簡易檢索 / 詳目顯示

研究生: 張庭維
Chang, Ting-Wei
論文名稱: 經低溫大氣電漿表面改質之氧化鋯於膠原蛋白與羥丙基甲基纖維素複合溶液中磨潤性質之研究
Tribology properties of low-temperature atmospheric pressure plasma modified Zirconia in collagen/HPMC solution
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 67
中文關鍵詞: 羥丙基甲基纖維素膠原蛋白type I超高分子量聚乙烯低溫大氣壓電漿
外文關鍵詞: HPMC, Collagen type I, UHMWPE, low-temperature atmospheric pressure plasma
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全人工膝關節置換術的成功率一直都是很高的,病患術後的滿意度也都很高,但使用壽命都只能維持在10~15年間,主要問題是人工關節中超高分子量聚乙烯(UHMWPE)的磨損,為了有效提升超高分子量聚乙烯襯墊在體內的使用壽命,選用了較傳統金屬部件的人工關節磨耗率還低的氧化鋯(Zirconium)人工關節部件材料來進行研究。先是加入膠原蛋白溶液作為關節潤滑液,再利用氬氣低溫大氣電漿對氧化鋯表面做改質,使表面更加親水,表面能更大,更容易吸附膠原蛋白溶液中的三鏈螺旋膠原蛋白分子,形成緻密厚實的邊界潤滑層。這種吸附在氧化鋯表面的緻密邊界層可有效的降低超高分子量聚乙烯的磨耗量。此研究也進一步提出了膠原蛋白三鏈螺旋分子,通過大氣電漿表面改質後的吸附邊界層模型,以鞏固實驗結果。
    在確立氧化鋯在大氣電漿表面改質時間與膠原蛋白分子的吸附邊界層對超高分子量聚乙烯的磨耗效果後,進一步加入羥丙基甲基纖維素做潤滑效果的提升,並同樣的做大氣電漿表面改質時間對分子吸附產生邊界層的評估,得到比純膠原蛋白溶液更加優異的抗磨耗效果。

    For total knee joint prostheses, the major problem of durability is mainly due to the wear of UHMWPE. In the present study, artificial lubricant which composed by collagen and HPMC were used for study to obtain the purpose of preventing the wear of UHMWPE, zirconium ball and UHMWPE disk were used as Pin-on-disk specimens to model the wear behavior for knee joint prostheses and the lubricity of HPMC/collagen mixed solution.
    Experiment results show that the lubricate effect of HPMC / collagen mixed solution can reduce wear of UHMWPE contact surface and contribute to the durability of knee joint prostheses effectively. Also, the zirconium ball surface were treated by Atmospheric pressure plasma for better hydrophilicity, so the lubricant molecules can adsorb to the contact surface better and thus reduce the wear of UHWMPE surfaces.
    It is concluded that HPMC/collagen mixed solution as lubricant and surface treatment by atmospheric pressure plasma of zirconium for total knee joint prostheses can prevent UHMWPE component from mechanical wear, revealing great potential in extending the life of total knee joint prostheses.

    摘要 I SUMMARY II 誌謝 VIII 總目錄 IX 表目錄 XI 圖目錄 XII 第1章 緒論 1 1-1 前言 1 1-2 研究動機及目的 3 第2章 文獻回顧 4 2-1 低溫大氣電漿 4 2-2 人工關節假體中超高分子量聚乙烯的磨耗與潤滑 6 2-3 膠原蛋白type I 11 2-4 羥丙基甲基纖維素 12 第3章 實驗步驟與方法 13 3-1 實驗目的 13 3-2 實驗簡介 14 3-3 實驗流程 15 3-4 實驗方法 16 3-4-1 實驗材料 16 3-4-2 低溫大氣電漿 18 3-4-3 化學成分分析 20 3-4-4 表面性質分析 21 3-4-5 親疏水性分析 22 3-4-6 磨耗試驗 22 3-4-7 實驗設備 24 第4章 結果與討論 26 4-1 低溫大氣壓電漿 26 4-1-1 低溫大氣電漿源 26 4-1-2 低溫大氣壓電漿射流 28 4-2 大氣電漿噴射處理 32 4-3 大氣電漿表面處理親疏水性分析 33 4-3-1 處理時間的影響 33 4-3-2 表面化學成分分析 36 4-3-3 疏水性恢復 39 4-4 磨潤性質分析 41 4-4-1 潤滑溶液磨耗性質比較與選用 41 4-4-2 膠原蛋白溶液潤滑效果 43 4-4-3 膠原蛋白濃度與磨潤性質分析 44 4-5 膠原蛋白吸附與邊界潤滑 47 4-6 膠原蛋白吸附量 47 4-7 膠原蛋白組型對磨耗行為之分析 49 4-7-1 膠原蛋白分子結構 51 4-7-2 膠原蛋白熱變性分析 54 4-8 膠原蛋白/羥丙基甲基纖維素混合溶液之磨潤性質 58 4-9 膠原蛋白/羥丙基甲基纖維素混合溶液之吸附量 60 4-10 膠原蛋白溶液與混合溶液磨耗機制比較 61 第5章 結論 62 參考文獻 64

    [1] G. Lewis,Polyethylene wear in total hip and knee arthroplasties, Journal of Biomedical Materials Research Part A, 38 (1997) p.55-75.
    [2] A. Unsworth,Tribology of human and artificial joints, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 205 (1991) p.163-172.
    [3] M. McGee, D. Howie, S. Neale, D. Haynes, M. Pearcy,The role of polyethylene wear in joint replacement failure, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 211 (1997) p.65-72.
    [4] E.A. Balazs, D. Watson, I.F. Duff, S. Roseman,Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids, Arthritis & Rheumatology, 10 (1967) p.357-376.
    [5] T.J. Pekin Jr, N.J. Zvaifler,Hemolytic complement in synovial fluid, Journal of Clinical Investigation, 43 (1964) p.1372.
    [6] C. Huang, Y. Chih, J. Hwang, A. Lee, C. Kou,Field emission from amorphous-carbon nanotips on copper, Journal of applied physics, 94 (2003) p.6796-6799.
    [7] G. Borcia, C. Anderson, N. Brown,The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I, Applied surface science, 221 (2004) p.203-214.
    [8] G. Borcia, C. Anderson, N. Brown,The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part II, Applied surface science, 225 (2004) p.186-197.
    [9] A. Van Deynse, P. Cools, C. Leys, R. Morent, N. De Geyter,Surface modification of polyethylene in an argon atmospheric pressure plasma jet, Surface and Coatings Technology, 276 (2015) p.384-390.
    [10] X.-f. Yang, T.-f. Xi,Progress in the studies on the evaluation of biocompatibility of biomaterials, Sheng wu yi xue gong cheng xue za zhi= Journal of biomedical engineering= Shengwu yixue gongchengxue zazhi, 18 (2001) p.123-128.
    [11] S.H. Nam, H.W. Lee, S.H. Cho, J.K. Lee, Y.C. Jeon, G.C. Kim,High-efficiency tooth bleaching using non-thermal atmospheric pressure plasma with low concentration of hydrogen peroxide, Journal of applied oral science, 21 (2013) p.265-270.
    [12] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials science: an introduction to materials in medicine, Academic press, (2004).
    [13] plasmatreat, in: http://www.plasmatreat.es/tratamiento_con_plasma/pretratamiento_con_plasma/limpieza_con_plasma_micro-limpieza.html, plasmatreat.
    [14] Y. Kadoya, P. Revell, N. Al‐Saffar, A. Kobayashi, G. Scott, M. Freeman,Bone formation and bone resorption in failed total joint arthroplasties: histomorphometric analysis with histochemical and immunohistochemical technique, Journal of orthopaedic research, 14 (1996) p.473-482.
    [15] R.S. Laskin,An oxidized Zr ceramic surfaced femoral component for total knee arthroplasty, Clinical orthopaedics and related research, 416 (2003) p.191-196.
    [16] M. Musib,Response to ultra-high molecular weight polyethylene particles, American Journal of Biomedical Engineering, 1 (2011) p.7-12.
    [17] S.M. Kurtz, O.K. Muratoglu, M. Evans, A.A. Edidin,Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty, Biomaterials, 20 (1999) p.1659-1688.
    [18] S.M. Kurtz, J. Peloza, R. Siskey, M.L. Villarraga,Analysis of a retrieved polyethylene total disc replacement component, The spine journal, 5 (2005) p.344-350.
    [19] S.M. Kurtz, C.M. Rimnac, W.J. Hozack, J. Turner, M. Marcolongo, V.M. Goldberg, M.J. Kraay, A.A. Edidin,In vivo degradation of polyethylene liners after gamma sterilization in air, J Bone Joint Surg Am, 87 (2005) p.815-823.
    [20] S.M. Kurtz, W. Hozack, M. Marcolongo, J. Turner, C. Rimnac, A. Edidin,Degradation of mechanical properties of UHMWPE acetabular liners following long-term implantation, The Journal of arthroplasty, 18 (2003) p.68-78.
    [21] S.M. Kurtz, PEEK biomaterials handbook, William Andrew, (2011).
    [22] S.M. Kurtz, J.N. Devine,PEEK biomaterials in trauma, orthopedic, and spinal implants, Biomaterials, 28 (2007) p.4845-4869.
    [23] A.A. Edidin, M.L. Villarraga, M. Herr, S.M. Kurtz,Multiaxial fatigue behavior of oxidized and unoxidized UHMWPE during cyclic small punch testing at body temperature, Journal of ASTM International, 1 (2004) p.1-19.
    [24] S.M. Kurtz, A.A. Edidin, D.L. Bartel,The role of backside polishing, cup angle, and polyethylene thickness on the contact stresses in metal-backed acetabular components, Journal of biomechanics, 30 (1997) p.639-642.
    [25] S.S.I. Médicale, in: http://www.medicalexpo.com.cn/prod/synimed-synergie-ingenierie-medicale/product-70238-679515.html#product-item_679519 (Ed.), Medical EXPO.
    [26] D. Parker, J. Bussink, H.T. van de Grampel, G.W. Wheatley, E.U. Dorf, E. Ostlinning, K. Reinking, F. Schubert, O. Jünger, R. Wagener,Polymers, High‐Temperature, Ullmann's Encyclopedia of Industrial Chemistry, (2002).
    [27] Q.-B. Bao, G.M. Mccullen, P.A. Higham, J.H. Dumbleton, H.A. Yuan,The artificial disc: theory, design and materials, Biomaterials, 17 (1996) p.1157-1167.
    [28] J.H. Dumbleton, M.T. Manley, A.A. Edidin,A literature review of the association between wear rate and osteolysis in total hip arthroplasty, The Journal of arthroplasty, 17 (2002) p.649-661.
    [29] J.H. Dumbleton, M.T. Manley,Metal-on-Metal total hip replacement: what does the literature say?, The Journal of arthroplasty, 20 (2005) p.174-188.
    [30] A. Kobayashi, Y. Minoda, Y. Kadoya, H. Ohashi, K. Takaoka, C.L. Saltzman,Ankle arthroplasties generate wear particles similar to knee arthroplasties, Clinical orthopaedics and related research, 424 (2004) p.69-72.
    [31] Y. Minoda, A. Kobayashi, H. Iwaki, M. Miyaguchi, Y. Kadoya, H. Ohashi, Y. Yamano, K. Takaoka,Polyethylene wear particles in synovial fluid after total knee arthroplasty, Clinical orthopaedics and related research, 410 (2003) p.165-172.
    [32] Y. Minoda, M. Aihara, A. Sakawa, S. Fukuoka, K. Hayakawa, M. Tomita, N. Umeda, K. Ohzono,Comparison between highly cross-linked and conventional polyethylene in total knee arthroplasty, The Knee, 16 (2009) p.348-351.
    [33] Y. Minoda, A. Sakawa, S. Fukuoka, K. Tada, K. Takaoka,Blood management for patients with hemoglobin level lower than 130 g/l in total knee arthroplasty, Archives of orthopaedic and trauma surgery, 124 (2004) p.317-319.
    [34] Y.-H. Kim, Y. Choi, J.-S. Kim,Range of Motion of Standard and High-Flexion Posterior Cruciate-Retaining Total Knee Prostheses*: A Prospective Randomized Study, JBJS, 91 (2009) p.1874-1881.
    [35] Y. Minoda, A. Kobayashi, H. Iwaki, M. Ikebuchi, F. Inori, K. Takaoka,Comparison of bone mineral density between porous tantalum and cemented tibial total knee arthroplasty components, JBJS, 92 (2010) p.700-706.
    [36] A. Wang, D. Sun, C. Stark, J. Dumbleton,Wear mechanisms of UHMWPE in total joint replacements, Wear, 181 (1995) p.241-249.
    [37] A. Wang, D. Sun, S.-S. Yau, B. Edwards, M. Sokol, A. Essner, V. Polineni, C. Stark, J. Dumbleton,Orientation softening in the deformation and wear of ultra-high molecular weight polyethylene, Wear, 203 (1997) p.230-241.
    [38] A. Wang, C. Stark, J. Dumbleton,Role of cyclic plastic deformation in the wear of UHMWPE acetabular cups, Journal of biomedical materials research, 29 (1995) p.619-626.
    [39] A. Wang, A. Essner, C. Stark, J. Dumbleton,Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions, Biomaterials, 17 (1996) p.865-871.
    [40] A. Wang, A. Essner, V. Polineni, C. Stark, J. Dumbleton,Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements, Tribology International, 31 (1998) p.17-33.
    [41] A. Wang, C. Stark, J. Dumbleton,Mechanistic and morphological origins of ultra-high molecular weight polyethylene wear debris in total joint replacement prostheses, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 210 (1996) p.141-155.
    [42] M. Heuberger, M. Widmer, E. Zobeley, R. Glockshuber, N. Spencer,Protein-mediated boundary lubrication in arthroplasty, Biomaterials, 26 (2005) p.1165-1173.
    [43] -. TheyDiffer.com., in: http://theydiffer.com/difference-between-collagen-1-2-and-3/, 2014 - 2017 TheyDiffer.com., (2015).
    [44] 2016©ChemicalBook, in: 2016©ChemicalBook (Ed.) http://www.chemicalbook.com/ChemicalProductProperty_EN_CB3225318.htm, 2016©ChemicalBook.
    [45] A. Van Deynse, P. Cools, C. Leys, R. Morent, N. De Geyter,Influence of ambient conditions on the aging behavior of plasma-treated polyethylene surfaces, Surface and Coatings Technology, 258 (2014) p.359-367.
    [46] R. Dong, X. Yan, X. Pang, S. Liu,Temperature-dependent Raman spectra of collagen and DNA, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (2004) p.557-561.
    [47] C. Ding, M. Zhang, H. Tian, G. Li,Effect of hydroxypropyl methylcellulose on collagen fibril formation in vitro, International journal of biological macromolecules, 52 (2013) p.319-326.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE