| 研究生: |
陳冠捷 Chen, Guan-Jie |
|---|---|
| 論文名稱: |
噻唑在銅(100)和氧/銅(100)表面上的熱反應研究 Thermal Chemistry of Thiazole on Cu(100) and O/Cu(100) Surfaces |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 程序控溫反應 、反射式紅外光吸收光譜 、X光光電子能譜 、超高真空系統 、噻唑 、銅(100) 、密度泛函數理論 |
| 外文關鍵詞: | thiazole, temperature-programmed desorption (TPR/D), X-ray photoelectron spectroscopy (XPS), reflection-absorption infrared spectroscopy (RAIRS), Cu(100), DFT. |
| 相關次數: | 點閱:202 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文利用程序控溫反應(TPD)、反射式紅外光吸收光譜(RAIRS)和X光光電子能譜(XPS) 再借助密度泛函數理論去分析噻唑(thiazole)在Cu(100)以及O/Cu(100)上的熱反應。
在120K時,噻唑主要通過N-Cu相互作用吸附在Cu(100)上,並且芳香環垂直吸附於表面。 到達200 K時環開始破裂,在表面上形成少量的S(ad),隨著溫度升高生成產物C2H2(~290 K)、H2(~597, 737 K)、HCN(~525, 610, 737 K)。 在反應過程中有出現-SCHNCHCH-、-SCHCHNCH-或-CHNCHCH-的表面中間物。
120 K時thiaozle在O/Cu(100)上的吸附方式與Cu(100)相似;在有氧原子的Cu(100)上,thiazole也會反應並最終產生S(ad)。 但產物與Cu(100)不同,生成H2 (~388 K、~604 K)、H2O (~438 K)、C2H2 (279 K)、CO (~373 K、604 K)、CO2 (~373 K、~640 K)和N2 (~834K)。除了在Cu(100)的情況下的三種反應中間物,在O/Cu(100)上的噻唑反應中可能形成>C=C=O、-NCO和另一種具有C-O基團的表面中間物。
Temperature-programmed reaction/desorption (TPR/D), X-ray photoelectron spectroscopy (XPS) and reflection-absorption infrared spectroscopy (RAIRS), with the aid of density-functional-theory calculations, to analyze the adsorption and thermal chemistry of thiazole on Cu(100) and oxygen-precovered Cu(100). At 120 K, thiazole is predominantly adsorbed on Cu(100), via N-Cu interaction and with the aromatic ring perpendicular to the surface. At 200 K, the ring begins to rupture, and forms a small amount of sulfur atoms (S(ad)) on the surface. As the temperature further increases, C2H2(~290 K), H2(~597, 737 K) and HCN(~525 K, ~610 K, ~737 K) evolve as the reaction products. -SCHNCHCH-, -SCHCHNCH- and/or -CHNCHCH- are proposed to be the surface intermediates formed in the thiazole reaction on Cu(100).
The adsorption of thiazole on O/Cu(100) at 120 K is similar to case of Cu(100). In the presence of oxygen atoms on Cu(100), thiazole also reacts on the surface and eventually generates S(ad), but the product distribution is different from that of Cu(100) with evolution of H2(~388 K, ~604 K) H2O (~438 K), C2H2 (279 K), CO (~373 K, 604 K), CO2 (~373 K, ~604 K) and N2 (~834 K). In addition to the three reaction intermediates proposed in the case of Cu(100), >C=C=O, NCO and another surface intermediate with C-O group are possibly formed in the thiazole reaction on O/Cu(100).
1. G. Sormorjai, Wiley-Interscience Press, New York 1994.
2. K. Christmann; G. Ertl; T. Pignet, Surface Science, 54, 365-392, 1976.
3. M. Alajarín; J. Cabrera; A. Pastor; Pilar S.-A.; D. Bautista, J. Org. Chem., 2006, 71 (14): 5328 – 5339.
4. A. Dondoni; P. Merino: Diastereoselective Homologation of D-(R)-Glyceraldehyde Acetonide using 2-(Trimethylsilyl)thiazole. 1998.
5. J.-W. Mao; X.-H. He; Y.-M. Tang, Corrosion Science, 2019, 148, 171-177.
6. Gy Vastag; E. Szőcs; A. Shaban; I. Bertóti; K. Popov-Pergal; E. Kálmán, Solid State Ionics, 2001, 141, 87-91.
7. C. Battocchio; M. V. Russo; V. Carravetta; A. Goldoni; Ph. Parent, C. Laffon; G. Polzonetti, Nucl. Instrum. Methods Phys. Res, 2006, 246, 1, 136-141.
8. F. Tao; S. L. Bernasek, J. Am. Chem. Soc., 2007, 129, 15, 4815-4823.
9. D. A. King, D. A., Surface Science, 47, 384-402, 1975.
10. Redhead, Thermal Desorption of Gases. Vacuum, 12, 203-211, 1962.
11. J. C. Vickerman; I. S. Gilmore, Surface Analysis: The Principal Techniques; John Wiley & Sons, 2011.
12. 張沛騰. 2-氟乙醇及1,4-Dioxane在Cu(100)表面上的熱反應與吸附位向的研究. 國立成功大學, 台南市, 2003.
13. B. A. Sexton, Surface Science, 88, 299-318, 1979.
14. J. Andrew; D. Mottaram, Flavor Science: Recent Developments. Woodhead Publishing, Great Britain: 1996.
15. B. A. Sexton, Surface Science, 1979, 88, 299-318.
16. NIST Mass Spectrometry Data Center, William E. Wallace, director
17. L. Guo; W. Fang, Spectroscopy and Spectral Analysis, 34, 2994-2998, 2014.
18. F. Hegelund, R.W. Larsen, M.H. Palmer, J. Mol. Spectrosc., 2007, 244, 63-78
19. J. Pritchard,; T. Catterick,; R.K.Gupta, Surface Science, 1979, 53, 1-20.
20. Y.-H. Lai; C.-T. Yeh; S.-H. Cheng; P. Liao; W.-H. Hung, J. Phys. Chem. B, 2002, 106, 5438
21. M. Santa, R. Posner, G. Grundmeier, J. Electroanalyt. Chem., 2010, 643, 94-101.
22. F. Eberle, M. Kayser, D. M. Kolb, M. Saitner, H.-G. Boyen, M. D’Olieslaeger, D. Mayer, A. Wirth, Langmuir, 2010, 26, 7, 4738-4742.
23. K. T. Queeney; C. R. Arumaimayagam; M. K. Weldon; C. M. Friend; N. Q. Blumberg, J. Am. Chem. Soc. 1996, 118, 3896.
24. Q. Ma; H. Guo; R. G. Gordon; F. Zaera, Chem. Mater, 2011, 23, 14, 3325-3334.
25. B. A. Sexton; A. E. Hughes, Surf. Sci., 1984, 140, 227
26. R. Brosseau; M. R. Brustein; T. H. Ellis, Surface Science, 294, 243-250, 1993.
27. T. Sueyoshi; T. Sasaki; Y. Iwasawa, J. Phys. Chem. B, 101, 4648-4655, 1997.
28. B. Hagman, Structure and reactivity of surface oxides on Cu(100), 2016.
29. P. R. Davies; J. M. Keel, Surf. Sci., 2000, 469, 204-213.
30. J.-J. Shih; K.-H. Kuo; C.-M. Yang; J.-L. Lin; L.-J. Fan; Y.-W. Yang, Surf. Sci., 2008, 602, 3266-3271.
31. G. Galeotti; F. De Marchi; T. Taerum; L. V. Besteiro; M. El Garah; J. Lipton-Duffin; M. Ebrahimi; D. F. Perepichka; F. Rosei, Chem. Sci., 2019, 10, 5167.
32. D. G. Castner; K. Hinds; D. W. Grainger, Langmuir, 1996, 12, 5083-5086.
33. C. Wöckel; A. Eilert; M. Welke; M. Schöppke; H.-P. Steinrück; R. Denecke, J. Chem. Phys. , 2016, 144, 014702.
34. G. Herceg; M. Trenary, J. Phys. Chem. B, 2005, 109, 17560–17566.
35. C. J. Weststrate; J. W. Bakker; E. D. L. Rienks; C. P. Vinod; A. V. Matveev; V. V. Gorodetskiic; B. E. Nieuwenhuysab, Journal of Catalysis, 2006, 242, 1, 184-194.