”In Situ Growth of 120 cm2 CH3NH3PbBr3 Perovskite Crystal Film on FTO Glass for Narrowband-Photodetectors”, Adv. Mater. 29, 1602639 (2017).
[41]. X. Guo, C. McCleese, C. Kolodziej, A. C. S. Samia, Y. X. Zhao, C. Burda, “Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite” Dalton Trans., 45, 3806 (2015).
[42]. K. T. Butler, J. M. Frost, A. Walsh, “Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3”, Mater. Horiz , 2, 228–2 (2015).
[43]. T. Baikie , Y. Fang , J. M. Kadro , M. Schreyer , F. X. Wei , S. G. Mhaisalkar , M. Graetzel and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell”, J. Mater. Chem. A, 1, 5628-5641 (2013).
[44]. S. Aharon, B. E. Cohen, L. Etgar, ”Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell”, J. Phys. Chem.C, 118, 17160−17165 (2014).
[45]. S. T. Ha , X. F. Liu , Q. Zhang , D. Giovanni , T. C. Sum , Q. Xiong, “Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices”, Adv. Optical Mater. 2, 838–844 (2014).
[46]. W. Zhou, P. C. Zhou, X. Y. Lei, Z. Fang, M. M. Zhang, Q. Liu, T. Chen, H. L. Zeng, L. M. Ding, J. Zhu, S. Y. Dai, S. F. Yang, “Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH3NH3PbI3 to Phase-Pure CH3NH3PbCl3 via Hydrochloric Acid Vapor Annealing Post-Treatment”, ACS Appl. Mater, 10, 1897−1908 (2018).
[47]. S. Y. Hsiao, H. L. Lin, W. H. Lee , W. L. Tsai, K. M. Chiang, W. Y. Liao , C. Z. R. Wu, C. Y. Chen, H. W. Lin, “Efficient All-Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum”, Adv. Mater. 28, 7013–7019 (2016).