研究生: |
呂明泰 Lu, Ming-Tai |
---|---|
論文名稱: |
可供有機與無機離子分離及檢測之導電度式毛細管電泳晶片之研發 Determination of Organic and Inorganic Ions by Conductometric Capillary Electrophoresis Microchip |
指導教授: |
張冠諒
Chang, Guan-Liang 張憲彰 Chang, Hsien-Chang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 導電度偵測法、毛細管電泳晶片、神經傳導物質、Histamine、重金屬離子 |
外文關鍵詞: | capillary electrophoretic chip, neurotransmitter, heavy metals, histamine, conductivity detection |
相關次數: | 點閱:85 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室先前所開發的電化學安培法-毛細管電泳晶片(CE Chip),非但所需設備可簡便化,而且對Dopamine之偵測靈敏度至少已可達0.1 M程度。其偵測原理乃藉由樣本被從注入毛細管中到EOF下的分離,於工作電極上發生氧化還原反應,而產生電子轉移所得到電流之響應。基本上,受測樣本必須是具氧化還原活性之物質。然如K+、Ca2+及Li+等無機離子皆非此類之物質,無法以安培法直接量測,故本研究欲發展導電度量測法,以互補僅有安培法下偵測需要上的不足。本研究的導電度式CE晶片,乃以微機電製程經顯影蝕刻,製作出對極式(寬度、間距各為50與30 m)之微小金電極,再以PDMS灌模獲得寬、高各為150與13 m之微管道,透過O2 plasma處理後接合即完成晶片之製備。實驗所偵測之對象,在有機物方面有Catechol、Dopamine、Histamine、Vitamin C等,而無機離子以K+、Li+、Ca2+等為主,此外也針對Hg2+、Zn2+、Pb2+、Ag+、Cu2+等重金屬離子進行檢測。研究過程分為個別偵測與混合偵測二種階段:於個別偵測時以440 V/cm先行30 sec之注入,再以230 V/cm之電場進行樣本分離。由結果可發現所有待測物除Catechol以外,其餘皆可於90 sec內被量測,然而於偵測極限上各不相同,如Li+之極限值僅達50 mM而Hg2+則可降低至25 M (5 ppm),此結果可能為個別離子本身導電性差異所致;於混合偵測方面以80 V/cm進行3~5 sec之注入,分離電場則為200 ~ 230 V/cm,於結果顯示混合陽離子分離之效能雖不理想,但於陰陽離子之混合(Na+及CH3COO-)分離已可達成明顯的分離效果。本導電度式CE系統,已可對帶電性之有機及無機物質進行初步偵測,未來若加以改良將可實際應用於真實樣本之量測。
Conductivity detection can be considered electrochemical technique as well but has the ability to detect any analyte irrespective of whether it contains an electroactive species or not. We used MEMS (Micro electromechanical system) to fabricate the microelectrode, and its specification of width and interval are 50 m and 30 m individually. The microchannel was obtained by cast. After fabricating the mold, PDMS (polydimethylsiloxane) was poured into the cast and cured a period of time. Then peeled PDMS replica from mold and the microchannel was completed. It was 13 m in width and 150 m in depth. In the CE experiment, we detected organic components such as catechol, dopamine, histamine and vitamin C, and inorganic ions like K+, Li+ and Ca2+. The application of heavy metals, including Hg2+, Zn2+, Pb2+, Ag+ and Cu2+, was also investigated. 30 sec electrokinetic injection time for individual sample detection was performed using a field strength (E) of 440 V/cm, and E = 230 V/cm for electrophoresis. Each sample can be detected less than 90 sec excluding catechol. Limitation of detection (LOD) is different from each other. The lowest LOD is 25 M (5 ppm) for Hg2+. On the other hand, the electrophoresis conditions of mixed analytes were 80 V/cm injection for 3 ~ 5 sec, and 200 to 230 V/cm separation. In the results, the separation efficiency of mixed cations are not clear enough to distinguish one peak from another, but it is a good separation for simultaneous measurement of Na+ and CH3COO-. In this study, we have developed the conductivity detection in capillary electrophoresis system.
1. R. M. Guijt, C. J. Evenhuis, M. Macka, P. R. Haddad, “Conductivity detection for conventional andminiaturised capillary electrophoresis systems”, Electrophoresis 2004, 25, 4032-4057.
2. W. R. Vandaveer IV, S. A. P. Farmer, D. J. Fischer, C. N. Frankenfeld, S. M. Lunte, “Recent developments in electrochemical detection for microchip capillary electrophoresis”, Electrophoresis 2004, 25, 3528-3549.
3. A. J. Zemann, “Capacitively coupled contactless conductivity detection in capillary electrophoresis”, Electrophoresis 2003, 24, 2125-2137.
4. http://victorian.fortunecity.com/dadd/454/
5. H. Wätzig, S. Günter, “Capillary Electrophoresis – A High Performance Analytical Separation Technique”, Clinical Chemistry and Laboratory Medicine 2003, 41, 724-738.
6. http://www.fh-muenster.de/FB1/Bredol/physchem/apcordner/apc.118-124.pdf
7. P. D. Grossman, J. C. Colburn, “Capillary electrophoresis: theory and practice”, Academic Press, 1992.
8. I. Rodriguez, Y. Zhang, H. K. Lee, S. F. Y. Li, “Conventional capillary electrophoresis in comparison with short-capillary electrophoresis and microfabricated glass chip capillary electrophoresis for the analysis of fluorescein isothiocyanate anti-human immunoglobulin G”, Journal of Chromatography A 1997, 781, 287-293.
9. C. L. Colyer, S. D. Mangru, D. J. Harrison, “Microchip-based capillary electrophoresis of human serum proteins”, Journal of Chromatography A 1997, 781, 271-276.
10. S. A. Soper, S. M. Ford, Y. C. Xu, S. Z. Qi, S. MeWhrter, S. Lassiter, D. Patterson, R. C. Bruch, “ Nanoliter-scale sample preparation methods directly coupled to polymethylmethqacrylate-based microchips and gel-filled capillary for the analysis of oligonucleotides”, Journal of Chromatography A 1999, 853, 107-120.
11. B. B. Haab, R. A. Mathies, “Single-molecule detection of DNA separations in microfabricated capillary eelectrophoresis chips employing focused molecular streams”, Analytical Chemistry 1999, 71, 5137-5154.
12. M. Hashimoto, K. Tsukagoshi, R. Nakajima, K. Konda, A. Arai, “Microchip capillary electrophoresis using on-line chemiluminescence detection”, Journal of Chromatography A 2000, 867, 271-279.
13. A. T. Woolley, K. Q. Lao, A. N. Glazer, R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection”, Analytical Chemistry 1998, 70, 684-688.
14. R. S. Martin, A. J. Gawron, S. M. Lunte, “Dual-electrode electrochemical detection for poly (dimethylsiloxane) -fabricated capillary electrophoresis microchips”, Analytical Chemistry 2000, 72, 3196-3202.
15. J. Wang, M. P. Chatrathi, B. M. Tian, “Capillary electrophoresis microchips with thick-film amperometric detectors: separation and detection of phenolic compounds”, Analytica Chimica Acta 2000, 416, 9-14.
16. R. M. Guijt, E. Baltussen, G. Steen, R. B. M. Schasfoort, S. Schlautmann, H. A. H. Billiet, J. Frank, G. W. K. Dedem, A. Berg, “New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection”, Electrophoresis 2001, 22, 235-241.
17. M. Galloway, W. Stryjewski, A. Henry, S. M. Ford, S. Llopis, R. L. McCarley, S. A. Soper, “Contact conductivity detection in poly(methylmethacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules” Analytical Chemistry 2002, 74, 2407-2415.
18. J. A. F. Silva, C. L. Lago, “An oscillometric detector for capillary electrophoresis”, Analytical Chemistry 1998, 70, 4339-4343.
19. A. J. Zemann, E. Schnell, D. Volgger,. G. K. Bonn, “Contactless conductivity detection for capillary electrophoresis”, Analytical Chemistry 1998, 70, 563-567.
20. M. Pumera, J. Wang, F. Opekar, I. Jelinek, J. Feldman, H. Lowe, S. Hardt, “Contactless conductivity detector for microchip capillary electrophoresis”, Analytical Chemistry 2002, 74, 1968-1971.
21. J. Wang, G. Chen, A. Muck, “Movable contactless-conductivity detector for microchip capillary electrophoresis”, Analytical Chemistry 2003, 75, 4475-4479.
22. J. Wang G. Chen, A. Muck, G. E. Collins, “Electrophoretic microchip with dual-opposite injection for simultaneous measurements of anions and cations”, Electrophoresis 2003, 24, 3728-3734.
23. J. Wang, G. Chena, A. Muck, M. P. Chatrathi, A. Mulchandani, W. Chenb, “Microchip enzymatic assay of organophosphate nerve agents”, Analytica Chimica Acta 2004, 505, 183-187.
24. M. U. Katzmayr, C. W. Klampfl, W. Buchberger, “Optimization of conductivity detection of low-molecular-mass anions in capillary zone electrophoresis”, Journal of Chromatography A 1999, 850, 355-362.
25. A. Zemann, “Conductivity detection in capillary electrophoresis”, Trends in Analytical Chemistry 2001, 20, 346-354.
26. X. Ren, M. Bachman, C. Sims, G. P. Li, N. Allbritton, “Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane)”, Journal of Chromatography B 2001, 762, 117-125.
27. H. Makamba, J. H. Kim, K. Lim, N. Park, J. H. Hahn, “Surface modification of poly(dimethylsiloxane) microchannels”, Electrophoresis 2003, 24, 3607-3619.
28. G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, K. Westra, D. J. Harrison, “Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices”, Electrophoresis 2000, 21, 107-115.
29. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)”, Analytical Chemistry 1998, 70, 4974-4984.
30. A. R. Wheeler, G. Trapp, O. Trapp, R. N. Zare, “Electroosmotic flow in a poly(dimethylsiloxane) channel does not depend on percent curing agent”, Electrophoresis 2004, 25, 1120-1124.
31. Y. H. Dou, N. Bao, J. J. Xu, H. Y. Chen, “A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis”, Electrophoresis 2002, 23, 3558-3566.
32. Y. Liu, J. C. Fanguy, J. M. Bledsoe, C. S. Henry, “Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips”, Analytical Chemistry 2000, 72, 5939-5944.
33. C. D. Garcia, B. M. Dressen, A. Henderson, C. S. Henry, “Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips”, Electrophoresis 2005, 26, 703-709.
34. N. Avdalovic, C. A. Pohl, R. D. Roeklin, J. R. Stillian, “Determination of cations and anions by capillary electrophoresis combined with suppressed conductivity detection”, Analytical Chemistry 1993, 65, 1470-1475.
35. J. Lichtenberg, N. F. Rooij, E. Verpoorte, “A microchip electrophoresis system with integrated in-plane electrodes for contactless conductivity detection”, Electrophoresis 2002, 23, 3769-3780.
36. J. Tanyanyiwa, P. C. Hauser, “High-voltage capacitively coupled contactless conductivity detection for microchip capillary electrophoresis”, Analytical Chemistry 2002, 74, 6378-6382.
37. X. Bai, Z. Wu, J. Josserand, H. Jensen, H. Schafer, H. H. Girault, “Passive conductivity detection for capillary electrophoresis”, Analytical Chemistry 2004, 76, 3126-3131.
38. J. Tanyanyiwa, P. C. Hauser, “High-voltage contactless conductivity detection of metal ions in capillary electrophoresis”, Electrophoresis 2002, 23, 3781-3786.
39. D. R. Crow, Principles and application s of electrochemistry: 4th Edition; Chapman & Hall: UK, 1994.
40. E. Baltussen1, R. M. Guijt, G. Steen, F. Laugere, S. Baltussen, G. W. K. Dedem, “Considerations on contactless conductivity detection in capillary electrophoresis”, Electrophoresis 2002, 23, 2888-2893.
41. J. A. F. Silva, C. L. Lago, “Conductivity detection of aliphatic alcohols ing micellar electrokinetic chromatography using an oscillometric detector”, Electrophoresis 2000, 21, 1405-1408.