| 研究生: |
白漢娜 Hanna |
|---|---|
| 論文名稱: |
核能電廠水密門之易損性分析 Fragility Analysis on Watertight Doors in Nuclear Power Plants |
| 指導教授: |
洪李陵
Hong, Li-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 水密門 、易損性分析 、易損性曲線 、核電站 |
| 外文關鍵詞: | Watertight Doors, Fragility Analysis, Fragility curves, Nuclear power plant |
| 相關次數: | 點閱:86 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核電站 (NPP) 的故障將是可怕的。 有必要對核電廠進行針對外部事件的概率安全評估(PSA)。 降水、海浪、海嘯等外部事件可能導致核電廠失效。 有一些裝置用於保護核電廠的組件。 其中一個裝置是防水門。 脆弱性分析是結構/組件失效的條件概率。 它被衡量為在特定條件下容量小於需求的概率。 在本論文中,我們以海嘯為外部事件,對水密門進行易損性分析。 利用近期論文的測試數據,我們開發了一種方法來找到本文提供的三個水密門之間的水密門的脆性曲線,並觀察它們不同的水密性能。 由於數字化誤差、不同的密封部件和不同的可接受洩漏,由此產生的脆性曲線不一定是特定水密門的精確脆性曲線。 在地震概率風險評估中進一步的故障樹分析需要脆弱性曲線。 最後,我們根據偶然不確定性與認知不確定性的比率給出了一個公式,以便通過水密門的平均脆弱性曲線找到高置信度低概率故障 (HCLPF) 容量的下限和上限。
Failure on the nuclear power plants (NPP) will be hideous. It is necessary to conduct probabilistic safety assessment (PSA) of an NPP against external events. External events such as precipitation, waves, tsunami, etc. might cause the failure of NPP. There are some devices used to protect the component of NPP. One of the devices is a watertight door. Fragility analysis is the conditional probability of a structure/component failure. It is measured as a probability of capacity being less than demand on specific conditions. In this thesis, we use fragility analysis on watertight doors with tsunami as the external event. Using test data from recent paper, we develop method to find the fragility curves of watertight doors in between the three watertight doors provided by the paper and observe their different watertight performance. The resulting fragility curves will not necessarily be the exact fragility curves of a specific watertight door due to digitized error, various sealing part, and different acceptable leakage. The fragility curves are required in further fault tree analysis during seismic probabilistic risk assessment. Finally, we give a formula in terms of the ratio of aleatory uncertainty to epistemic uncertainty in order to find the lower and upper bounds of high-confidence low-probability-failure (HCLPF) capacity through the mean fragility curve of watertight doors.
Ang, A. H-S., and Tang, W. H., Probability Concepts in Engineering Planning and Design - Volume II: Decision, Risk, and Realibility, John Wliey ans Sons, New York, NY (1984).
Basu, P. C., Ravindra, M. K., and Mihara, Y., “Component Fragility for Use in PSA of Nuclear Power Plant”, Nucl. Eng. Des., 323, pp. 209-227 (2017).
Gautham, A., and Krishna, K. G., “Fragility Analysis – A Tool to Assess Seismic Performance of Structural Systems” Material Today: Proc., 4 (9), pp. 10565-10569 (2017)
Pujari, N. N., Mandal, T. K., Ghosh, S., and Lala S., “Optimisation of IDA-Based Fragility Curves. Safety, Reliability, Risk Lifecycle Perform”, Struct. Infrastructures-Proc. 11th Int. Conf. Struct. Saf. Reliab. ICOSSAR 2013, pp. 4435-4440 (2013)
Richard, F., and Yoyong, A., “Analisis Fungsi Kerapuhan Struktur dengan Menggunakan Analisis Riwayatt Waktu”, Prosiding Seminar Nasional Riset dan Teknologi Terapan (RITEKTRA), ISSN: 2807-999X (2021).
Shinozuka, M. F., Feng, M. Q., Lee, J., and Naganuma, T., “Statistical Analysis of Fragility Curves”, Journal of Engineering Mechanics, 126(12), pp. 1224-1231 (2000)
Stefanidou, S. P., and Kappos, A. J., “Integrating the Foundation Component into Seismic Fragility Analysis of Bridges”, Soil Dynamics and Earthquake Engineering, 164, , pp. 107627, ISSN: 0267-7261 (2023)
Taoka, H., Ishida, N., and Toriyama, T., “Examination and Analysis of the Water Tightness of Watertight Doors in Nuclear Facilities (Water Tightness of The Watertight Doors Beyond Design Conditions)”, Transactions of the JSME, 86(892), pp. 20.00045.1-20.00045.12 (2020).
Zhao, Y. G., Qin, M. J., Lu, Z. H, and Zhang, L. W., “Seismic Fragility Analysis of Nuclear Power Plants Considering Structural Parameter Uncertainty”, Reliab. Eng. Syst. Saf., 216, pp. 107970, ISSN: 0951-8320 (2021).