簡易檢索 / 詳目顯示

研究生: 王品軒
Wang, Pin-Hsuan
論文名稱: 奈米銀粒子修飾之β-氧化鎵奈米線光催化與氣體感測性質研究
Photocatalytic and Gas Sensing Properties of Silver-Nanoparticles-Functionalized β-Gallium Oxide Nanowires
指導教授: 呂國彰
Lu, Kuo-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 84
中文關鍵詞: 氧化鎵奈米線CVD銀修飾電阻率氣體感測光催化
外文關鍵詞: Ga2O3 nanowires, CVD , Silver nanoparticles, gas sensing, photocatalyst
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用三區爐管,以金屬鎵為前驅物,真空幫浦將爐管腔室抽氣至約0.02 Torr的低壓環境,透過化學氣相沉積方式及固-液-氣機制加熱合成β-氧化鎵奈米線。為了提升β-氧化鎵奈米線之光催化以及氣體感測性能,本研究以奈米銀粒子修飾,減少電子電洞對複合與增加接觸待測氣體的面積。首先透過SEM確認奈米線形貌,後以XRD與TEM確定奈米線結構,並透過EDS與XPS確認元素組成與化學鍵結情況。電性方面,使用四點探針方法得出單根β-氧化鎵奈米線的電阻率為7.62*10-1 Ω‧cm。氣體感測實驗,本研究以5ppm之CO與20ppm之乙醇作為感測氣體,在100度至200度之間進行響應值量測,發現修飾濃度與溫度越高,CO與乙醇的響應越好,在200℃時,5%銀修飾之奈米線的響應分別可以達到16.3與36.1,證明修飾銀奈米粒子可以增加奈米線與待測氣體面積和生成較大的電子空乏層以增加響應。光催化實驗以10ppm之亞甲基藍作為主要降解液,發現2%銀修飾的氧化鎵奈米線在140分鐘的光照下之催化效果為74%,較純氧化鎵的57%與5%銀修飾的62%更好,證明修飾ㄧ定濃度的貴重金屬粒子可以有效提升氧化鎵奈米線的光催化降解效果,然而濃度若過大,材料表面與降解液的反應面積會減少,銀粒子在奈米線基板上團簇而導致光催化效果不增反減。

    In this study, high density and crystallinity β-gallium oxide nanowires were successfully synthesized via CVD through vapor-liquid-solid mechanism. Silver nanoparticles were modified on the surface of β-gallium oxide nanowires with high crystallinity. The results of response to CO and ethanol gas indicate that 5% Ag@β-Ga2O3 had best response to CO and ethanol gas with 16.3 and 36.1 at 200℃, respectively. The modification effectively enhanced the response to gas as a result of increased active reaction spots and generated Schottky barrier.
    For photoactivities of nanowires, 2% Ag@β-Ga2O3 degraded 74% of MB solution and the reaction rate constant was 0.00952 after 140 minutes of irradiation, better than the performances of β-Ga2O3 and 5% Ag@β-Ga2O3. In theory, the functionalization of silver nanoparticles can increase reaction area and decrease the charge recombination rate. However, the excess amount of decoration may shield nanowires from absorbing photons. To sum up, a proper amount of silver nanoparticles decoration can significantly enhance the photocatalytic and gas sensing properties of β- Ga2O3.

    摘要 I Extended Abstract II 誌謝 VIII 總目錄 IX 表目錄 XII 圖目錄 XIII 一、緒論 1 1.1前言 1 1.2研究動機 2 二、文獻回顧 4 2.1奈米材料 4 2.1.1奈米材料表面積效應 4 2.1.2量子尺寸效應 4 2.1.3量子穿隧效應 5 2.1.4庫倫堵塞效應 5 2.1.5表面電漿共振效應 6 2.1.6奈米材料性質 6 2.1.6.1光學性質 6 2.1.6.2熱性質 6 2.1.6.3電學性質 7 2.2氧化鎵結構與性質 7 2.3 β-氧化鎵奈米線生長方式 11 2.3.1熱蒸鍍法 (Thermal Evaporation) 11 2.3.2化學氣相沉積法 (Chemical Vapor Deposition) 12 2.3.3水熱法 (Hydrothermal Method) 13 2.3.4磁控濺射 (Magnetron Sputtering) 14 2.3.5脈衝雷射沉積法 (Pulsed Laser Deposition) 15 2.4奈米貴金屬粒子修飾 16 2.5 光催化 17 2.6 氣體感測 19 2.6.1 氣體感測原理與機制 19 2.6.2 β-氧化鎵之氣體感測相關應用 20 三、 實驗方法 22 3.1實驗大綱 22 3.2實驗材料 22 3.3實驗設備 23 3.3.1氣氛退火系統 23 3.3.2掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 23 3.3.3穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 24 3.3.4 X光繞射分析儀(X-Ray Diffractometermm, XRD) 25 3.3.5 X光光電子能譜儀(X-Ray Photoelectron Spectroscopy, XPS) 26 3.3.6電子槍蒸鍍系統(E-Beam Evaporation System) 27 3.3.7雙束型聚焦離子束系統(Dual-Beam Focused Ion Beam) 27 3.3.8微元件探針座訊號量測系統 28 3.3.9紫外光-可見光分光光譜儀(UV-Vis Spectrophotometer) 28 3.3.10微光激發螢光光譜儀(Micro-Photoluminescence Spectroscopy, Micro-PL) 29 3.4實驗方法與步驟 30 3.4.1 β-氧化鎵奈米線製備 30 3.4.1.1基板清洗 30 3.4.1.2基板催化 30 3.4.1.3合成β-氧化鎵奈米線 30 3.4.2奈米銀粒子修飾 31 3.4.3 TEM試片製作 32 3.4.4電性試片製作 33 3.4.5氣體感測 34 3.4.5.1氣體感測試片製作 34 3.4.5.2氣體感測實驗 35 3.4.6 光催化實驗 36 四、 實驗結果與討論 37 4.1 β-氧化鎵奈米線合成與分析 37 4.1.1基板溫度 37 4.1.2持溫時間 39 4.1.3 載流氣體流量 40 4.1.4 β-氧化鎵奈米線生長機制 44 4.2奈米銀粒子修飾β-氧化鎵奈米線(Ag@β-Ga2O3)形貌與分析 45 4.3單根奈米線電性量測 53 4.4氣體感測 61 4.4.1氣體感測實驗 61 4.4.2氣體感測原理機制探討 68 4.5光催化降解 71 五、結論 80 六、參考文獻 81

    [1] N. S. Jamwal, A. Kiani, “Gallium Oxide Nanostructures: A Review of Synthesis, Properties and Applications,” Nanomaterials (Basel), 12(12), 2022).
    [2] S. Geller, “Crystal Structure of β‐Ga2O3,” The Journal of Chemical Physics, 33(3), 676-684.(1960).
    [3] N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals,” Applied Physics Letters, 70(26), 3561-3563.(1997).
    [4] S. Kumar, C. Tessarek, S. Christiansen, R. Singh, “A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique,” Journal of Alloys and Compounds, 587, 812-818.(2014).
    [5] G. Wang, J. Park, X. Kong, P. R. Wilson, Z. Chen, J.-h. Ahn, “Facile Synthesis and Characterization of Gallium Oxide (beta-Ga2O3) 1D Nanostructures: Nanowires, Nanoribbons, and Nanosheets,” Crystal Growth and Design, 8, 1940-1944.(2007).
    [6] X. Xu, M. Lei, K. Huang, C. Liang, J. C. Xu, Z. C. Shangguan, Q. X. Yuan, L. H. Ma, Y. X. Du, D. Y. Fan, H. J. Yang, Y. G. Wang, W. H. Tang, “A facile route to porous beta-gallium oxide nanowires-reduced graphene oxide hybrids with enhanced photocatalytic efficiency,” Journal of Alloys and Compounds, 623, 24-28.(2015).
    [7] S. Y. Lee, H. C. Kang, “Synthesis and characterization of beta-Ga2O3 nanowires on amorphous substrates using radio-frequency powder sputtering,” Journal of Crystal Growth, 412, 25-30.(2015).
    [8] H. Yamahara, M. Seki, H. Tabata, “Growth of Gallium Oxide Nanowires by Pulsed Laser Deposition,” Journal of Crystallization Process and Technology, 02(04), 125-129.(2012).
    [9] C. Zhu, G. Meng, Q. Huang, Z. Huang, Z. Chu, “Au Hierarchical Micro/Nanotower Arrays and Their Improved SERS Effect by Ag Nanoparticle Decoration,” Crystal Growth & Design, 11(3), 748-752.(2011).
    [10] R. Qiao, X. L. Zhang, L. Zhu, “Preparation of three-dimensional leaflike cobalt microcrystals and decoration of their surface with silver nanoparticles,” Journal of Nanoparticle Research, 13(9), 3843-3852.(2011).
    [11] Y. Noh, J. Shin, H. Lee, G. Y. Kim, M. Kumar, D. Lee, “Decoration of Ag Nanoparticle on ZnO Nanowire by Intense Pulsed Light and Enhanced UV Photodetector,” Chemosensors, 9(11), 2021).
    [12] A. G. Tamirat, J. Rick, A. A. Dubale, W. N. Su, B. J. Hwang, “Using hematite for photoelectrochemical water splitting: a review of current progress and challenges,” Nanoscale Horiz, 1(4), 243-267.(2016).
    [13] A. Afzal, “β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies,” Journal of Materiomics, 5(4), 542-557.(2019).
    [14] M. Fleischer, H. Meixner, “Gallium Oxide Thin Films: a New Material for High-Temperature Oxygen Sensors,” Sensors and Actuators B, 4, 437-441.(1991).
    [15] M. Fleischer, L. Hollbauer, H. Meixner, “Effect of the Sensor Structure on the Stability of Ga2O3 Sensors for Reducing Gases,” Sensors and Actuators B, 18-19, 119-124.(1994).
    [16] M. Fleischer, V. Wagner, B. Hacker, H. Meixner, “Comparison of A.C. and D.C. Measurement Techniques Using Semiconducting Ga2O3 sensors,” Sensors and Actuators B, 26-27, 85-88.(1995).
    [17] F. Reti, M. Fleischer, I. V. Perczel, H. Meixner, J. Giber, “Detection of Reducing Gases in Air by beta-Ga2O3 (oven-) heated operation modes.,” Sensors and Actuators B, 34, 378-382.(1996).
    [18] H. J. Lin, J. P. Baltrus, H. Gao, Y. Ding, C. Y. Nam, P. Ohodnicki, P. X. Gao, “Perovskite Nanoparticle-Sensitized Ga2O3 Nanorod Arrays for CO Detection at High Temperature,” ACS Appl Mater Interfaces, 8(14), 8880-7.(2016).
    [19] J. Zhao, B. Qin, L. Liu, C. Liang, Y. Zhang, W. Yang, H. Wang, “Enhanced low-temperature response of Ga2O3-based oxygen sensor by modulating the surficial micro-nano structures,” Sensors and Actuators B: Chemical, 378, 2023).
    [20] Y.-L. Wu, Q. Luan, S.-J. Chang, Z. Jiao, W. Y. Weng, Y.-H. Lin, C. L. Hsu, “Highly Sensitive beta-Ga2O3 Nanowire Nanowires Isopropyl Alcohol Sensor,” IEEE Sensors Journal, 14(2), 401-405.(2014).
    [21] B. Zhang, H.-J. Lin, H. Gao, X. Lu, C.-Y. Nam, P.-X. Gao, “Perovskite-sensitized β-Ga2O3 nanorod arrays for highly selective and sensitive NO2 detection at high temperature,” Journal of Materials Chemistry A, 8(21), 10845-10854.(2020).
    [22] H. Kim, C. Jin, S. An, C. Lee, “Fabrication and CO gas-sensing properties of Pt-functionalized Ga2O3 nanowires,” Ceramics International, 38(5), 3563-3567.(2012).
    [23] N. Wu, Z. Chen, J. Xu, M. Chyu, S. X. Mao, “Impedance-metric Pt/YSZ/Au–Ga2O3 sensor for CO detection at high temperature,” Sensors and Actuators B: Chemical, 110(1), 49-53.(2005).
    [24] A. Trinchi, Y. X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S. P. Russo, J. Duplessis, S. Viticoli, “Investigation of sol–gel prepared Ga–Zn oxide thin films for oxygen gas sensing,” Sensors and Actuators A: Physical, 108(1-3), 263-270.(2003).
    [25] S. Kumar, V. Kumar, T. Singh, A. Hähnel, R. Singh, “The effect of deposition time on the structural and optical properties of β-Ga2O3 nanowires grown using CVD technique,” Journal of Nanoparticle Research, 16(1), 2013).
    [26] W. Gu, H. Choi, K. Kim, “Universal approach to accurate resistivity measurement for a single nanowire: Theory and application.,” Applied Physics Letters, 89, 253102.(2006).
    [27] N. Han, F. Wang, Z. Yang, S. P. Yip, G. Dong, H. Lin, M. Fang, T. F. Hung, J. C. Ho, “Low-temperature growth of highly crystalline beta-Ga2O3 nanowires by solid source chemical vapor deposition.,” Nano Reasearch Letters, 9, 347.(2014).
    [28] K. Girija, S. Thirumalairajan, V. R. Mastelaro, D. Mangalaraj, “Catalyst free vapor–solid deposition of morphologically different β-Ga2O3 nanostructure thin films for selective CO gas sensors at low temperature,” Analytical Methods, 8(15), 3224-3235.(2016).
    [29] S. H. Park, S. H. Kim, S. Y. Park, C. Lee, “Synthesis and CO gas sensing properties of surface-nitridated Ga2O3 nanowires,” RSC Adv., 4(108), 63402-63407.(2014).
    [30] M. R. Mohammadi, D. J. Fray, “Semiconductor TiO2–Ga2O3 thin film gas sensors derived from particulate sol–gel route,” Acta Materialia, 55(13), 4455-4466.(2007).
    [31] T.-F. Weng, M.-S. Ho, C. Sivakumar, B. Balraj, P.-F. Chung, “VLS growth of pure and Au decorated β-Ga2O3 nanowires for room temperature CO gas sensor and resistive memory applications,” Applied Surface Science, 533, 2020).
    [32] A. V. Almaev, E. V. Chernikov, V. V. Novikov, B. O. Kushnarev, N. N. Yakovlev, E. V. Chuprakova, V. L. Oleinik, A. D. Lozinskaya, D. S. Gogova, “Impact of Cr2O3 additives on the gas-sensitive properties of β-Ga2O3 thin films to oxygen, hydrogen, carbon monoxide, and toluene vapors,” Journal of Vacuum Science & Technology A, 39(2), 2021).
    [33] M. Krawczyk, P. Suchorska-Wozniak, R. Szukiewicz, M. Kuchowicz, R. Korbutowicz, H. Teterycz, “Morphology of Ga­2O3 Nanowires and Their Sensitivity to Volatile Organic Compounds,” Nanomaterials (Basel), 11(2), 2021).
    [34] Y. F. Cui, W. Jiang, S. Liang, L. F. Zhu, Y. W. Yao, “MOF-derived synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties,” Journal of Materials Chemistry A, 6(30), 14930-14938.(2018).
    [35] Y. Fan, H. Guan, J. Zhang, W. Wang, C. Liu, X. Li, J. Zhou, S. Ruan, “Synthesis and gas sensing properties of β-Fe2O3 derived from Fe/Ga bimetallic organic framework,” Journal of Alloys and Compounds, 921, 2022).
    [36] Y. Zhang, C. Jia, Q. Kong, N. Fan, G. Chen, H. Guan, C. Dong, “ZnO-Decorated In/Ga Oxide Nanotubes Derived from Bimetallic In/Ga MOFs for Fast Acetone Detection with High Sensitivity and Selectivity,” ACS Appl Mater Interfaces, 12(23), 26161-26169.(2020).
    [37] Z. Wei, M. K. Akbari, Z. Hai, R. K. Ramachandran, C. Detavernier, F. Verpoort, E. Kats, H. Xu, J. Hu, S. Zhuiykov, “Ultra-thin sub-10 nm Ga2O3-WO3 heterostructures developed by atomic layer deposition for sensitive and selective C2H5OH detection on ppm level,” Sensors and Actuators B: Chemical, 287, 147-156.(2019).
    [38] J. Lu, J. Xing, D. Chen, H. Xu, X. Han, D. Li, “Enhanced photocatalytic activity of β-Ga2O3 nanowires by Au nanoparticles decoration,” Journal of Materials Science, 54(8), 6530-6541.(2019).
    [39] Y.-C. Yao, X.-R. Dai, X.-Y. Hu, S.-Z. Huang, Z. Jin, “Synthesis of Ag-decorated porous TiO2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity,” Applied Surface Science, 387, 469-476.(2016).
    [40] S. Kim, K. I. Han, I. G. Lee, W. K. Park, Y. Yoon, C. S. Yoo, W. S. Yang, W. S. Hwang, “A Gallium Oxide-Graphene Oxide Hybrid Composite for Enhanced Photocatalytic Reaction,” Nanomaterials (Basel), 6(7), 2016).
    [41] H. Ryou, T. H. Yoo, Y. Yoon, I. G. Lee, M. Shin, J. Cho, B. J. Cho, W. S. Hwang, “Hydrothermal Synthesis and Photocatalytic Property of Sn-doped β-Ga2O3 Nanostructure,” ECS Journal of Solid State Science and Technology, 9(4), 2020).
    [42] X. Xu, K. Bi, K. Huang, C. Liang, S. Lin, W. J. Wang, T. Z. Yang, J. Liu, D. Y. Fan, H. J. Yang, Y. G. Wang, M. Lei, “Controlled fabrication of α-GaOOH with a novel needle-like submicron tubular structure and its enhanced photocatalytic performance,” Journal of Alloys and Compounds, 644, 485-490.(2015).

    無法下載圖示 校內:2028-08-25公開
    校外:2028-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE