| 研究生: |
丁婉雯 Ting, Wan-Wen |
|---|---|
| 論文名稱: |
染色體整合T7 RNA聚合酶與基因編輯器進行酶之定向進化實現永續化學品的生物合成 Chromosomal integration of T7 RNA polymerase and base editor for enzyme directed evolution toward sustainable chemical biosynthesis |
| 指導教授: |
吳意珣
Ng, I-Son |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 228 |
| 中文關鍵詞: | 合成生物學 、T7 RNA聚合酶 、戊二胺 、5-胺基酮戊酸 、衣康酸 、碳酸酐酶 、CRISPR干擾 、定向進化 、脫氨酶 、低碳足跡 |
| 外文關鍵詞: | Synthetic biology, T7 RNA polymerase, cadaverine, 5-aminolevulinic acid, itaconic acid, carbonic anhydrase, CRISPRi, directed evolution, deaminase, low carbon footprint |
| 相關次數: | 點閱:105 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著合成生物學的進展,生物系統的謎團逐漸被揭露,將焦點從系統生物學的反向工程轉向了合成生物學的正向工程。作為一門跨領域的學科融合了生物學、工程學和電腦科學等多學科領域,通過從頭設計合成基因迴路與生物系統已成為一種手段來解決現實世界的挑戰。將合成生物學應用於微生物細胞工廠的發展,為革新基因調控系統和代謝途徑建立了途徑,以實現最佳化生物化學品生產。蛋白質進化透過反覆突變循環對提高酶活性、穩定性與耐受性發揮著至關重要的作用。通過蛋白質工程與合成生物學相結合,我們有望建立永續的生物製造系統。本論文旨在建立蛋白質的調控系統和定向進化系統,應用於低碳足跡化學品生產。
高效率基因調控和編輯工具的需求顯著推動了基因工程的進展。在這些工具中,噬菌體衍生的T7 RNA聚合酶 (T7RNAP) 及其相應T7啟動子的發現已被認定為重要里程碑之一。T7RNAP的量控制了正交轉錄效率,以達到充分的蛋白質產量。在這項研究中,將三種不同啟動子驅動的T7RNAP模組整合至耐受性菌株大腸桿菌W3110的基因組中,從具有或不具有lacI/lacO調控的目標質粒中評估正交效應。通過誘導表達的菌株W3110::L5在具有lacI/lacO調控的pET載體中實現了82.5%的戊二胺產率,而持續型表達的菌株W3110::pI在不含有lacI/lacO調控的pSU載體中達到了100%的戊二胺產率,超過了商業菌株BL21(DE3)。為了進一步提高戊二胺的產量,利用CRISPR干擾技術下調代謝戊二胺的途徑,獲得了26個基因工程菌株,能在不產生生長負擔的情況下進行代謝調控。除了體內代謝生產,亦於W3110中構建了由J23100啟動子驅動的CadA持續型表達基因迴路。無需誘導的JW生物催化劑在全細胞生物轉化中表現出卓越的性能,以2.5 M L-離胺酸為底物的反應中,可達到2.16 M 的戊二胺產量,為86%的產率。持續型生物催化劑呈現出高量表達、穩定性和可重複使用性,成為有潛力的戊二胺生產菌株。
除了啟動子調控對於蛋白表現的影響,基因在特定染色體位點的整合亦顯著影響遺傳表現,然而整合位點對於代謝通量的影響仍不清楚。因此,基於W3110::L5中T7RNAP基因迴路的設計,我們利用 5-氨基酮戊酸 (5-ALA) 的生產作為示範,研究染色體位點對基因調控和代謝通量的影響。受到lac operon和轉錄環境的影響,不同位點所轉錄的T7RNAP mRNA量與目標蛋白表達量呈正相關。為達成低碳足跡生產,建立了RuBisCO途徑達表達 1,5-二磷酸核酮糖羧化酶/加氧酶 (RuBisCO) 及磷酸核酮激酶 (PRK),並通過同位素進行代謝通量分析。由C13同位素分析顯示,RSSH菌株更傾向於將添加的底物甘氨酸轉化為生物量,於30小時產生5.79 g/L總生物量。RSSL菌株透過同化CO2達到生物量增量,並從葡萄糖中獲得更高的代謝甘氨酸(C12-甘氨酸),在30小時內分別達到3.75 g/L的生物量和7.01 g/L 的5-ALA。透過依序優化TCA通量和去除醋酸累積,工程菌株RSSLD可生產9.23 g/L 5-ALA,並達成最少CO2釋放量為2.32 g-CO2/g-DCW。推測此菌株差異性來自於所整合的基因間接影響位點附近基因的表現,導致代謝行為的不同。這項研究揭示了不同位點的整合基因會影響局部基因的表現,甚至是不同菌株的代謝行為。
酶的特性在化學品生產中有著不可或缺的作用。定向進化是改善酶性能的一種方法。在本論文中,利用了菌株MutaT7含有整合於基因組中融合於T7RNAP上游的脫氨酶作為基因編輯器,進行體內靶點專一性編輯,我們開發了基於生長依賴之整合型篩選平臺DEPEND-2.0,藉由下調內生必須基因碳酸酐酶 (CA) 對生長的影響,進行來自Mesorhizobium loti的CA (MlCA) 基因突變,結果發現一個P105S點突變導致結構崩塌,造成酶活性完全喪失。考慮到體內突變效率低的限制,改以退化密碼子設計T7啟動子序列,改變T7RNAP與其同源T7啟動子的結合效率,通過流式細胞儀進行sfgfp基因突變株的螢光分布來展示這一概念。另外,我們以順式檸檬酸脫羧酶 (CadA) 的突變進行功能驗證,利用衣康酸生物感測器進行篩選。針對T7啟動子序列之上游 (U)、中游 (C) 和下游 (D) 的三個區域設計退化引子而產生不同強度分布的啟動子,經篩選出強 (S)、中 (M) 及弱 (W) 共9種的螢光分布,進而以dT7啟動子反向設計克隆於CadA下游進行基因突變而不干擾蛋白表達,利用流式細胞儀進行分選,其中以改變T7下游序列的強啟動子DS設計,在sfGFP和CadA的進化提供了一致的螢光分佈,揭示了改變T7啟動子作為調控突變效率的可行方向。
本文闡釋經由染色體不同位點整合T7RNAP,及其啟動子的調控,可實現菌株中蛋白生產及代謝流的調節,結合固碳途徑的建立,可達成低碳排的化學品生產。另一方面,通過改變T7RNAP與T7啟動子間的結合親和力,可調控基於脫氨酶-T7RNAP之定向進化平台的突變效率。綜合應用T7 RNA聚合酶不止於基因表達,更是介導的基因調控和蛋白定向進化的強大工具,可實現低碳排、環保且具經濟效應的永續生物質化學品生產。
With the advance in synthetic biology, the enigma of biological system has gradually been revealed, shifting the focus from reverse engineering of system biology to forward engineering of synthetic biology. As a multidisciplinary field embracing biology, engineering and computer science, the de novo design of synthesizing genetic circuits and biological systems has emerged as a means to tackle the real-world challenges. Applying the synthetic biology into the development of microbial cell factory establishes the avenues to revolutionize gene regulation systems and metabolic pathways achieving optimal biochemical productivity. Protein evolution plays a pivotal role in enhancing the enzymes activity, stability and tolerance through iterative mutagenesis cycles. By coupling the protein engineering with synthetic biology, we hold the promise of building up a sustainable biomanufacturing system. The objective of this dissertation aims to establish protein regulation system and directed evolution system for low-carbon footprint chemical production.
The demands for efficient genetic regulation and editing tools have significantly propelled the progress of genetic engineering. Among these tools, the discovery of the phage-derived T7 RNA polymerase (T7RNAP) and its corresponding T7 promoter has been recognized as a major milestone. The level of T7RNAP controlled the orthogonal transcription efficiency for adequate protein production. In this study, three different promoter-driven T7RNAP cassettes were integrated onto the chromosome of the stress-tolerant Escherichia coli W3110. The orthogonal effect was evaluated from the target plasmids with or without lacI/lacO regulation. The inducible-expression strain W3110::L5 achieved a cadaverine (DAP) yield of 82.5% using the pET backbone with lacI/lacO regulation, while the constitutive-expression strain W3110::pI attained a DAP yield of 100% using the pSU plasmid without lacI/lacO regulation, surpassing that of the commercial BL21(DE3). To further enhance the DAP titer, the DAP catabolism was downregulated using CRISPRi, resulting in 26 genetic strains exhibited metabolic regulation without a growth burden. Apart from the in vivo metabolic production, the constitutive J23100-driven CadA expression circuit was constructed in the W3110. The inducer-free JW biocatalyst demonstrated remarkable performance in whole cell biotransformation, achieving a 2.16 M DAP titer with 86% yield from 2.5 M L-lysine as substrate. The biocatalyst presented high-level constitutive expression, stability and reusability, as a promising strain for DAP production.
In addition to the effect of promoter tuning on protein expression, the integration of genes at specific chromosome loci significantly influences the genetic performance, however, the impact of chromosomal loci on the metabolic flux remained unclear. Thus, upon the genetic design of T7RNAP in W3110::L5, we further investigated the effect of chromosomal loci on the gene regulation and the metabolic control using the 5-aminolevulinic acid (5-ALA) production as demonstration. The mRNA levels of transcribed T7RNAP at different loci exhibited a positive correlation with the gene expression levels, which were affected by the lac operon and transcriptional environment. To reach the low-carbon footprint production, the RuBisCO pathway was established by overexpression of 1,5-bisphosphate ribulose carboxylase/oxygenase (RuBisCO) and phosphorribulose kinase (PRK) and examined the metabolic flux by isotope. The C13 isotope analysis revealed the strain RSSH tend to convert the supplemented precursor glycine into the biomass with 5.79 g/L at 30 h. The strain RSSL reached biomass increment from assimilated CO2 and obtained higher metabolic glycine (C12-glycine) from glucose, achieving 3.75 g/L of biomass and 7.01 g/L of 5-ALA at 30 h, respectively. Through sequentially optimization of TCA flux and bypass the acetate accumulation, the engineered strain RSSLD produced 9.23 g/L of 5-ALA achieving minimum CO2 releasing of 2.32 g-CO2/g-DCW. It is speculated that the different strain behaviors came from the integrated gene indirectly affecting the expression of genes near the locus, resulting in varying metabolic behaviors. This study unveiled the integrated genes at different loci affect the local gene performance and even the metabolic behavior of different strains.
The enzyme properties play the dispensable role in the chemicals production. Diverted evolution is an approach for improving the enzyme performance. Herein, we utilized strain MutaT7, which equipped with a deaminase fusing in the upstream of T7RNAP in the chromosome as genetic editor conducting the in vivo target specific editing. We developed a growth-dependent integrated screening platform DEPEND-2.0 down-regulating essential carbonic anhydrase (CA) to influence the cell growth. Applying to evolving the CA from Mesorhizobium loti (MlCA) resulting in a mutation at P105S led to a loss of enzyme activity due to the structural collapse. Concerning with the limitation of low mutation efficiency from in vivo mutagenesis, our focus shifted towards altering the binding efficiency of T7RNAP on its cognate T7 promoter through degenerated codon design of the T7 promoter sequence. We demonstrated the proof-of-concept using the distribution of sfgfp mutation which was screened by the flow cytometry. On the other hand, we conducted the proof-of-function mutagenesis of cis-aconitate decarboxylase (CadA) which was screened by the itaconic acid biosensor. Three regions of degenerated design in the upstream (U), central (C) and downstream (D) on T7 promoter sequence generate strong (S), medium (M) and weak (W) fluorescence intensity, totaling nine combinations. For the evolution of CadA, we applied the reverse dT7 promoter sequence in the downstream of CadA without disrupting the protein expression. From the screening by flow cytometry, the strong promoter DS from the downstream region of T7 promoter provided the consistent broad fluorescence distribution of sfGFP and CadA evolution revealing the feasibility of altering the T7 promoter as a viable direction for regulating mutation efficiency.
In conclusion, through the integration of T7RNAP at different chromosomal loci and the promoter regulation achieving the tuning of protein production and metabolic flux in bacterial strains, combined with the establishment of carbon fixation pathways, enabling low-carbon emissions in chemicals production. On the other hand, by altering the binding affinity between T7RNAP and the T7 promoter, the mutation efficiency of deaminase-T7RNAP based directed evolution is tunable. Integrated application of T7 RNA polymerase is not only involved in gene regulation but also a powerful tool for mediating gene regulation and protein directed evolution realizing environmentally friendly, low-carbon emission, and economically viable sustainable bio-based chemicals production.
1. Ahmad, H., & Saleemuddin, M. Bromophenol blue protein assay: Improvement in buffer tolerance and adaptation for the measurement of proteolytic activity. Journal of Biochemical and Biophysical Methods, 7(4), 335-343, 1983.
2. Alvizo, O., Nguyen, L. J., Savile, C. K., Bresson, J. A., Lakhapatri, S. L., Solis, E. O., Fox, R. J., Broering, J. M., Benoit, M. R., Zimmerman, S. A., Novick, S. J., Liang, J., & Lalonde, J. J. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. Proceedings of the National Academy of Sciences, 111(46), 16436-16441, 2014.
3. Andon, J. S., Lee, B., & Wang, T. Enzyme directed evolution using genetically encodable biosensors. Organic & Biomolecular Chemistry, 20(30), 5891-5906, 2022.
4. Antonovsky, N., Gleizer, S., & Milo, R. Engineering carbon fixation in E. coli: from heterologous RuBisCO expression to the Calvin–Benson–Bassham cycle. Current Opinion in Biotechnology, 47, 83-91, 2017.
5. Antonovsky, N., Gleizer, S., Noor, E., Zohar, Y., Herz, E., Barenholz, U., Zelcbuch, L., Amram, S., Wides, A., Tepper, N., David, D., Bar-On, Y., Bareia, T., Wernick, D. G., Shani, I., Malitsky, S., Jona, G., Bar-Even, A., & Milo, R. Sugar synthesis from CO2 in Escherichia coli. Cell, 166(1), 115-125, 2016.
6. Arnold, F. H. Directed evolution: bringing new chemistry to life. Angewandte Chemie International Edition, 57(16), 4143-4148, 2018.
7. Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., & Liao, J. C. Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering, 10(6), 305-311, 2008.
8. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., & Mori, H. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Molecular Systems Biology, 2(1), 2006-0008, 2006.
9. Badger, M. R., & Bek, E. J. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. Journal of Experimental Botany, 59(7), 1525-1541, 2008.
10. Bafana, R., & Pandey, R. A. New approaches for itaconic acid production: bottlenecks and possible remedies. Critical Reviews in Biotechnology, 2018, 38(1), 68-82.
11. Balzer, G .J., Thakker, C., Bennett, G. N., & San, K. Y. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD+-dependent formate dehydrogenase. Metabolic Engineering, 20, 1-8, 2013.
12. Bandwar, R. P., Jia, Y., Stano, N. M., & Patel, S. S. Kinetic and thermodynamic basis of promoter strength: multiple steps of transcription initiation by T7 RNA polymerase are modulated by the promoter sequence. Biochemistry, 41(11), 3586-3595, 2002.
13. Baneyx, F., & Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22(11), 1399-1408, 2004.
14. Banno, S., Nishida, K., Arazoe, T., Mitsunobu, H., & Kondo, A. Deaminase-mediated multiplex genome editing in Escherichia coli. Nature Microbiology, 3(4), 423-429, 2018.
15. Barnard, G. C., Henderson, G. E., Srinivasan, S., & Gerngross, T. U. High level recombinant protein expression in Ralstonia eutropha using T7 RNA polymerase based amplification. Protein Expression and Purification, 38(2), 264-271, 2004.
16. Bashir, S., Iqbal, M., Sadaf, S., & Akhtar, M. W. Synonymous codon changes at the 5′-end of the gene strongly impact the heterologous protein expression in Escherichia coli. Applied Biochemistry and Microbiology, 53, 296-303, 2017.
17. Bechara, E. J., Ramos, L. D., & Stevani, C. V. 5-Aminolevulinic acid: A matter of life and caveats. Journal of Photochemistry and Photobiology, 7, 100036, 2021.
18. Bentele, K., Saffert, P., Rauscher, R., Ignatova, Z., & Blüthgen, N. Efficient translation initiation dictates codon usage at gene start. Molecular Systems Biology, 9(1), 675, 2013.
19. Berens, C., & Suess, B. Riboswitch engineering—making the all-important second and third steps. Current Opinion in Biotechnology, 31, 10-15, 2015.
20. Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Applied and Environmental Microbiology, 77(6), 1925-1936, 2011.
21. Bernal, C., Rodriguez, K., & Martinez, R. Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts. Biotechnology Advances, 36(5), 1470-1480, 2018.
22. Bittker, J. A., Le, B. V., Liu, J. M., & Liu, D. R. Directed evolution of protein enzymes using nonhomologous random recombination. Proceedings of the National Academy of Sciences, 101(18), 7011-7016, 2004.
23. Block, D. H., Hussein, R., Liang, L. W., & Lim, H. N. Regulatory consequences of gene translocation in bacteria. Nucleic Acids Research, 40(18), 8979-8992, 2012.
24. Blount, Z. D. The Natural History of Model Organisms: The unexhausted potential of E. coli. eLife, 4, e05826, 2015.
25. Bond, G. M., Stringer, J., Brandvold, D. K., Simsek, F. A., Medina, M. G., & Egeland, G. Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energy & Fuels, 15(2), 309-316, 2001.
26. Boock, J. T., King, B. C., Taw, M. N., Conrado, R. J., Siu, K. H., Stark, J. C., Walker, L. P., Gibson, D. M., & DeLisa, M. P. Repurposing a bacterial quality control mechanism to enhance enzyme production in living cells. Journal of Molecular Biology, 427(6), 1451-1463, 2015.
27. Borkotoky, S., & Murali, A. The highly efficient T7 RNA polymerase: a wonder macromolecule in biological realm. International Journal of Biological Macromolecules, 118, 49-56, 2018.
28. Bose, H., & Satyanarayana, T. Microbial carbonic anhydrases in biomimetic carbon sequestration for mitigating global warming: prospects and perspectives. Frontiers in Microbiology, 8, 1615, 2017.
29. Bozell, J. J., & Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12(4), 539-554, 2010.
30. Brooks, S. M., & Alper, H. S. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nature Communication, 12(1), 1390, 2021
31. Buschke, N., Becker, J., Schäfer, R., Kiefer, P., Biedendieck, R., & Wittmann, C. Systems metabolic engineering of xylose‐utilizing Corynebacterium glutamicum for production of 1, 5‐diaminopentane. Biotechnology Journal, 8(5), 557-570, 2013.
32. Bryant, J. A., Sellars, L. E., Busby, S. J., & Lee, D. J. Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Research, 42(18), 11383-11392, 2014.
33. Cai, Z., Liu, G., Zhang, J., & Li, Y. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein & Cell, 5(7), 552-562, 2014.
34. Cai, Z., Mei, S., Lu, Y., He, Y., Pi, P., Cheng, J., .Qian, X., & Wen, X. Thermal properties and crystallite morphology of nylon 66 modified with a novel biphenyl aromatic liquid crystalline epoxy resin. International Journal of Molecular Sciences, 14(10), 20682-20691, 2013.
35. Cameron, D. E., Bashor, C. J., & Collins, J. J. A brief history of synthetic biology. Nature Reviews Microbiology, 12(5), 381-390, 2014.
36. Chamberlin, M., Mcgrath, J.,& Waskell, L. New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature, 228, 227-231, 1970.
37. Chang, P., Chen, G. S., Chu, H. Y., Lu, K. W., & Shen, C. R. Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. Journal of Biotechnology, 249, 73-81, 2017.
38. Chao, Y. P., & Liao, J. C. Alteration of growth yield by overexpression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in Escherichia coli. Applied and Environmental Microbiology, 59(12), 4261-4265, 1993.
39. Chapman, J., Ismail, A. E., & Dinu, C. Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 8(6), 238, 2018.
40. Chen, D., Xu, S., Li, S., Tao, S., Li, L., Chen, S., & Wu, L. Directly evolved AlkS-based biosensor platform for monitoring and high-throughput screening of alkane production. ACS Synthetic Biology, 12(3), 832-841, 2023.
41. Chen, H., Liu, S., Padula, S., Lesman, D., Griswold, K., Lin, A., Zhao, T., Marshall, J., & Chen, F. Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nature Biotechnology, 38(2), 165-168, 2020a.
42. Chen, J., Wang, Y., Guo, X., Rao, D., Zhou, W., Zheng, P., Sun, J., & Ma, Y. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnology for Biofuels, 13(1), 1-13, 2020b.
43. Chen, P. T., Chiang, C. J., Wang, J. Y., Lee, M. Z., & Chao, Y. P. Genomic engineering of Escherichia coli for production of intermediate metabolites in the aromatic pathway. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 34-40, 2011.
44. Chen, P. T., Chiang, C. J., Chen, Y. T., Lin, H. C., Liu, C. H., Chao, Y. P., & Shaw, J. F. Strategy for stable and high-level expression of recombinant trehalose synthase in Escherichia coli. Journal of Agricultural and Food Chemistry, 60(23), 6063-6068, 2012.
45. Cheong, D. E., Ko, K. C., Han, Y., Jeon, H. G., Sung, B. H., Kim, G. J., Choi, J. H., & Song, J. J. Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5'coding region. Biotechnology and Bioengineering, 112(4), 822-826, 2015.
46. Cho, S., Shin, J., & Cho, B. K. Applications of CRISPR/Cas system to bacterial metabolic engineering. International Journal of Molecular Sciences, 19(4), 1089, 2018.
47. Choi, J. M., Han, S. S., & Kim, H. S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, 33(7), 1443-1454, 2015.
48. Chou, C., Young, D. D., & Deiters, A. Photocaged t7 RNA polymerase for the light activation of transcription and gene function in pro‐and eukaryotic cells. ChemBioChem, 11(7), 972-977, 2010.
49. Chung, H., Yang, J. E., Ha, J. Y., Chae, T. U., Shin, J. H., Gustavsson, M., & Lee, S. Y. Bio-based production of monomers and polymers by metabolically engineered microorganisms. Current Opinion in Biotechnology, 36, 73-84, 2015.
50. Chung, M. E., Yeh, I. H., Sung, L. Y., Wu, M. Y., Chao, Y. P., Ng, I. S., & Hu, Y. C. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnology and Bioengineering, 114(1), 172-183, 2016.
51. Christodoulou, D., Link, H., Fuhrer, T., Kochanowski, K., Gerosa, L., & Sauer, U. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli's rapid response to oxidative stress. Cell Systems, 6(5), 569-578, 2018.
52. Coco, W. M., Levinson, W. E., Crist, M. J., Hektor, H. J., Darzins, A., Pienkos, P. T., Squires, C. H., & Monticello, D. J. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nature Biotechnology, 19(4), 354-359, 2001.
53. Conrad, T., Plumbom, I., Alcobendas, M., Vidal, R., & Sauer, S. Maximizing transcription of nucleic acids with efficient T7 promoters. Communications Biology, 3(1), 439, 2020.
54. Cranenburgh, R. M., Lewis, K. S., & Hanak, J. A. Efect of plasmid copy number and lac operator sequence on antibiotic-free plasmid selection by operator-repressor titration in Escherichia coli. Microbial Physiology, 7(4), 197-203, 2004.
55. Cravens, A., Jamil, O. K., Kong, D., Sockolosky, J. T., & Smolke, C. D. Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nature Communications, 12(1), 1579, 2021.
56. Crook, N., Abatemarco, J., Sun, J., Wagner, J. M., Schmitz, A., & Alper, H. S. In vivo continuous evolution of genes and pathways in yeast. Nature Communications, 7(1), 13051, 2016.
57. Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. WebLogo: a sequence logo generator. Genome Research, 14(6), 1188-1190, 2004.
58. Cui, Z., Jiang, Z., Zhang, J., Zheng, H., Jiang, X., Gong, K., Liang, Q., Wang, Q., & Qi, Q. Stable and efficient biosynthesis of 5-aminolevulinic acid using plasmid-free Escherichia coli. Journal of Agricultural and Food Chemistry, 67(5), 1478-1483, 2019.
59. DaRocha, W. D., Otsu, K., Teixeira, S. M., & Donelson, J. E. Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 133(2), 175-186, 2004.
60. Datsenko, K. A., & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Science, 97(12), 6640-6645, 2000.
61. Datta, S., Costantino, N., & Court, D. L. A set of recombineering plasmids for gram-negative bacteria. Gene, 379, 109-115, 2006.
62. DelaVega, A. L., & Delcour, A. H. Cadaverine induces closing of E. coli porins. The EMBO Journal, 14(23), 6058-6065, 1995.
63. Deng, J., Gao, H., Gao, Z., Zhao, H., Yang, Y., Wu, Q., Wu, B., & Jiang, C. Identification and molecular characterization of a metagenome-derived L-lysine decarboxylase gene from subtropical soil microorganisms. PLoS One, 12(9), e0185060, 2017.
64. Diankristanti, P. A., Effendi, S. S. W., Hsiang, C. C., & Ng, I. S. High-level itaconic acid (IA) production using engineered Escherichia coli Lemo21 (DE3) toward sustainable biorefinery. Enzyme and Microbial Technology, 167, 110231, 2023.
65. Ding, N., Yuan, Z., Zhang, X., Chen, J., Zhou, S., & Deng, Y. Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor. Nucleic Acids Research, 48(18), 10602-10613, 2020a.
66. Ding, N., Zhou, S., & Deng, Y. Transcription-factor-based biosensor engineering for applications in synthetic biology. ACS Synthetic Biology, 10(5), 911-922, 2021.
67. Ding, W., Weng, H., Du, G., Chen, J., & Kang, Z. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 44(8), 1127-1135, 2017.
68. Ding, W., Zhang, Y., & Shi, S. Development and application of CRISPR/Cas in microbial biotechnology. Frontiers in Bioengineering and Biotechnology, 8, 711, 2020b.
69. Dittrich, C. R., Vadali, R. V., Bennett, G. N., & San, K. Y. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA‐pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnology Progress, 21(2), 627-631, 2005.
70. Dong, X., Chen, X., Qian, Y., Wang, Y., Wang, L., & Qiao, W., Liu, L. Metabolic engineering of Escherichia coli W3110 to produce L-malate. Biotechnology and Bioengineering, 114(3), 656-664, 2017.
71. Du, F. L., Yu, H. L., Xu, J. H., & Li, C. X. Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresources and Bioprocessing, 1(1), 1-10, 2014.
72. Easmin, F., Hassan, N., Sasano, Y., Ekino, K., Taguchi, H., & Harashima, S. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing. Journal of Bioscience and Bioengineering, 128(3), 373-378, 2019.
73. Effendi, S. S. W., Chiu, C. Y., Chang, Y. K., & Ng, I. S. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration. International Journal of Biological Macromolecules, 152, 930-938, 2020.
74. Effendi, S. S. W., Lin, J. Y., & Ng, I. S. Simultaneous carbon dioxide sequestration and utilization for cadaverine production using dual promoters in engineered Escherichia coli strains. Bioresource Technology, 363, 127980, 2022.
75. Effendi, S. S. W., Tan, S. I., Ting, W. W., & Ng, I. S. Genetic design of co-expressed Mesorhizobium loti carbonic anhydrase and chaperone GroELS to enhancing carbon dioxide sequestration. International Journal of Biological Macromolecules, 167, 326-334, 2021.
76. Elf, J., Li, G.W., & Xie, X. S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316(5828), 1191-1194, 2007.
77. Ellington, A. D., & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287), 818-822. 1990.
78. Englaender, J. A., Jones, J. A., Cress, B. F., Kuhlman, T. E., Linhardt, R. J., & Koffas, M. A. Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli. ACS Synthetic Biology, 6(4), 710-720, 2017.
79. Eom, G. E., Lee, H., & Kim, S. Development of a genome-targeting mutator for the adaptive evolution of microbial cells. Nucleic Acids Research, 50(7), e38-e38, 2022.
80. Esvelt, K. M., Carlson, J. C., & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature, 472(7344), 499-503, 2011.
81. Feng, L., Zhang, Y., Fu, J., Mao, Y., Chen, T., Zhao, X., & Wang, Z. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5‐aminolevulinic acid. Biotechnology and Bioengineering, 113(6), 1284-1293, 2016.
82. Flachbart, L. K., Sokolowsky, S., & Marienhagen, J. Displaced by deceivers: prevention of biosensor cross-talk is pivotal for successful biosensor-based high-throughput screening campaigns. ACS Synthetic Biology, 8(8), 1847-1857, 2019.
83. Fujii, R., Kitaoka, M., & Hayashi, K. One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Research, 32(19), e145-e145, 2004.
84. Fujii, R., Kitaoka, M., & Hayashi, K. Error-prone rolling circle amplification: the simplest random mutagenesis protocol. Nature Protocols, 1(5), 2493-2497, 2006.
85. Gaj, T., Gersbach, C. A., & Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397-405, 2013.
86. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339-342, 2000.
87. Gargiulo, S., & Soumillion, P. Directed evolution for enzyme development in biocatalysis. Current Opinion in Chemical Engineering, 61, 107-113, 2021.
88. Gao, C., Wang, S., Hu, G., Guo, L., Chen, X., Xu, P., & Liu, L. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi‐guided multiplexed metabolic tuning. Biotechnology and Bioengineering, 115(3), 661-672, 2018.
89. Gao, J., Du, M., Zhao, J., Xu, N., Du, H., Ju, J., Wei, L., & Liu, J. Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction. Metabolic Engineering, 73, 144-157, 2022.
90. Gleizer, S., Ben-Nissan, R., Bar-On, Y. M., Antonovsky, N., Noor, E., Zohar, Y., Jona, G., Krieger, E., Shamshoum, M., Bar-Even, A., & Milo, R. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell, 179(6), 1255-1263, 2019.
91. Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K., & Riggs, A. D. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proceedings of the National Academy of Sciences, 76(1), 106-110, 1979.
92. Gong, F., Liu, G., Zhai, X., Zhou, J., Cai, Z., & Li, Y. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotechnology for Biofuels, 8, 1-10, 2015.
93. Gong, X., Zhang, R., Wang, J., & Yan, Y. Engineering of a TrpR-based biosensor for altered dynamic range and ligand preference. ACS Synthetic Biology, 11(6), 2175-2183, 2022.
94. Goodman, D. B., Church, G. M., & Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science, 342(6157), 475-479, 2013.
95. Goormans, A. R., Snoeck, N., Decadt, H., Vermeulen, K., Peters, G., Coussement, P., Herpec, D. V., Beauprez, J. J., Maeseneirea, S. L. D., & Soetaert, W. K. Comprehensive study on Escherichia coli genomic expression: does position really matter? Metabolic Engineering, 62, 10-19, 2020.
96. Greener, A., Callahan, M., & Jerpseth, B. An efficient random mutagenesis technique using an E. coli mutator strain. Molecular Biotechnology, 7, 189-195, 1997.
97. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., & Hofacker, I. L. The vienna RNA websuite. Nucleic Acids Research, 36(suppl_2), W70-W74, 2008.
98. Guillerez, J., Lopez, P. J., Proux, F., Launay, H., & Dreyfus, M. A mutation in T7 RNA polymerase that facilitates promoter clearance. Proceedings of the National Academy of Sciences, 102(17), 5958-5963, 2005.
99. Gupta, P., Mahlawat, P., & Deep, S. Effect of disease-linked mutations on the structure, function, stability and aggregation of human carbonic anhydrase II. International Journal of Biological Macromolecules, 143, 472-482, 2020.
100. Gurdo, N., Volke, D. C., McCloskey, D., & Nikel, P. I. Automating the design-build-test-learn cycle towards next-generation bacterial cell factories. New Biotechnology, 74, 1-15, 2023.
101. Haldimann, A., & Wanner, B. L. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. Journal of Bacteriology, 183(21), 6384-6393, 2001.
102. Halperin, S. O., Tou, C. J., Wong, E. B., Modavi, C., Schaffer, D. V., & Dueber, J. E. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature, 560(7717), 248-252, 2018.
103. Haneburger, I., Fritz, G., Jurkschat, N., Tetsch, L., Eichinger, A., Skerra, A., Gerland, U., & Jung, K. Deactivation of the E. coli pH stress sensor CadC by cadaverine. Journal of Molecular Biology, 424(1-2), 15-27, 2012.
104. Harder, B. J., Bettenbrock, K., & Klamt, S. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metabolic Engineering, 38, 29-37, 2016.
105. Harder, B. J., Bettenbrock, K., & Klamt, S. Temperature‐dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnology and Bioengineering, 115(1), 156-164, 2018.
106. Heo, M. J., Jung, H. M., Um, J., Lee, S. W., & Oh, M. K. Controlling citrate synthase expression by CRISPR/Cas9 genome editing for n-butanol production in Escherichia coli. ACS Synthetic Biology, 6(2), 182-189, 2017.
107. Hevekerl, A., Kuenz, A., & Vorlop, K. D. Influence of the pH on the itaconic acid production with Aspergillus terreus. Applied Microbiology and Biotechnology, 98(24), 10005-10012, 2014.
108. Heyland, J., Blank, L. M., & Schmid, A. Quantification of metabolic limitations during recombinant protein production in Escherichia coli. Journal of Biotechnology, 155(2), 178-184, 2011.
109. Ho, J. M., Miller, C. A., Smith, K. A., Mattia, J. R., & Bennett, M. R. Improved pyrrolysine biosynthesis through phage assisted non-continuous directed evolution of the complete pathway. Nature Communications, 12(1), 3914, 2021.
110. Hsiang, C. C., Diankristanti, P. A., Tan, S. I., Ke, Y. C., Chen, Y. C., Effendi, S. S. W., & Ng, I. S. Tailoring key enzymes for renewable and high-level itaconic acid production using genetic Escherichia coli via whole-cell bioconversion. Enzyme and Microbial Technology, 160, 110087, 2022.
111. Hsiang, C. C., Tan, S. I., Chen, Y. C., & Ng, I. S. Genetic design of co-expressing a novel aconitase with cis-aconitate decarboxylase and chaperone GroELS for high-level itaconic acid production. Process Biochemistry, 129, 133-139, 2023.
112. Hsu, K. P., Tan, S. I., Chiu, C. Y., Chang, Y. K., & Ng, I. S. ARduino-pH Tracker and screening platform for characterization of recombinant carbonic anhydrase in Escherichia coli. Biotechnology Progress, 35(5), e2834, 2019.
113. Hu, G., Li, Z., Ma, D., Ye, C., Zhang, L., Gao, C., Liu, L., & Chen, X. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nature Catalysis, 4(5), 395-406, 2021.
114. Hu, G., Zhou, J., Chen, X., Qian, Y., Gao, C., Guo, L., Xu, P., Chen, W., Chen, J., Li, Y., & Liu, L. Engineering synergetic CO2-fixing pathways for malate production. Metabolic Engineering, 47, 496-504, 2018.
115. Huang, C. J., Lin, H., & Yang, X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. Journal of Industrial Microbiology and Biotechnology, 39(3), 383-399, 2012.
116. Huang, C. Y., Ting, W. W., Chen, Y. C., Wu, P. Y., Dong, C. D., Huang, S. F., Lin, H. Y., Li, S. F., Ng, I. S., & Chang, J. S. Facilitating the enzymatic conversion of lysine to cadaverine in engineered Escherichia coli with metabolic regulation by genes deletion. Biochemical Engineering Journal, 156, 107514, 2020.
117. Huang, J. F., Liu, Z. Q., Jin, L. Q., Tang, X. L., Shen, Z. Y., Yin, H. H., & Zheng, Y. G. Metabolic engineering of Escherichia coli for microbial production of L-methionine. Biotechnology and Bioengineering, 114(4), 843-851, 2017.
118. Huang, Y., Ji, X., Ma, Z., Łężyk, M., Xue, Y., & Zhao, H. Green chemical and biological synthesis of cadaverine: recent development and challenges. RSC Advances, 11(39), 23922-23942, 2021.
119. Hudson, G. S., Morell, M. K., Arvidsson, Y. B. C., & Andrews, T. J. Synthesis of spinach phosphoribulokinase and ribulose 1, 5-bisphosphate in Escherichia coli. Functional Plant Biology, 19(3), 213-221, 1992.
120. Humphrey, W., Dalke, A., & Schulten, K. VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38, 1996.
121. Hunziker, J., Nishida, K., Kondo, A., Kishimoto, S., Ariizumi, T., & Ezura, H. Multiple gene substitution by Target-AID base-editing technology in tomato. Scientific Reports, 10(1), 20471, 2020.
122. Ikeda, R. A., & Richardson, C. C. Interactions of the RNA polymerase of bacteriophage T7 with its promoter during binding and initiation of transcription. Proceedings of the National Academy of Sciences, 83(11), 3614-3618, 1986.
123. Iost, I. S. A. B. E. L. L. E., Guillerez, J. E. A. N., & Dreyfus, M. A. R. C. Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo. Journal of Bacteriology, 174(2), 619-622, 1992.
124. Jancewicz, A. L., Gibbs, N. M., & Masson, P. H. Cadaverine’s functional role in plant development and environmental response. Frontiers in Plant Science, 7, 870, 2016.
125. Jensen, E. D., Ambri, F., Bendtsen, M. B., Javanpour, A. A., Liu, C. C., Jensen, M. K., & Keasling, J. D. Integrating continuous hypermutation with high‐throughput screening for optimization of cis, cis‐muconic acid production in yeast. Microbial Biotechnology, 14(6), 2617-2626, 2021.
126. Jeon, H. G., Cheong, D. E., Han, Y., Song, J. J., & Choi, J. H. Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon‐substituted 5’‐coding region variant of the cadA gene. Biotechnology and Bioengineering, 113(7), 1504-1510, 2016.
127. Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marrafni, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3), 233-239, 2013.
128. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821, 2012.
129. Jo, B. H., Im, S. K., & Cha, H. J. Halotolerant carbonic anhydrase with unusual N-terminal extension from marine Hydrogenovibrio marinus as novel biocatalyst for carbon sequestration under high-salt environments. Journal of CO2 Utilization, 26, 415-424, 2018.
130. Jo, B. H., Moon, H., & Cha, H. J. Engineering the genetic components of a whole‐cell catalyst for improved enzymatic CO2 capture and utilization. Biotechnology and Bioengineering, 117(1), 39-48, 2020.
131. Jo, M., Noh, M. H., Lim, H. G., Kang, C. W., Im, D. K., Oh, M. K., & Jung, G. Y. Precise tuning of the glyoxylate cycle in Escherichia coli for efcient tyrosine production from acetate. Microbial Cell Factories, 18, 1-9, 2019.
132. Joseph, T. M., Unni, A. B., Joshy, K. S., Kar Mahapatra, D., Haponiuk, J., & Thomas, S. Emerging bio-based polymers from lab to market: current strategies, market dynamics and research trends. C, 9(1), 30, 2023.
133. Kalloniati, C., Tsikou, D., Lampiri, V., Fotelli, M. N., Rennenberg, H., Chatzipavlidis, I., Fasseas, C., Katinakis, P., & Flemetakis, E. Characterization of a Mesorhizobium loti α-type carbonic anhydrase and its role in symbiotic nitrogen fixation. Journal of Bacteriology, 191(8), 2593-2600, 2009.
134. Kanamasa, S., Dwiarti, L., Okabe, M., & Park, E. Y. Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Applied Microbiology and Biotechnology, 80, 223-229, 2008.
135. Kang, D., Kim, Y., & Cha, H. Comparison of green fluorescent protein expression in two industrial Escherichia coli strains, BL21 and W3110, under co-expression of bacterial hemoglobin. Applied Microbiology and Biotechnology, 59, 523-528, 2002.
136. Kang, Y., Son, M. S., & Hoang, T. T. One step engineering of T7-expression strains for protein production: increasing the host-range of the T7-expression system. Protein Expression and Purification, 55(2), 325-333, 2007.
137. Kang, Z., Wang, Y., Gu, P., Wang, Q., & Qi, Q. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metabolic Engineering, 13(5), 492-498, 2011.
138. Kanjee, U., & Houry, W. A. Mechanisms of acid resistance in Escherichia coli. Annual Review of Microbiology, 67, 65-81, 2013.
139. Kartje, Z. J., Janis, H. I., Mukhopadhyay, S., & Gagnon, K. T. Revisiting T7 RNA polymerase transcription in vitro with the Broccoli RNA aptamer as a simplified real-time fluorescent reporter. Journal of Biological Chemistry, 296. 2021.
140. Katzke, N., Arvani, S., Bergmann, R., Circolone, F., Markert, A., Svensson, V., Jaeger, K. E., Heck, A., & Drepper, T. A novel T7 RNA polymerase dependent expression system for high-level protein production in the phototrophic bacterium Rhodobacter capsulatus. Protein Expression and Purification, 69(2), 137-146, 2010.
141. Kaushik, M., Sinha, P., Jaiswal, P., Mahendru, S., Roy, K., & Kukreti, S. Protein engineering and de novo designing of a biocatalyst. Journal of Molecular Recognition, 29(10), 499-503, 2016.
142. Kawaguchi, H., Ogino, C., & Kondo, A. Microbial conversion of biomass into bio-based polymers. Bioresource Technology, 245, 1664-1673, 2017.
143. Kean, K. M., Porter, J. J., Mehl, R. A., & Karplus, P. A. Structural insights into a thermostable variant of human carbonic anhydrase II. Protein Science, 27(2), 573-577, 2018.
144. Keasling, J. D. Synthetic biology for synthetic chemistry. ACS Chemical Biology, 3(1), 64-76, 2008.
145. Kelly, J. R., Rubin, A. J., Davis, J. H., Ajo-Franklin, C. M., Cumbers, J., Czar, M. J., Mora, K. d., Glieberman, A. L, Monie, D. D, & Endy, D. Measuring the activity of BioBrick promoters using an in vivo reference standard. Journal of Medical and Biological Engineering, Journal of biological engineering, 3(1), 1-13.
146. Kennedy, J., Pottier, R. H., & Pross, D. C. Photodynamic therapy with endogenous protoporphyrin: IX: basic principles and present clinical experience. Journal of Photochemistry and Photobiology B: Biology, 6(1-2), 143-148, 1990.
147. Kikuchi, Y., Kojima, H., Tanaka, T., Takatsuka, Y., & Kamio, Y. Characterization of a second lysine decarboxylase isolated from Escherichia coli. Journal of Bacteriology, 179(14), 4486-4492, 1997.
148. Kim, H. J., Kim, Y. H., Shin, J. H., Bhatia, S. K., Sathiyanarayanan, G., Seo, H. M., Choi, K. Y., Yang, Y. H. & Park, K. Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. Journal of Microbiology and Biotechnology, 25(7), 1108-1113, 2015a.
149. Kim, H. J., Kwon, Y. D., Lee, S. Y., & Kim, P. An engineered Escherichia coli having a high intracellular level of ATP and enhanced recombinant protein production. Applied Microbiology and Biotechnology, 94(4), 1079-1086, 2012.
150. Kim, H. T., Baritugo, K. A., Oh, Y. H., Hyun, S. M., Khang, T. U., Kang, K. H., Jung, S. H., Song, B. K., Park, K., Kim, I., Lee, M. O., Kam, Y., Hwang, Y. T., Park, S. J., & Joo, J. C. Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustainable Chemistry & Engineering, 6(4), 5296-5305, 2018.
151. Kim, J., Seo, H. M., Bhatia, S. K., Song, H. S., Kim, J. H., Jeon, J. M., Kim, Y. G., & Yang, Y. H. Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Scientific Reports, 7(1), 1-9, 2017a.
152. Kim, J. H., Kim, J., Kim, H. J., Sathiyanarayanan, G., Bhatia, S. K., Song, H. S., Choi, Y. K., Kim, Y. G., Park, K., & Yang, Y. H. Biotransformation of pyridoxal 5′-phosphate from pyridoxal by pyridoxal kinase (pdxY) to support cadaverine production in Escherichia coli. Enzyme and Microbial Technology, 104, 9-15, 2017b.
153. Kim, S. K., Seong, W., Han, G. H., Lee, D. H., & Lee, S. G. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microbial Cell Factories, 16, 1-15, 2017c.
154. Kim, Y. H., Kim, H. J., Shin, J. H., Bhatia, S. K., Seo, H. M., Kim, Y. G., Lee, Y. K., Yang, Y. H., & Park, K. Application of diethyl ethoxymethylenemalonate (DEEMM) derivatization for monitoring of lysine decarboxylase activity. Journal of Molecular Catalysis B: Enzymatic, 115, 151-154, 2015b.
155. Kind, S., Jeong, W. K., Schröder, H., & Wittmann, C. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metabolic Engineering, 12(4), 341-351, 2010.
156. Kind, S., Neubauer, S., Becker, J., Yamamoto, M., Völkert, M., von Abendroth, G., Zelder, O., & Wittmann, C. From zero to hero–production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering, 25, 113-123, 2014.
157. Kind, S., & Wittmann, C. Bio-based production of the platform chemical 1, 5-diaminopentane. Applied Microbiology and Biotechnology, 91, 1287-1296, 2011.
158. Koonin, E. V., Makarova, K. S., & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67-78, 2017.
159. Kortmann, M., Kuhl, V., Klaffl, S., & Bott, M. A chromosomally encoded T7 RNA polymerase‐dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single‐cell level. Microbial Biotechnology, 8(2), 253-265, 2015.
160. Krull, S., Hevekerl, A., Kuenz, A., & Prüße, U. Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Applied Microbiology and Biotechnology, 101(10), 4063-4072, 2017.
161. Kudla, G., Murray, A. W., Tollervey, D., & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science, 324(5924), 255-258, 2009.
162. Kuenz, A., & Krull, S. Biotechnological production of itaconic acid—things you have to know. Applied Microbiology and Biotechnology, 102(9), 3901-3914, 2018.
163. Kumar, J., Chauhan, A. S., Shah, R. L., Gupta, J. A., & Rathore, A. S. Amino acid supplementation for enhancing recombinant protein production in E. coli. Biotechnology and Bioengineering, 117(8), 2420-2433, 2020.
164. Kumar, R., DiMenna, L., Chaudhuri, J., & Evans, T. Biological function of activation-induced cytidine deaminase (AID). Biomedical Journal, 37(5), 2014.
165. Kurihara, S., Oda, S., Tsuboi, Y., Kim, H. G., Oshida, M., Kumagai, H., & Suzuki, H. γ-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12. Journal of Biological Chemistry, 283(29), 19981-19990, 2008.
166. Kuscu, C., Parlak, M., Tufan, T., Yang, J., Szlachta, K., Wei, X., Mammadov, R., & Adli, M. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nature Methods, 14(7), 710-712, 2017.
167. Kushwaha, M., & Salis, H. M. A portable expression resource for engineering cross-species genetic circuits and pathways. Nature Communications, 6(1), 7832, 2015.
168. Kwak, D. H., Lim, H. G., Yang, J., Seo, S. W., & Jung, G. Y. Synthetic redesign of Escherichia coli for cadaverine production from galactose. Biotechnology for Biofuels, 10, 1-9, 2017.
169. Kwon, K. K., Lee, D. H., Kim, S. J., Choi, S. L., Rha, E., Yeom, S. J., Subhadra, B., Lee, J., Jeong, K. J., & Lee, S. G. Evolution of enzymes with new specificity by high-throughput screening using DmpR-based genetic circuits and multiple flow cytometry rounds. Scientific Reports, 8(1), 2659, 2018.
170. Lan, Y. J., Tan, S. I., Cheng, S. Y., Ting, W. W., Xue, C., Lin, T. H., Cai, M. Z., Chen, P. T., & Ng, I. S. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system. Biochemical Engineering Journal, 168, 107952, 2021.
171. Lee, J. A., Ahn, J. H., Kim, I., Li, S., & Lee, S. Y. Synthesis, characterization, and application of fully biobased and biodegradable nylon-4, 4 and-5, 4. ACS Sustainable Chemistry & Engineering, 8(14), 5604-5614, 2020.
172. Lee, Y. J., Yi, Y. C., Lin, Y. C., Chen, C. C., Hung, J. H., Lin, J. Y., & Ng, I. S. Purification and biofabrication of 5-aminolevulinic acid for photodynamic therapy against pathogens and cancer cells. Bioresources and Bioprocessing, 9(1), 1-10, 2022.
173. Lemonnier, M., & Lane, D. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology, 144(3), 751-760, 1998.
174. Lenug, D. W. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique JMCMB, 1, 11-15, 1989.
175. Leong, Y. K., Chen, C. H., Huang, S. F., Lin, H. Y., Li, S. F., Ng, I. S., & Chang, J. S. High-level l-lysine bioconversion into cadaverine with enhanced productivity using engineered Escherichia coli whole-cell biocatalyst. Biochemical Engineering Journal, 157, 107547, 2020.
176. Li, C. X., Jiang, X. C., Qiu, Y. J., & Xu, J. H. Identification of a new thermostable and alkali-tolerant α-carbonic anhydrase from Lactobacillus delbrueckii as a biocatalyst for CO2 biomineralization. Bioresources and Bioprocessing, 2, 1-9, 2015.
177. Li, H., Wang, B., Zhu, L., Cheng, S., Li, Y., Zhang, L., Ding, Z. Y., Gu, Z. H., & Shi, G. Y. Metabolic engineering of Escherichia coli W3110 for L-homoserine production. Process Biochemistry, 51(12), 1973-1983, 2016.
178. Li, Y., & Cirino, P. C. Recent advances in engineering proteins for biocatalysis. Biotechnology and Bioengineering, 111(7), 1273-1287, 2014.
179. Li, Y. H., Ou-Yang, F. Y., Yang, C. H., & Li, S. Y. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation. Bioresource Technology, 187, 189-197, 2015.
180. Liang, B., Zhao, Y., & Yang, J. Recent advances in developing artificial autotrophic microorganism for reinforcing CO2 fixation. Frontiers in Microbiology, 11, 592631, 2020.
181. Liang, X., Li, C., Wang, W., & Li, Q. Integrating T7 RNA polymerase and its cognate transcriptional units for a host-independent and stable expression system in single plasmid. ACS Synthetic Biology, 7(5), 1424-1435, 2018.
182. Liao, H., McKenzie, T., & Hageman, R. Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proceedings of the National Academy of Sciences, 83(3), 576-580, 1986.
183. Liaw, S. H., Pan, C., & Eisenberg, D. Feedback inhibition of fully unadenylylated glutamine synthetase from Salmonella typhimurium by glycine, alanine, and serine. Proceedings of the National Academy of Sciences, 90(11), 4996-5000, 1993.
184. Lin‐Chao, S., Chen, W. T., & Wong, T. T. High copy number of the pUC plasmid results from a Rom/Rop‐suppressible point mutation in RNA II. Molecular Microbiology, 6(22), 3385-3393, 1992.
185. Liu, H., Sun, Y., Ramos, K. R. M., Nisola, G. M., Valdehuesa, K. N. G., Lee, W. K., Park, S. J., & Chung, W. J. Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli. PLoS One, 8(12), e83290, 2013.
186. Lin, W. R., Lai, Y. C., Sung, P. K., Tan, S. I., Chang, C. H., Chen, C. Y., Chang, J. S., & Ng, I. S. Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. Journal of the Taiwan Institute of Chemical Engineers, 93, 131-141, 2018.
187. Lin, Y. C., Xue, C., Tan, S. I., Ting, W. W., Yang, S. C., & Ng, I. S. Precise measurement of decarboxylase and applied cascade enzyme for simultaneous cadaverine production with carbon dioxide recovery. Journal of the Taiwan Institute of Chemical Engineers, 137, 104188, 2022.
188. Liu, B., Zhang, S., Wang, X., Yu, J., & Ding, B. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration. Journal of Colloid and Interface Science, 457, 203-211, 2015.
189. Liu, G., Lin, Q., Jin, S., & Gao, C. The CRISPR-Cas toolbox and gene editing technologies. Molecular Cell, 2022.
190. Liu, H., Song, R., Liang, Y., Zhang, T., Deng, L., Wang, F., & Tan, T. Genetic manipulation of Escherichia coli central carbon metabolism for efficient production of fumaric acid. Bioresource Technology, 270, 96-102, 2018a.
191. Liu, H., Valdehuesa, K. N.G., Nisola, G. M., Ramos, K. R. M., & Chung, W. J. High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli. Bioresource Technology, 115, 244-248, 2012.
192. Liu, R., Liang, L., Choudhury, A., Bassalo, M. C., Garst, A. D., Tarasava, K., & Gill, R. T. Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production. Metabolic Engineering, 47, 303-313, 2018b.
193. Liu, X., Silverman, A. D., Alam, K. K., Iverson, E., Lucks, J. B., Jewett, M. C., & Raman, S. Design of a transcriptional biosensor for the portable, on-demand detection of cyanuric acid. ACS Synthetic Biology, 9(1), 84-94, 2019.
194. Long, S., Liu, B., Gong, J., Wang, R., Gao, S., Zhu, T., Guo, H., Liu, T, & Xu, Y. 5-Aminolevulinic acid promotes low-light tolerance by regulating chloroplast ultrastructure, photosynthesis, and antioxidant capacity in tall fescue. Plant Physiology and Biochemistry, 190, 248-261, 2022.
195. Lössl, A., Bohmert, K., Harloff, H., Eibl, C., Mühlbauer, S., & Koop, H. U. Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant and Cell Physiology, 46(9), 1462-1471, 2005.
196. Lou, J. W., Zhu, L., Wu, M. B., Yang, L. R., Lin, J. P., & Cen, P. L. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. Journal of Zhejiang University-SCIENCE B, 15(5), 491-499, 2014.
197. Luo, Z., Pan, F., Zhu, Y., Du, S., Yan, Y., Wang, R., Li, S., & Xu, H. Synergistic improvement of 5-aminolevulinic acid production with synthetic scaffolds and system pathway engineering. ACS Synthetic Biology, 11(8), 2766-2778, 2022.
198. Lv, L., Ren, Y. L., Chen, J. C., Wu, Q., & Chen, G. Q. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P (3HB-co-4HB) biosynthesis. Metabolic Engineering, 29, 160-168, 2015.
199. Ma, W., Cao, W., Zhang, B., Chen, K., Liu, Q., Li, Y., & Ouyang, P. Engineering a pyridoxal 5’-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Scientific Reports, 5(1), 1-10, 2015a.
200. Ma, W., Cao, W., Zhang, H., Chen, K., Li, Y., & Ouyang, P. Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnology Letters, 37, 799-806, 2015b.
201. Ma, W., Chen, K., Li, Y., Hao, N., Wang, X., & Ouyang, P. Advances in cadaverine bacterial production and its applications. Engineering, 3(3), 308-317, 2017.
202. Ma, W., Liu, Y., Wang, Y., Lv, X., Li, J., Du, G., & Liu, L. Combinatorial fine‐tuning of GNA1 and GlmS expression by 5’‐terminus fusion engineering leads to overproduction of N‐acetylglucosamine in Bacillus subtilis. Biotechnology Journal, 14(3), 1800264, 2019.
203. Maassen, N., Panakova, M., Wierckx, N., Geiser, E., Zimmermann, M., Bölker, M., Klinner, U., & Blank, L. M. Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Engineering in Life Sciences, 14(2), 129-134, 2014.
204. Maheshwari, N., Kumar, M., Thakur, I. S., & Srivastava, S. Cloning, expression and characterization of β-and γ carbonic anhydrase from Bacillus sp. SS105 for biomimetic sequestration of CO2. International Journal of Biological Macromolecules, 131, 445-452, 2019.
205. Mannan, A. A., Liu, D., Zhang, F., & Oyarzún, D. A. Fundamental design principles for transcription-factor-based metabolite biosensors. ACS Synthetic Biology, 6(10), 1851-1859, 2017.
206. Martens, J. H., Barg, H., Warren, M. A., & Jahn, D. Microbial production of vitamin B 12. Applied Microbiology and Biotechnology, 58, 275-285, 2002.
207. Matsuura, R., Kishida, M., Konishi, R., Hirata, Y., Adachi, N., Segawa, S., Imao, K., Tanaka, T., & Kondo, A. Metabolic engineering to improve 1, 5‐diaminopentane production from cellobiose using β‐glucosidase‐secreting Corynebacterium glutamicum. Biotechnology and Bioengineering, 116(10), 2640-2651, 2019.
208. Maxel, S., Aspacio, D., King, E., Zhang, L., Acosta, A. P., & Li, H. A growth-based, high-throughput selection platform enables remodeling of 4-hydroxybenzoate hydroxylase active site. ACS Catalysis, 10(12), 6969-6974, 2020.
209. Maxel, S., Saleh, S., King, E., Aspacio, D., Zhang, L., Luo, R., & Li, H. Growth-based, high-throughput selection for NADH preference in an oxygen-dependent biocatalyst. ACS Synthetic Biology, 10(9), 2359-2370, 2021.
210. McCloskey, D., Xu, J., Schrübbers, L., Christensen, H. B., & Herrgård, M. J. RapidRIP quantifies the intracellular metabolome of 7 industrial strains of E. coli. Metabolic Engineering, 47, 383-392, 2018.
211. McCarty, N. S., & Ledesma-Amaro, R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends in Biotechnology, 37(2), 181-197, 2019.
212. McCutcheon, S. R., Chiu, K. L., Lewis, D. D., & Tan, C. CRISPR‐Cas expands dynamic range of gene expression from T7RNAP promoters. Biotechnology Journal, 13(5), 1700167, 2018.
213. Meng, F., & Ellis, T. The second decade of synthetic biology: 2010–2020. Nature Communications, 11(1), 5174, 2020.
214. Meng, Q., Zhang, Y., Ju, X., Ma, C., Ma, H., Chen, J., Zheng, P., Sun, J., Zhu, J., Ma, Y., Zhao, X., & Chen, T. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. Journal of Biotechnology, 226, 8-13, 2016.
215. Mengiste, A. A., Wilson, R. H., Weissman, R. F., Papa III, L. J., Hendel, S. J., Moore, C. L., Butty, V. L., & Shoulders, M. D. Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria. Nucleic Acids Research, 51(6), e31-e31, 2023.
216. Merlin, C., Masters, M., McAteer, S., & Coulson, A. Why is carbonic anhydrase essential to Escherichia coli?. Journal of Bacteriology, 185(21), 6415-6424, 2003.
217. Meyer, A. J., Ellefson, J. W., & Ellington, A. D. Directed evolution of a panel of orthogonal T7 RNA polymerase variants for in vivo or in vitro synthetic circuitry. ACS Synthetic Biology, 4(10), 1070-1076, 2015.
218. Mierendorf, R. C., Morris, B. B., Hammer, B., & Novy, R. E. Expression and purification of recombinant proteins using the pET system. Molecular Diagnosis of Infectious Diseases, 257-292, 1998.
219. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679-682, 2022.
220. Miscevic, D., Mao, J. Y., Kefale, T., Abedi, D., Moo‐Young, M., & Perry Chou, C. Strain engineering for high‐level 5‐aminolevulinic acid production in Escherichia coli. Biotechnology and Bioengineering, 118(1), 30-42, 2021.
221. Mojica, F. J., Díez‐Villaseñor, C., Soria, E., & Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 36(1), 244-246, 2000.
222. Mondal, M., Khanra, S., Tiwari, O. N., Gayen, K., & Halder, G. N. Role of carbonic anhydrase on the way to biological carbon capture through microalgae—a mini review. Environmental Progress & Sustainable Energy, 35(6), 1605-1615, 2016.
223. Moon, Y. M., Yang, S. Y., Choi, T. R., Jung, H. R., Song, H. S., hoon Han, Y., Park, H. Y., Bhatia, S. K., Gurav, R., Park, K., Kim, J. S., & Yang, Y. H. Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5’-phosphate and ATP. Enzyme and Microbial Technology, 127, 58-64, 2019.
224. Moore, C. L., Papa III, L. J., & Shoulders, M. D. A processive protein chimera introduces mutations across defined DNA regions in vivo. Journal of the American Chemical Society, 140(37), 11560-11564, 2018.
225. Mortazavi, M., Torkzadeh-Mahani, M., Rahimi, M., Maleki, M., Lotfi, S., & Riahi-Madvar, A. Effects of synonymous mutations on kinetic properties and structure of firefly luciferase: Molecular dynamics simulation, molecular docking, RNA folding, and experimental study. International Journal of Biological Macromolecules, 235, 123835, 2023.
226. Mueller-Cajar, O., & Whitney, S. M. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. Photosynthesis Research, 98, 667-675, 2008.
227. Murphy, K. C. Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. Journal of Bacteriology, 180(8), 2063-2071, 1998.
228. Nascimento, M. F., Marques, N., Correia, J., Faria, N. T., Mira, N. P., & Ferreira, F. C. Integrated perspective on microbe-based production of itaconic acid: From metabolic and strain engineering to upstream and downstream strategies. Process Biochemistry, 117, 53-67, 2022.
229. Ng, I. S., Chen, T., Lin, R., Zhang, X., Ni, C., & Shun, D. Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01. Applied Microbiology and Biotechnology, 98, 2297-2308, 2014.
230. Ng, I. S., Hung, Y. H., Kao, P. H., Zhou, Y., Zhang, X. CRISPR/Cas9 nuclease cleavage enables marker-free genome editing in Escherichia coli: A sequential study. Journal of the Taiwan Institute of Chemical Engineers, 68, 31-39, 2016.
231. Nielsen, A. A., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A., Ross, D., Densmore, D., & Voigt, C. A. Genetic circuit design automation. Science, 352(6281), aac7341, 2016.
232. Nielsen, J. Metabolic engineering. Applied Microbiology and Biotechnology, 55, 263-283, 2001.
233. Nishikubo, T., Nakagawa, N., Kuramitsu, S., & Masui, R. Improved heterologous gene expression in Escherichia coli by optimization of the AT-content of codons immediately downstream of the initiation codon. Journal of Biotechnology, 120(4), 341-346, 2005.
234. Noh, M. H., Lim, H. G., Park, S., Seo, S. W., & Jung, G. Y. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metabolic Engineering, 43, 1-8, 2017.
235. Noh, M. H., Lim, H. G., Woo, S. H., Song, J., & Jung, G. Y. Production of itaconic acid from acetate by engineering acid‐tolerant Escherichia coli W. Biotechnology and Bioengineering, 115(3), 729-738, 2018.
236. Noor, E., Eden, E., Milo, R., & Alon, U. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Molecular Cell, 39(5), 809-820, 2010.
237. Oh, M. K., & Liao, J. C. DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metabolic Engineering, 2(3), 201-209, 2000.
238. Oh, Y. H., Kang, K. H., Kwon, M. J., Choi, J. W., Joo, J. C., Lee, S. H., Yang, Y. H., Song, B. K., Kim, I. K., Yoon, K. H., Park, K., & Park, S. J. Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of l-lysine into cadaverine. Journal of Industrial Microbiology and Biotechnology, 42(11), 1481-1491, 2015.
239. Oliver, P., Peralta-Gil, M., Tabche, M. L., & Merino, E. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model. BMC Genomics, 17(1), 1-17, 2016.
240. Ogawa, Y., Katsuyama, Y., Ueno, K., & Ohnishi, Y. Switching the ligand specificity of the biosensor XylS from meta to para-toluic acid through directed evolution exploiting a dual selection system. ACS Synthetic Biology, 8(12), 2679-2689, 2019.
241. Park, H., & Kim, S. Gene-specific mutagenesis enables rapid continuous evolution of enzymes in vivo. Nucleic Acids Research, 49(6), e32-e32, 2021.
242. Parikh, M. R., Greene, D. N., Woods, K. K., & Matsumura, I. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli. Protein Engineering Design and Selection, 19(3), 113-119, 2006.
243. Parra-Cruz, R., Jäger, C. M., Lau, P. L., Gomes, R. L., & Pordea, A. Rational design of thermostable carbonic anhydrase mutants using molecular dynamics simulations. The Journal of Physical Chemistry B, 122(36), 8526-8536, 2018.
244. Pechmann, S., & Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nature Structural & Molecular Biology, 20(2), 237-243, 2013.
245. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802, 2005.
246. Porter, J. L., Rusli, R. A., & Ollis, D. L. Directed evolution of enzymes for industrial biocatalysis. ChemBioChem, 17(3), 197-203, 2016.
247. Pyne, M. E., Moo-Young, M., Chung, D. A., & Chou, C. P. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Applied and Environmental Microbiology, 81(15), 5103-5114, 2015.
248. Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173-1183, 2013.
249. Qian, Z. G., Xia, X. X., & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnology and Bioengineering, 104(4), 651-662, 2009.
250. Qian, Z. G., Xia, X. X., & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnology and Bioengineering, 108(1), 93-103, 2011.
251. Rameshkumar, S., Shaiju, P., & O’Connor, K. E. Bio-based and biodegradable polymers-State-of-the-art, challenges and emerging trends. Current Opinion in Green and Sustainable Chemistry, 21, 75-81, 2020.
252. Reitzer, L. Catabolism of amino acids and related compounds. EcoSal Plus, 1(2), 2005.
253. Rhodius, V. A., Mutalik, V. K., & Gross, C. A. Predicting the strength of UP-elements and full-length E. coli σE promoters. Nucleic Acids Research, 40(7), 2907-2924, 2012.
254. Richter, M. F., Zhao, K. T., Eton, E., Lapinaite, A., Newby, G. A., Thuronyi, B. W., Wilson, C., Koblan, L. W., Zeng, J., Bauer, D. E., Doudna, J. A., & Liu, D. R. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology, 38(7), 883-891, 2020.
255. Robert, T., & Friebel, S. Itaconic acid–a versatile building block for renewable polyesters with enhanced functionality. Green Chemistry, 18(10), 2922-2934, 2016.
256. Rong, M., He, B., McAllister, W. T., & Durbin, R. K. Promoter specificity determinants of T7 RNA polymerase. Proceedings of the National Academy of Sciences, 95(2), 515-519, 1998.
257. Romanienko, P. J., Giacalone, J., Ingenito, J., Wang, Y., Isaka, M., Johnson, T., Yun, Y., & Mark, W. H. A vector with a single promoter for in vitro transcription and mammalian cell expression of CRISPR gRNAs. PloS One, 11(2), e0148362, 2016.
258. Rong, M., He, B., McAllister, W. T., & Durbin, R. K. Promoter specificity determinants of T7 RNA polymerase. Proceedings of the National Academy of Sciences, 95(2), 515-519, 1998.
259. Rosano, G. L., & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172, 2014.
260. Rosenberg, A. H., Lade, B. N., Dao-shan, C., Lin, S. W., Dunn, J. J., & Studier, F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene, 56(1), 125-135, 1987.
261. Rui, J., You, S., Zheng, Y., Wang, C., Gao, Y., Zhang, W., Qi, W., Su, R., & He, Z. High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a Lysine-induced engineered Escherichia coli. Bioresource Technology, 302, 122844, 2020.
262. Sabo, D. L., Boeker, E. A., Byers, B., Waron, H., & Fischer, E. H. Purification and physical properties of inducible Escherichia coli lysine decarboxylase. Biochemistry, 13(4), 662-670, 1974.
263. Sharma, A., Gupta, G., Ahmad, T., Mansoor, S., & Kaur, B. Enzyme engineering: current trends and future perspectives. Food Reviews International, 37(2), 121-154, 2021.
264. Salter, J. D., Bennett, R. P., & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends in Biochemical Sciences, 41(7), 578-594, 2016.
265. Samsonova, N. N., Smirnov, S. V., Altman, I. B., & Ptitsyn, L. R. Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiology, 3, 1-10, 2003.
266. Sánchez-Pascuala, A., de Lorenzo, V., & Nikel, P. I. Refactoring the Embden–Meyerhof–Parnas pathway as a whole of portable GlucoBricks for implantation of glycolytic modules in Gram-negative bacteria. ACS Synthetic Biology, 6(5), 793-805, 2017.
267. Sasikaran, J., Ziemski, M., Zadora, P. K., Fleig, A., & Berg, I. A. Bacterial itaconate degradation promotes pathogenicity. Nature Chemical Biology, 10(5), 371-377, 2014.
268. Sasaki, K., Watanabe, M., & Tanaka, T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 58(1), 23-29, 2002.
269. Schaerli, Y., Gili, M., & Isalan, M. A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Research, 42(19), 12322-12328, 2014.
270. Schenborn, E. T., & Mierendorf Jr, R. C. A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Research, 13(17), 6223-6236, 1985.
271. Schiroli, D., & Peracchi, A. A subfamily of PLP-dependent enzymes specialized in handling terminal amines. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1854(9), 1200-1211, 2015.
272. Schmidt‐Dannert, C., & Lopez‐Gallego, F. A roadmap for biocatalysis–functional and spatial orchestration of enzyme cascades. Microbial Biotechnology, 9(5), 601-609, 2016.
273. Schuller, A., Cserjan-Puschmann, M., Tauer, C., Jarmer, J., Wagenknecht, M., Rei‑Nisch, D., Grabherr, R., & Striedner, G. Escherichia coli σ 70 promoters allow expression rate control at the cellular level in genome-integrated expression systems. Microbial Cell Factories, 19, 1-11, 2020.
274. Scholz, S. A., Diao, R., Wolfe, M. B., Fivenson, E. M., Lin, X. N., & Freddolino, P. L. High-resolution mapping of the Escherichia coli chromosome reveals positions of high and low transcription. Cell Systems, 8(3), 212-225, 2019.
275. Segall‐Shapiro, T. H., Meyer, A. J., Ellington, A. D., Sontag, E. D., & Voigt, C. A. A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase. Molecular Systems Biology, 10(7), 742, 2014.
276. Selifonova, O., Valle, F., & Schellenberger, V. Rapid evolution of novel traits in microorganisms. Applied and Environmental Microbiology, 67(8), 3645-3649, 2001.
277. Seo, D., Eom, G. E., Kim, H. W., & Kim, S. A dual gene-specific mutator system installs all transition mutations at similar rates in vivo. bioRxiv, 2022-06, 2022.
278. Seo, D., Koh, B., Eom, G. E., Kim, H. W., & Kim, S. A dual gene-specific mutator system installs all transition mutations at similar frequencies in vivo. Nucleic Acids Research, gkad266, 2023.
279. Seok, J. Y., Yang, J., Choi, S. J., Lim, H. G., Choi, U. J., Kim, K. J., Park, S., Yoo, T. H., & Jung, G. Y. Directed evolution of the 3-hydroxypropionic acid production pathway by engineering aldehyde dehydrogenase using a synthetic selection device. Metabolic Engineering, 47, 113-120, 2018.
280. Sgobba, E., Stumpf, A. K., Vortmann, M., Jagmann, N., Krehenbrink, M., Dirks-Hofmeister, M. E., Moerschbacher, B., Philipp, B., & Wendisch, V. F. Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose. Bioresource Technology, 260, 302-310, 2018.
281. Silva, F., Queiroz, J. A., & Domingues, F. C. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnology Advances, 30(3), 691-708, 2012.
282. Shen, W., Wang, D., Ye, B., Shi, M., Ma, L., Zhang, Y., & Zhao, Z. GC3-biased gene domains in mammalian genomes. Bioinformatics, 31(19), 3081-3084, 2015.
283. Shen, X., Wang, J., Li, C., Yuan, Q., & Yan, Y. Dynamic gene expression engineering as a tool in pathway engineering. Current Opinion in Biotechnology, 59, 122-129, 2019.
284. Shih, I. T., Yi, Y. C., & Ng, I. S. Plasmid-Free System and modular design for efficient 5-aminolevulinic acid production by engineered Escherichia coli. Applied Biochemistry and Biotechnology, 193(9), 2858-2871, 2021.
285. Shis, D. L., & Bennett, M. R. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proceedings of the National Academy of Sciences, 110(13), 5028-5033, 2013.
286. Shis, D. L., & Bennett, M. R. Synthetic biology: the many facets of T7 RNA polymerase, 2014.
287. Soma, Y., Yamaji, T., Matsuda, F., & Hanai, T. Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli. Journal of Bioscience and Bioengineering, 123(5), 625-633, 2017.
288. Song, C. W., & Lee, S. Y. Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid. Applied Microbiology and Biotechnology, 99, 8455-8464, 2015.
289. Sorensen, M. A., & Pedersen, S. Cysteine, even in low concentrations, induces transient amino acid starvation in Escherichia coli. Journal of Bacteriology, 173(16), 5244-5246, 1991.
290. Sousa, C., de Lorenzo, V., & Cebolla, A. Modulation of gene expression through chromosomal positioning in Escherichia coli. Microbiology, 143(6), 2071-2078, 1997.
291. Sousa, R., & Mukherjee, S. T7 RNA polymerase. Progress in Nucleic Acid Research and Molecular Biology, 1-41, 2003.
292. Stephens, K., & Bentley, W. E. Synthetic biology for manipulating quorum sensing in microbial consortia. Trends in Microbiology, 28(8), 633-643, 2020.
293. Stemmer, W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proceedings of the National Academy of Sciences, 91(22), 10747-10751, 1994.
294. St-Pierre, F., Cui, L., Priest, D. G., Endy, D., Dodd, I. B., & Shearwin, K. E. One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology, 2(9), 537-541, 2013.
295. Studier, F. W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. Journal of Molecular Biology, 219(1), 37-44, 1991.
296. Studier, F. W., & Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology, 189(1), 113-130, 1986.
297. Su, T., Guo, Q., Zheng, Y., Liang, Q., Wang, Q., & Qi, Q. Fine-tuning of hemB using CRISPRi for increasing 5-aminolevulinic acid production in Escherichia coli. Frontiers in Microbiology, 10, 1731, 2019.
298. Sugawara, A., Matsui, D., Takahashi, N., Yamada, M., Asano, Y., & Isobe, K. Characterization of a pyridoxal-5′-phosphate-dependent l-lysine decarboxylase/oxidase from Burkholderia sp. AIU 395. Journal of Bioscience and Bioengineering, 118(5), 496-501, 2014.
299. Sun, W., Vila-Santa, A., Liu, N., Prozorov, T., Xie, D., Faria, N. T., Mira, N. P., & Shao, Z. Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Metabolic Engineering Communications, 10, e00124, 2020.
300. Sundara Sekar, B., Seol, E., & Park, S. Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd). Biotechnology for Biofuels, 10(1), 1-12, 2017.
301. Sung, L. Y., Wu, M. Y., Lin, M. W., Hsu, M. N., Truong, V. A., Shen, C. C., Tu, Y., Hwang, K. Y., Tu, A. P., Chang, Y. H., & Hu, Y. C. Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli. Biotechnology and Bioengineering, 116(5), 1066-1079, 2019.
302. Tan, J., Sastry, A. V., Fremming, K. S., Bjørn, S. P., Hoffmeyer, A., Seo, S., Voldborg, B. G., & Palsson, B. O. Independent component analysis of E. coli's transcriptome reveals the cellular processes that respond to heterologous gene expression. Metabolic Engineering, 61, 360-368, 2020.
303. Tan, S. I., Hsiang, C. C., & Ng, I. S. Tailoring genetic elements of the plasmid-driven T7 system for stable and robust one-step cloning and protein expression in broad Escherichia coli. ACS Synthetic Biology, 10(10), 2753-2762, 2021.
304. Tan, S. I., & Ng, I. S. Design and optimization of bioreactor to boost carbon dioxide assimilation in RuBisCo-equipped Escherichia coli. Bioresource Technology, 314, 123785, 2020a.
305. Tan, S. I., & Ng, I. S. New insight into plasmid-driven T7 RNA polymerase (PDT7) in Escherichia coli and use as a genetic amplifier for a biosensor. ACS Synthetic Biology, 9(3), 613-622, 2020b.
306. Tan, S. I., & Ng, I. S. Stepwise optimization of genetic RuBisCO-equipped Escherichia coli for low carbon-footprint protein and chemical production. Green Chemistry, 23(13), 4800-4813, 2021.
307. Tan, S. I., Ng, I. S., Yu, Y. J. Heterologous expression of an acidophilic multicopper oxidase in Escherichia coli and its applications in biorecovery of gold. Bioresources and Bioprocessing, 4(1), 1-10, 2017.
308. Tan, S. I., Yu, P. J., & Ng, I. S. CRISPRi‐mediated programming essential gene can as a Direct Enzymatic Performance Evaluation & Determination (DEPEND) system. Biotechnology and Bioengineering, 117(9), 2842-2851, 2020c.
309. Tang, R. Q., Wagner, J. M., Alper, H. S., Zhao, X. Q., & Bai, F. W. Design, evolution, and characterization of a xylose biosensor in Escherichia coli using the XylR/xylO system with an expanded operating range. ACS Synthetic Biology, 9(10), 2714-2722, 2020.
310. Taylor, N. D., Garruss, A. S., Moretti, R., Chan, S., Arbing, M. A., Cascio, D., Rogers, J. K., Isaacs, F. J., Kosuri, S., Baker, D., Fields, S., Church, G. M., & Raman, S. Engineering an allosteric transcription factor to respond to new ligands. Nature Methods, 13(2), 177-183, 2016.
311. Teleky, B. E., & Vodnar, D. C. Recent advances in biotechnological itaconic acid production, and application for a sustainable approach. Polymers, 13(20), 3574, 2021.
312. Terpe, K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72, 211-222, 2006.
313. Tian, T., Kang, J. W., Kang, A., & Lee, T. S. Redirecting metabolic flux via combinatorial multiplex CRISPRi-mediated repression for isopentenol production in Escherichia coli. ACS Synthetic Biology, 8(2), 391-402, 2019.
314. Ting, W. W., Effendi, S. S. W., Hu, R. E., & Ng, I. S. Directed evolution of Mesorhizobium loti carbonic anhydrase for carbon dioxide sequestration by MutaT7 and rational codon design. Journal of the Taiwan Institute of Chemical Engineers, 150, 105065, 2023.
315. Ting, W. W., Huang, C. Y., Wu, P. Y., Huang, S. F., Lin, H. Y., Li, S. F., Chang, J. S., & Ng, I. S. Whole-cell biocatalyst for cadaverine production using stable, constitutive and high expression of lysine decarboxylase in recombinant Escherichia coli W3110. Enzyme and Microbial Technology, 148, 109811, 2021.
316. Ting, W. W., & Ng, I. S. Effective 5‐aminolevulinic acid production via T7 RNA polymerase and RuBisCO equipped Escherichia coli W3110. Biotechnology and Bioengineering, 120(2), 583-592, 2023.
317. Ting, W. W., & Ng, I. S. Metabolic manipulation through CRISPRi and gene deletion to enhance cadaverine production in Escherichia coli. Journal of Bioscience and Bioengineering, 130(6), 553-562, 2020a.
318. Ting, W. W., & Ng, I. S. Tunable T7 promoter orthogonality on T7RNAP for cis-aconitate decarboxylase rvolution via base editor and screening from itaconic acid biosensor. ACS Synthetic Biology, 12(10), 3020-3029, 2023.
319. Ting, W. W., Tan, S. I., & Ng, I. S. Development of chromosome-based T7 RNA polymerase and orthogonal T7 promoter circuit in Escherichia coli W3110 as a cell factory. Bioresources and Bioprocessing, 7, 1-13, 2020b.
320. Ting, W. W., Yu, J. Y., Lin, Y. C., & Ng, I. S. Enhanced recombinant carbonic anhydrase in T7RNAP-equipped Escherichia coli W3110 for carbon capture storage and utilization (CCSU). Bioresource Technology, 363, 128010, 2022.
321. Trivedi, V. D., Mohan, K., Chappell, T. C., Mays, Z. J., & Nair, N. U. Cheating the cheater: Suppressing false-positive enrichment during biosensor-guided biocatalyst engineering. ACS Synthetic Biology, 11(1), 420-429, 2021.
322. Troeschel, S. C., Thies, S., Link, O., Real, C. I., Knops, K., Wilhelm, S., Rosenau, F., & Jaeger, K. E. Novel broad host range shuttle vectors for expression in Escherichia coli, Bacillus subtilis and Pseudomonas putida. Journal of Biotechnology, 161(2), 71-79, 2012.
323. Tseng, I. T., Chen, Y. L., Chen, C. H., Shen, Z. X., Yang, C. H., & Li, S. Y. Exceeding the theoretical fermentation yield in mixotrophic Rubisco-based engineered Escherichia coli. Metabolic Engineering, 47, 445-452, 2018.
324. Tsuge, Y., Kawaguchi, H., Sasaki, K., & Kondo, A. Engineering cell factories for producing building block chemicals for bio-polymer synthesis. Microbial Cell Factories, 15(1), 19, 2016.
325. Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., Pan, T., Dahan, O., Furman, I., & Pilpel, Y. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell, 141(2), 344-354, 2010.
326. Tuller, T., & Zur, H. Multiple roles of the coding sequence 5′ end in gene expression regulation. Nucleic Acids Research, 43(1), 13-28, 2015.
327. Valens, M., Penaud, S., Rossignol, M., Cornet, F., & Boccard, F. Macrodomain organization of the Escherichia coli chromosome. The EMBO Journal, 23(21), 4330-4341, 2004.
328. Veit, A., Polen, T., & Wendisch, V. F. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Applied Microbiology and Biotechnology, 74(2), 406-421, 2007.
329. Vuoristo, K. S., Mars, A. E., Sanders, J. P., Eggink, G., & Weusthuis, R. A. Metabolic engineering of TCA cycle for production of chemicals. Trends in Biotechnology, 34(3), 191-197, 2016.
330. Vuoristo, K. S., Mars, A. E., Sangra, J. V., Springer, J., Eggink, G., Sanders, J. P., & Weusthuis, R. A. Metabolic engineering of itaconate production in Escherichia coli. Applied Microbiology and Biotechnology, 99, 221-228, 2015.
331. Wachtmeister, J., & Rother, D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Current Opinion in Biotechnology, 42, 169-177, 2016.
332. Wang, C., Zhang, W., Tian, R., Zhang, J., Zhang, L., Deng, Z., Lv, X., Li, J., Liu, L., Du, G., & Liu, Y. Model‐driven design of synthetic N‐terminal coding sequences for regulating gene expression in yeast and bacteria. Biotechnology Journal, 17(5), 2100655, 2022.
333. Wang, H. H., Isaacs, F. J., Carr, P. A., Sun, Z. Z., Xu, G., Forest, C. R., & Church, G. M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460(7257), 894-898, 2009.
334. Wang, J., Mao, J., Tian, W., Wei, G., Xu, S., Ma, W., Chen, K., Jiang, M., & Ouyang, P. Coproduction of succinic acid and cadaverine using lysine as a neutralizer and CO2 donor with L-lysine decarboxylase overexpressed Escherichia coli AFP111. Green Chemistry, 20(12), 2880-2887, 2018a.
335. Wang, J., Lu, X., Ying, H., Ma, W., Xu, S., Wang, X. & Ouyang, P.: A novel process for cadaverine bio-production using a consortium of two engineered Escherichia coli. Frontiers in Microbiology, 9, 1312, 2018b.
336. Wang, W., Li, Y., Wang, Y., Shi, C., Li, C., Li, Q., & Linhardt, R. J. Bacteriophage T7 transcription system: an enabling tool in synthetic biology. Biotechnology Advances, 36(8), 2129-2137, 2018c.
337. Wang, X., Wang, Y., Liu, J., Li, Q., Zhang, Z., Zheng, P., Lu, F., & Sun, J. Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway. Bioresources and Bioprocessing, 4, 1-6, 2017.
338. Wang, Y., Li, Q., Zheng, P., Guo, Y., Wang, L., Zhang, T., Sun, J., & Ma, Y. Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. Journal of Industrial Microbiology and Biotechnology, 43(9), 1227-1235, 2016a.
339. Wang, Y., Xue, P., Cao, M., Yu, T., Lane, S. T., & Zhao, H. Directed evolution: methodologies and applications. Chemical Reviews, 121(20), 12384-12444, 2021.
340. Wang, Q., Tang, S. Y., & Yang, S. Genetic biosensors for small-molecule products: Design and applications in high-throughput screening. Frontiers of Chemical Science and Engineering, 11, 15-26, 2017.
341. Wang, Z., & Cirino, P. C. New and improved tools and methods for enhanced biosynthesis of natural products in microorganisms. Current Opinion in Biotechnology, 42, 159-168, 2016b.
342. Wein, T., Hülter, N. F., Mizrahi, I., & Dagan, T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nature Communications, 10(1), 2595, 2019.
343. Wein, T., Wang, Y., Hülter, N. F., Hammerschmidt, K., & Dagan, T. Antibiotics interfere with the evolution of plasmid stability. Current Biology, 30(19), 3841-3847, 2020
344. Wells, J. M., Wilson, P. W., Norton, P. M., Gasson, M. J., & Le Page, R. W. Lactococcus lactis: high‐level expression of tetanus toxin fragment C and protection against lethal challenge. Molecular Microbiology, 8(6), 1155-1162, 1993.
345. Wolf, J., Gerber, A. P., & Keller, W. tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. The EMBO Journal, 21(14), 3841-3851, 2002.
346. Wu, G., Yan, Q., Jones, J. A., Tang, Y. J., Fong, S. S., & Koffas, M. A. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends in Biotechnology, 34(8), 652-664, 2016.
347. Wu, H., Fan, Z., Jiang, X., Chen, J., & Chen, G. Q. Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microbial Cell Factories, 15(1), 1-13, 2016.
348. Xia, J., Wang, L., Zhu, J. B., Sun, C. J., Zheng, M. G., Zheng, L., Lou, Y. H., & Shi, L. Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/cas9-coupled lambda Red recombineering. Biotechnology Letters, 38, 117-122, 2016.
349. Xu, S., Zhang, L., Zhou, S., & Deng, Y. Biosensor-based multigene pathway optimization for enhancing the production of glycolate. Applied and Environmental Microbiology, 87(12), e00113-21, 2021.
350. Xue, C., Hsu, K. M., Ting, W. W., Huang, S. F., Lin, H. Y., Li, S. F., Chang, J. S., & Ng, I. S. Efficient biotransformation of L-lysine into cadaverine by strengthening pyridoxal 5’-phosphate-dependent proteins in Escherichia coli with cold shock treatment. Biochemical Engineering Journal, 161, 107659, 2020.
351. Xue, C., Yi, Y. C., & Ng, I. S. Migration of glutamate decarboxylase by cold treatment on whole-cell biocatalyst triggered activity for 4-aminobutyric acid production in engineering Escherichia coli. International Journal of Biological Macromolecules, 190, 113-119, 2021a.
352. Xue, C., Yu, T. H., & Ng, I. S. Engineering pyridoxal kinase PdxY-integrated Escherichia coli strain and optimization for high-level 5-aminolevulinic acid production. Journal of the Taiwan Institute of Chemical Engineers, 120, 49-58, 2021b.
353. Yamamoto, Y., Miwa, Y., Miyoshi, K., Furuyama, J. I., & Ohmori, H. The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes & Genetic Systems, 72(3), 167-172, 1997.
354. Yang, C. H., Liu, E. J., Chen, Y. L., Ou-Yang, F. Y., & Li, S. Y. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli. Microbial Cell Factories, 15(1), 1-10, 2016a.
355. Yang, D., Park, S. Y., Park, Y. S., Eun, H., & Lee, S. Y. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends in Biotechnology, 38(7), 745-765, 2020.
356. Yang, P., Liu, W., Cheng, X., Wang, J., Wang, Q., & Qi, Q. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Applied and Environmental Microbiology, 82(9), 2709-2717, 2016b.
357. Yang, S., Kim, S., Kim, D. K., An, H. J., Son, J. B., Gynna, A. H., & Lee, N. K. Transcription and translation contribute to gene locus relocation to the nucleoid periphery in E. coli. Nature Communications, 10(1), 5131, 2019.
358. Yang, Z., Wang, H., Wang, Y., Ren, Y., & Wei, D. Manufacturing multienzymatic complex reactors in vivo by self-assembly to improve the biosynthesis of itaconic acid in Escherichia coli. ACS Synthetic Biology, 7(5), 1244-1250, 2018.
359. Yeom, S. J., Kwon, K. K., An, J. U., Park, S. H., Lee, J. Y., Rha, E., Lee, H., Kim, H., Lee, D. H., & Lee, S. G. Single-cell-based screening and engineering of D-amino acid amidohydrolases using artificial amidophenol substrates and microbial biosensors. Journal of Agricultural and Food Chemistry, 70(4), 1203-1211, 2022.
360. Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., Khandurina, J. Trawick, J. D., Osterhout, R. E., Stephen, R., Estadilla, J., Teisan, S., Schreyer, H. B., Andrae, S., Yang, T. H., Lee, S. Y., Burk, M. J., & Van Dien, S. Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nature Chemical Biology, 7(7), 445-452, 2011.
361. Yi, Y. C., & Ng, I. S. Establishment of toolkit and T7RNA polymerase/promoter system in Shewanella oneidensis MR-1. Journal of the Taiwan Institute of Chemical Engineers, 109, 8-14, 2020.
362. Yi, Y. C., Xue, C., & Ng, I. S. Low-carbon-footprint production of high-end 5-aminolevulinic acid via integrative strain engineering and rubisco-equipped Escherichia coli. ACS Sustainable Chemistry & Engineering, 9(46), 15623-15633, 2021.
363. Yin, X., Li, J., Shin, H. D., Du, G., Liu, L., & Chen, J. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnology Advances, 33(6), 830-841, 2015.
364. Yoon, S. H., Han, M. J., Jeong, H., Lee, C. H., Xia, X. X., Lee, D. H., Shim, J. H., Lee, S. Y., & Kim, J. F. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biology, 13, 1-13. 2012.
365. Yoon, T., Shin, J., Choi, H. J., & Park, K. S. Split T7 promoter-based isothermal transcription amplification for one-step fluorescence detection of SARS-CoV-2 and emerging variants. Biosensors and Bioelectronics, 208, 114221, 2022.
366. You, S. K., Ko, Y. J., Shin, S. K., Hwang, D. H., Kang, D. H., Park, H. M., & Han, S. O. Enhanced CO2 fixation and lipid production of Chlorella vulgaris through the carbonic anhydrase complex. Bioresource Technology, 318, 124072, 2020.
367. Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., & Copeland, N. G. An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences, 97(11), 5978-5983, 2000.
368. Yu, T. H., Tan, S. I., Yi, Y. C., Xue, C., Ting, W. W., Chang, J. J., & Ng, I. S. New insight into the codon usage and medium optimization toward stable and high-level 5-aminolevulinic acid production in Escherichia coli. Biochemical Engineering Journal, 177, 108259, 2022.
369. Yu, T. H., Yi, Y. C., Shih, I. T., & Ng, I. S. Enhanced 5-aminolevulinic acid production by co-expression of codon-optimized hemA gene with chaperone in genetic engineered Escherichia coli. Applied Biochemistry and Biotechnology, 191, 299-312, 2020.
370. Zarei, M., Sclavi, B., & Lagomarsino, M. C. Gene silencing and large-scale domain structure of the E. coli genome. Molecular BioSystems, 9(4), 758-767, 2013.
371. Zhang, J., Kang, Z., Chen, J., & Du, G. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Scientific Reports, 5(1), 1-7, 2015.
372. Zhang, J., Kang, Z., Ding, W., Chen, J., & Du, G. Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production. Applied Biochemistry and Biotechnology, 178(6), 1252-1262, 2016.
373. Zhang, J., Weng, H., Zhou, Z., Du, G., & Kang, Z. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Bioresource Technology, 274, 353-360, 2019.
374. Zhang, L., Chen, J., Chen, N., Sun, J., Zheng, P., & Ma, Y. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Biotechnology Letters, 35, 763-768, 2013.
375. Zhang, L., Guo, W., Lu, Y. Advances in cell‐free biosensors: principle, mechanism, and applications. Biotechnology Journal, 15(9), 2000187, 2020.
376. Zhang, L., King, E., Luo, R., & Li, H. Development of a high-throughput, in vivo selection platform for NADPH-dependent reactions based on redox balance principles. ACS Synthetic Biology, 7(7), 1715-1721, 2018.
377. Zhang, R., Xu, W., Shao, S., & Wang, Q. Gene silencing through CRISPR interference in bacteria: current advances and future prospects. Frontiers in Microbiology, 12, 635227, 2021.
378. Zhao, H., Giver, L., Shao, Z., Affholter, J. A., & Arnold, F. H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nature Biotechnology, 16(3), 258-261, 1998.
379. Zhao, H., Zhang, H. M., Chen, X., Li, T., Wu, Q., Ouyang, Q., & Chen, G. Q. Novel T7-like expression systems used for Halomonas. Metabolic Engineering, 39, 128-140, 2017.
380. Zhao, J., Baba, T., Mori, H., & Shimizu, K. Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate. Metabolic Engineering, 6(2), 164-174, 2004.
381. Zhao, M., Li, Y., Wang, F., Ren, Y., & Wei, D. A CRISPRi mediated self-inducible system for dynamic regulation of TCA cycle and improvement of itaconic acid production in Escherichia coli. Synthetic and Systems Biotechnology, 7(3), 982-988, 2022.
382. Zhu, C., Chen, J., Wang, Y., Wang, L., Guo, X., Chen, N., Zheng, P., Sun, J., & Ma, Y. Enhancing 5‐aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnology and Bioengineering, 116(8), 2018-2028, 2019.
383. Zhu, L., Zhang, J., Yang, J., Jiang, Y., & Yang, S. Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends in Biotechnology, 40(2), 149-165, 2022a.
384. Zhu, Y., Liu, Y., Ai, M., & Jia, X. Surface display of carbonic anhydrase on Escherichia coli for CO2 capture and mineralization. Synthetic and Systems Biotechnology, 7(1), 460-473, 2022b.
385. Zhuang, Z. Y., & Li, S. Y. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Bioresource Technology, 150, 79-88, 2013.