簡易檢索 / 詳目顯示

研究生: 陳睿天
Chen, Jui-Tien
論文名稱: 氧化亞銅/氧化石墨烯複合物於超級電容的應用
Investigation of Cu2O Nanoparticles/graphene oxide Composites for Supercapacitor Applications
指導教授: 陳巧貞
Chen, Chiao-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 135
中文關鍵詞: 氧化亞銅氧化石墨烯超級電容
外文關鍵詞: cuprous oxide, graphene oxide, supercapacitors
相關次數: 點閱:73下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全球快速發展,人類對於石化燃料的需求也日益加增,這會對於環境有著嚴重的汙染問題,因此開發能源儲存裝置是一個很重要的議題。相較於傳統電容,超級電容有更多的能量密度,而相較於一般電池,超級電容器有較高的功率密度、快速充放電且有較長的生命週期,但其能量密度較一般電池來的低,因此提升超級電容能量密度是目前主要方向。
    能量儲存與轉換是一個重要議題,超級電容的相關研究也更加重要,而超級電容根據不同的電荷儲存方式又可分為電雙層電容與擬電容,在此研究中,選擇氧化亞銅為擬電容材料,本實驗使用濕式化學法將銅離子(Cu2+)還原成氧化亞銅,藉由有無使用形貌控制劑PVP以及使用不同還原劑達到製備方形、圓形與八面體形氧化亞銅奈米粒子,再透過改變鹼濃度、還原劑與溶劑劑量製備出不同尺寸的氧化亞銅奈米粒子,從實驗結果得知氧化亞銅奈米粒子尺寸越小,比電容值有變大的趨勢,並且八面體形相對於方形與圓形有更高的比電容值;電雙層電容以氧化石墨烯為材料,不同尺寸氧化石墨烯具有不同含量的含氧官能基,透過其性質將氧化石墨烯分類,從實驗結果得知小片氧化石墨烯,比電容值較大,最後將氧化亞銅與氧化石墨烯複合,其比電容值沒有上升,但其穩定度有提高趨勢。

    With the rapid global development, humanity’s demand for fossil fuels has reached unprecedented levels resulting in environmental problems. Development of energy storage devices is expected to play an important role recently. Supercapacitors have attracting great attention owing to its high energy densities compared to capacitors. Additionally, Supercapacitors have some distinct advantages compared to batteries such as higher power density and rapid charge discharge rate, as well as excellent cycle stability. However, the energy density of supercapacitors is still lower than that of battery. In this regard, enhancing energy density of the supercapacitor is the main theme of current research.
    Supercapacitors are expected to play an important role. In our study, Cu2O have been chosen as pseudocapacitive materials. We synthesized Cu2O nanocrystals by reduction of Cu2+ through wet chemical method. Cu2O nanocrystals such as cubes, spheres, and octahedra have been synthesized by the addition of PVP or changing reductant from ascorbic acid to hydrazine hydrate. Furthermore, by adjusting the base concentration, the amount of solvent and the amount of reductant, we can obtain different sizes of Cu2O nanocrystals. According to our results, it was found that when the size of Cu2O nanocrystals decreases, the specific capacitance of Cu2O nanocrystals increase. Among the different morphology, Cu2O with the octahedral morphology shows the highest specific capacitance compared to cubic and spherical structures. Graphene oxide has been regarded as a good material of EDLC. In this study, we tested the effect of the sheet size of GO on the performance of EDLC made of GO as the active material. Size fractionation of graphene oxide sheets is based on the selective precipitation of GO sheets by adjusting the pH value. Small sized GO shows high specific capacitance compared with large sized GO. The composite of small sized GO with Cu2O nanocrystals did not show higher specific capacitance but with better capacity retention.

    中文摘要 Ⅰ Extended Abstract Ⅱ 致謝 X 目錄 XI 圖目錄 XV 表目錄 XXVI 第1章 研究動機 1 第2章 文獻回顧 2 2.1 銅奈米材料簡介與應用 2 2.2 製備銅奈米 2 2.3 氧化亞銅奈米粒子簡介與應用 4 2.4 製備氧化亞銅奈米粒子 5 2.4.1 製備方形氧化亞銅奈米粒子 5 2.4.2 製備一系列不同形貌氧化亞銅奈米粒子 8 2.5 超級電容 9 2.5.1 電雙層電容 10 2.5.2 擬電容 12 2.5.3 超級電容的電化學測試方法 13 第3章 實驗方法與材料 16 3.1 製備方形銅奈米實驗參數 16 3.2 製備氧化石墨烯(graphene oxide,GO) 16 3.3 製備方形氧化亞銅粒子實驗參數 17 3.4 製備圓形氧化亞銅粒子實驗參數 18 3.5 製備八面體形氧化亞銅粒子實驗參數 18 3.6 超級電容電極之製備 19 3.6.1 製備電極塗料 19 3.6.2 清洗電流收集器 19 3.6.3 製備電極元件 19 3.6.4 超級電容電極元件之量測 19 3.7 檢測儀器 20 3.7.1 掃描式電子顯微鏡 (scanning electron microscope, SEM) 20 3.7.2 穿透式電子顯微鏡 (transmission electron microscope, TEM) 20 3.7.3 X 光粉末繞射分析儀 (X-ray powder diffractometer) 21 3.7.4 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 21 3.7.5 歐傑電子能譜儀(Auger Electron Spectroscopy, AES) 22 3.7.6 拉曼顯微鏡 (Raman Microscopy) 23 第4章 結果與討論 24 4.1 製備不同尺寸方形銅奈米粒子 24 4.1.1 調整形貌控制劑(ODA、TOPO)的量對於銅奈米粒子的影響 24 4.1.2 調整溶劑油胺的量對於銅奈米粒子的影響 25 4.1.3 調整反應時間來改變銅奈米的尺寸 27 4.1.4 調整反應溫度來改變銅奈米的尺寸 27 4.1.5 製備45和50 nm方形銅奈米 28 4.1.6 製備30、35與40 nm方形銅奈米 29 4.1.7 30、35、40與65 nm的方形銅奈米之性質鑑定 31 4.1.8 銅奈米粒子作為還原劑之應用 37 4.2 製備不同形貌銅奈米粒子 40 4.2.1 溴化亞銅與TOP在油胺體系反應 40 4.2.2 硝酸銅與TOP在油胺體系反應 41 4.2.3 醋酸銅與TOP在油胺體系反應 42 4.2.4 溴化亞銅、ODA與TOPO在油胺體系反應 45 4.3 製備方形氧化亞銅奈米粒子 46 4.3.1 鹼濃度對於氧化亞銅奈米粒子的影響 46 4.3.2 溶劑的量對於氧化亞銅奈米粒子的影響 48 4.3.3 起始物對於氧化亞銅奈米粒子的影響 49 4.3.4 還原劑的量對於氧化亞銅奈米粒子的影響 49 4.3.5 39、52、98與555 nm的方形氧化亞銅奈米之性質鑑定 50 4.4 製備圓形氧化亞銅奈米粒子 56 4.4.1 鹼濃度對於圓形氧化亞銅奈米粒子的影響 56 4.4.2 形貌控制劑的量對於氧化亞銅奈米粒子的影響 58 4.4.3 PVP加入順序對於氧化亞銅奈米粒子的影響 59 4.4.4 63、84、135與263 nm的圓形氧化亞銅奈米之性質鑑定 60 4.5 製備八面體形氧化亞銅奈米粒子 66 4.5.1 鹼濃度對於八面體形氧化亞銅奈米粒子的影響 66 4.5.2 溶劑的量對於氧化亞銅奈米粒子的影響 67 4.5.3 396與880 nm的八面體形氧化亞銅奈米之性質鑑定 67 4.6 氧化石墨烯不同尺寸分類 72 4.6.1 分離不同尺寸氧化石墨烯 72 4.6.2 分離完之氧化石墨烯性質鑑定 73 4.7 電化學量測 77 4.7.1 不同尺寸方形氧化亞銅奈米粒子之電化學量測 78 4.7.2 不同尺寸圓形氧化亞銅奈米粒子之電化學量測 84 4.7.3 不同尺寸八面體形氧化亞銅奈米粒子之電化學量測 90 4.7.4 不同尺寸氧化石墨烯之電化學量測 95 4.7.5 不同形貌氧化亞銅與氧化石墨烯複合之電化學行為 99 第5章 結論 104 第6章 附錄 106 第7章 參考文獻 131

    1. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339-1339.
    2. Wang, X.; Bai, H.; Shi, G., Size Fractionation of Graphene Oxide Sheets by pH-Assisted Selective Sedimentation. J. Am. Chem. Soc. 2011, 133 (16), 6338-6342.
    3. Ghasemi, S.; Jafari, M.; Ahmadi, F., Cu2O-Cu(OH)2-Graphene Nanohybrid as New Capacitive Material for High Performance Supercapacitor. Electrochim. Acta 2016, 210, 225-235.
    4. Guo, X.; Hao, C.; Jin, G.; Zhu, H. Y.; Guo, X. Y., Copper Nanoparticles on Graphene Support: An Efficient Photocatalyst for Coupling of Nitroaromatics in Visible Light. Angew. Chem. Int. Ed. 2014, 53 (7), 1973-1977.
    5. Roberts, F. S.; Kuhl Kendra, P.; Nilsson, A., High Selectivity for Ethylene from Carbon Dioxide Reduction over Copper Nanocube Electrocatalysts. Angew. Chem. 2015, 127 (17), 5268-5271.
    6. Sunho, J.; Kyoohee, W.; Dongjo, K.; Soonkwon, L.; Sub, K. J.; Hyunjung, S.; Younan, X.; Jooho, M., Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink‐Jet Printing. Adv. Funct. Mater. 2008, 18 (5), 679-686.
    7. Rathmell, A. R.; Bergin, S. M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J., The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films. Adv. Mater. 2010, 22 (32), 3558-3563.
    8. Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D. L., Facile Synthesis of Cu and Cu@Cu-Ni Nanocubes and Nanowires in Hydrophobic Solution in the Presence of Nickel and Chloride Ions. Nanoscale 2013, 5 (6), 2394-2402.
    9. Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L., Shape-Selective Formation of Monodisperse Copper Nanospheres and Nanocubes via Disproportionation Reaction Route and Their Optical Properties. J. Phys. Chem. C 2014, 118 (18), 9801-9808.
    10. Parr, R. G.; Pearson, R. G., Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105 (26), 7512-7516.
    11. Zhang, L.; McMillon, L.; McNatt, J., Gas-Dependent Bandgap and Electrical Conductivity of Cu2O Thin Films. Sol. Energy Mater. Sol. Cells 2013, 108, 230-234.
    12. Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B., One‐Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals‐Composed Porous Multishell and Their Gas‐Sensing Properties. Adv. Funct. Mater. 2007, 17 (15), 2766-2771.
    13. Grugeon, S.; Laruelle, S.; Herrera-Urbina, R.; Dupont, L.; Poizot, P.; Tarascon, J. M., Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium. J. Electrochem. Soc. 2001, 148, A285-A292.
    14. Wang, Y.; Huang, D.; Zhu, X.; Ma, Y.; Geng, H.; Wang, Y.; Yin, G.; He, D.; Yang, Z.; Hu, N., Surfactant-Free Synthesis of Cu2O Hollow Spheres and Their Wavelength-Dependent Visible Photocatalytic Activities Using LED Lamps as Cold Light Sources. Nanoscale Res. Lett. 2014, 9 (1), 624.
    15. Zhao, W.; Fu, W.; Yang, H.; Tian, C.; Ge, R.; Wang, C.; Liu, Z.; Zhang, Y.; Li, M.; Li, Y., Shape-Controlled Synthesis of Cu2O Microcrystals by Electrochemical Method. Appl. Surf. Sci. 2010, 256 (7), 2269-2275.
    16. Yu, Y.; Zhang, L.; Wang, J.; Yang, Z.; Long, M.; Hu, N.; Zhang, Y., Preparation of Hollow Porous Cu2O Microspheres and Photocatalytic Activity under Visible Light Irradiation. Nanoscale Res. Lett. 2012, 7 (1), 347.
    17. Zhang, Z.; Che, H.; Gao, J.; Wang, Y.; She, X.; Sun, J.; Gunawan, P.; Zhong, Z.; Su, F., Shape-Controlled Synthesis of Cu2O Microparticles and Their Catalytic Performances in the Rochow Reaction. Catal. Sci. Technol. 2012, 2 (6), 1207-1212.
    18. Jiang, J. W.; Kim, S. H.; Piao, L. H., The Facile Synthesis of Cu@SiO2 Yolk–Shell Nanoparticles via a Disproportionation Reaction of Silica-Encapsulated Cu2O Nanoparticle Aggregates. Nanoscale 2015, 7 (18), 8299-8303.
    19. Gou, L.; Murphy, C. J., Solution-Phase Synthesis of Cu2O Nanocubes. Nano Lett. 2003, 3 (2), 231-234.
    20. Gou, L.; Murphy, C. J., Controlling the Size of Cu2O Nanocubes from 200 to 25 nm. J. Mater. Chem. 2004, 14 (4), 735-738.
    21. Kuo, C. H.; Chen, C. H.; Huang, M. H., Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17 (18), 3773-3780.
    22. Kuo, C. H.; Huang, M. H., Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures. J. Phys. Chem. C 2008, 112 (47), 18355-18360.
    23. Sui, Y.; Fu, W.; Yang, H.; Zeng, Y.; Zhang, Y.; Zhao, Q.; Li, Y.; Zhou, X.; Leng, Y.; Li, M.; Zou, G., Low Temperature Synthesis of Cu2O Crystals: Shape Evolution and Growth Mechanism. Cryst. Growth Des. 2010, 10 (1), 99-108.
    24. Winter, M.; Brodd, R. J., What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104 (10), 4245-4270.
    25. Bard, A. J.; Faulkner, L. R., Electrochemical Methods, Fundamentals and Applications John Wiley & Sons: Singapore, 1980.
    26. Frackowiak, E., Carbon Materials for Supercapacitor Application. Phys. Chem. Chem. Phys. 2007, 9 (15), 1774-1785.
    27. Weng, T. C.; Teng, H., Characterization of High Porosity Carbon Electrodes Derived from Mesophase Pitch for Electric Double-Layer Capacitors. J. Electrochem. Soc. 2001, 148.
    28. Yang, Y. H.; Li, W. Z., Radial Elasticity of Single-Walled Carbon Nanotube Measured by Atomic Force Microscopy. Appl. Phys. Lett. 2011, 98 (4), 041901.
    29. Miao, M., Electrical Conductivity of Pure Carbon Nanotube Yarns. Carbon 2011, 49 (12), 3755-3761.
    30. An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J. M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H., Electrochemical Properties of High‐Power Supercapacitors Using Single‐Walled Carbon Nanotube Electrodes. Adv. Funct. Mater. 2001, 11 (5), 387-392.
    31. Frackowiak, E.; Delpeux, S.; Jurewicz, K.; Szostak, K.; Cazorla-Amoros, D.; Béguin, F., Enhanced Capacitance of Carbon Nanotubes through Chemical Activation. Chem. Phys. Lett. 2002, 361 (1), 35-41.
    32. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-Based Ultracapacitors. Nano Lett. 2008, 8 (10), 3498-3502.
    33. Sugimoto, W.; Iwata, H.; Murakami, Y.; Takasu, Y., Electrochemical Capacitor Behavior of Layered Ruthenic Acid Hydrate. J. Electrochem. Soc. 2004, 151, A1181-A1187.
    34. Wang, X.; Wang, X.; Yi, L.; Liu, L.; Dai, Y.; Wu, H., Preparation and Capacitive Properties of the Core–Shell Structure Carbon Aerogel Microbeads- Nanowhisker-like NiO Composites. J. Power Sources 2013, 224, 317-323.
    35. Jiang, H.; Sun, T.; Li, C.; Ma, J., Hierarchical Porous Nanostructures Assembled from Ultrathin MnO2 Nanoflakes with Enhanced Supercapacitive Performances. J. Mater. Chem. 2012, 22 (6), 2751-2756.
    36. Kumar, R.; Rai, P.; Sharma, A., Facile Synthesis of Cu2O Microstructures and Their Morphology Dependent Electrochemical Supercapacitor Properties. RSC Adv. 2016, 6 (5), 3815-3822.
    37. Hammond, J. L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J., Electrochemical biosensors and nanobiosensors. essays in biochemistry 2016, 60 (1), 69-80.
    38. Chen, D.; Song, M. K.; Cheng, S.; Huang, L.; Liu, M., Contribution of Carbon Fiber Paper (CFP) to the Capacitance of a CFP-Supported Manganese Oxide Supercapacitor. J. Power Sources 2014, 248, 1197-1200.
    39. Dahlang, T.; Sven, T., Electronic and Optical Properties of Cu, CuO and Cu2O Studied by Electron Spectroscopy. J. Phys.: Condens. Matter 2012, 24 (17), 175002.
    40. Yang, H. J.; He, S. Y.; Chen, H. L.; Tuan, H. Y., Monodisperse Copper Nanocubes: Synthesis, Self-Assembly, and Large-Area Dense-Packed Films. Chem. Mater. 2014, 26 (5), 1785-1793.
    41. Scholz, W.; Boehm, H. P., Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids. Zeitschrift für anorganische und allgemeine Chemie 1969, 369 (3‐6), 327-340.
    42. Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D. L., Shape-Selective Formation of Monodisperse Copper Nanospheres and Nanocubes via Disproportionation Reaction Route and Their Optical Properties. J. Phys. Chem. C 2014, 118 (18), 9801-9808.
    43. Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R., Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. Angew. Chem. Int. Ed. 2016, 55 (19), 5789-5792.
    44. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem. Int. Ed. 2007, 46 (25), 4630-4660.
    45. Wang, Y. J.; Zhou, K. G.; Jiang, Z. G., Preparation and Size Control of Spherical Cuprous Oxide Particle by Reducing Cupric Dioxide with Glucose. Chin, J, Inorg. Chem. 2011, 27 (12), 2405-2412.
    46. Kerber, S. J.; Bruckner, J. J.; Wozniak, K.; Seal, S.; Hardcastle, S.; Barr, T. L., The nature of hydrogen in x‐ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding. Journal of Vacuum Science & Technology A 1996, 14 (3), 1314-1320.
    47. Wang, Y. J.; Zhou, K. G.; Jiang, Z. G., Preparation and Size Control of Spherical Cuprous Oxide Particle by Reducing Cupric Dioxide with Glucose. Chinese Journal of Inorganic Chemistry 2011.
    48. Creutz, C., Complexities of Ascorbate as a Reducing Agent. Inorg. Chem. 1981, 20 (12), 4449-4452.
    49. Zhang, D. F.; Zhang, Y.; Zhang, H.; Qi, J.; Shang, Y.; Guo, L., Cavity-Tunable Cu2O Spherical Nanostructures and Their NO2 Gas Sensing Properties. Acta Phys-Chim Sin. 2015, 31 (10), 2005-2010.
    50. Xu, W.; Dai, S.; Liu, G.; Xi, Y.; Hu, C.; Wang, X., CuO Nanoflowers growing on Carbon Fiber Fabric for Flexible High-Performance Supercapacitors. Electrochim. Acta 2016, 203, 1-8.
    51. Dong, C.; Wang, Y.; Xu, J.; Cheng, G.; Yang, W.; Kou, T.; Zhang, Z.; Ding, Y., 3D Binder-Free Cu2O@Cu Nanoneedle Arrays for High-Performance Asymmetric Supercapacitors. J. Mater. Chem. A 2014, 2 (43), 18229-18235.
    52. Kuo, C. H.; Yang, Y. C.; Gwo, S.; Huang, M. H., Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Au−Cu2O Core−Shell Heterostructures. J. Am. Chem. Soc. 2011, 133 (4), 1052-1057.
    53. Oh, Y. J.; Yoo, J. J.; Kim, Y. I.; Yoon, J. K.; Yoon, H. N.; Kim, J. H.; Park, S. B., Oxygen Functional Groups and Electrochemical Capacitive Behavior of Incompletely Reduced Graphene Oxides as a Thin-Film Electrode of Supercapacitor. Electrochim. Acta 2014, 116, 118-128.
    54. Chang, W. M.; Wang, C. C.; Chen, C. Y., Plasma Treatment of Carbon Nanotubes Applied to Improve the High Performance of Carbon Nanofiber Supercapacitors. Electrochim. Acta 2015, 186, 530-541.
    55. Jang, G. G.; Song, B.; Moon, K. S.; Wong, C. P.; Keum, J. K.; Hu, M. Z., Particle Size Effect in Porous Film Electrodes of Ligand-Modified Graphene for Enhanced Supercapacitor Performance. Carbon 2017, 119, 296-304.
    56. Sung, Y. Y.; Chen, C. C. Synthesis of 3D Graphene Using Silica-Coated Metal Nanoparticles as a Reliable Growth Template. 2017.

    無法下載圖示 校內:2024-01-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE