簡易檢索 / 詳目顯示

研究生: 陳鵬仁
Chen, Peng-Jen
論文名稱: 肋條/波形渠道與矩形腔體內熱傳增益之數值最佳化
Numerical optimization on heat transfer enhancement in ribbed/wavy channels and a rectangular enclosure
指導教授: 楊玉姿
Yang, Yue-Tzu
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 148
中文關鍵詞: 最佳化基因演算法反應曲面法數值模擬肋條渠道波形渠道太陽能集熱器自然對流
外文關鍵詞: optimization, genetic algorithm, response surface methodology, ribbed channel, solar collector
相關次數: 點閱:137下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用了包含實驗設計(DOE)、反應曲面法(RSM)、基因演算法(GA)及計算流體力學(CFD)等理論的多參數最佳化流程來進行肋條/波形渠道及隔板型太陽能集熱器的幾何尺寸設計。統御方程式是以控制體積法(Control-Volume Approach)為基礎,配合有限差分法(Finite-Difference Method)來離散差分方程式後再求解。動量方程式中的速度及壓力耦合問題則以SIMPLE (Semi-Implicit Method for Pressure-Linked Equation)法來解決。
    實例一是對肋條渠道的熱傳性能做最佳化設計,研究的參數有肋條高度、肋條寬度、以及肋條間距。紊流方程式是以控制體積法配合有限差分法並應用三種常見的紊流方程式來處理,網格的設計上是使用非結構性網格。結果顯示使用的最佳化流程是可以有效地應用在肋條渠道的最佳化設計上。而肋條對渠道內的熱傳率和磨擦因子皆有顯著的影響。最佳化尺寸設計在對稱肋條渠道中熱傳表現因子可提升至1.5,而非對稱肋條渠道的熱傳表現因子則是可以達到2.681。
    而實例二是結合反應曲面法及基因演算法的最佳化流程應用在隔板型太陽能集熱器的設計上。以數值模擬的方式探討無因次化隔板長度 (L)、無因次化隔板寬度 (W) 以及無因次化隔板間距 (A) 在太陽能集熱器內對熱傳現象所造成的影響。結果得知隔板長度與隔板的間距對熱傳性能有明顯的影響,隔板寬度所造成的效果則是不顯著。而經過最佳化設計後的隔板尺寸 (L, W, A) = (0.8, 0.1, 2)的熱傳表現可比參考文獻的數據高出61%。
    在實例三裡,是討論波形渠道中壁面波形振幅、波長、以及寬高比對渠道的層流流場與熱傳產生的影響。使用結合熱傳與壓降效應的熱傳效能因子來分析渠道中的現象。研究中發現波形振幅與寬高比對波形渠道的熱傳特性有顯著的影響,而波長對熱傳的影響則是不大。而由於增加熱傳率一般都會伴隨著壓降的增加,所以也利用了結合反應曲面法及基因演算法的最佳化流程來找出最佳熱傳表現的波形尺寸,設計的參數為波形振幅、波長、以及寬高比,熱傳性能因子則為設計的目標參數,雷諾數範圍則為50~450。最佳化流程中反應曲面法建立出的目標函數和以CFD計算出來的結果誤差在3.2%~5.4%。最佳化後的尺寸所得到的熱傳效能因子在雷諾數為50時比參考文獻高出了34%,而在雷諾數為150時則是高出了61%。
    綜觀本研究利用結合反應曲面法及基因演算法的最佳化流程在設計幾何尺寸的應用後,在肋條/波形渠道及隔板型太陽能集熱器等三個實例中得到有效的結果。因此可得知這個最佳化流程在以上三個方面的尺寸快速設計開發與最佳化上是個有力的工具,更可進一步的擴展應用到其他的熱傳設計上。

    In this study, a multi-parameter constrained optimization procedure integrating the design of experiments (DOE), response surface methodology (RSM), genetic algorithm (GA) and computational fluid dynamics (CFD) is proposed to design the geometric configuration for three practical cases: ribbed/wavy channels and solar collector with partitions. In view of the optimization performed in this study, the proposed procedure which combines the response surface methodology and genetic algorithm works well on designing the geometric configuration of the cases: ribbed/wavy channel and solar collector with partitions. Therefore, it can be concluded that this integrated optimization process is a powerful tool for developing the rapid design and doing optimization for these three cases, and it can be further extended to the optimization of other heat transfer designs.

    摘要 I Extended Abstract IV 誌謝 VII 目錄 VIII 表目錄 XIII 圖目錄 XV 符號表 XVIII 第一章 緒論 1 1-1 研究動機和背景 1 1-2 文獻回顧 2 1-2-1 肋條壁面渠道 2 1-2-1波形壁面 6 1-2-3太陽能集熱器自然對流 8 1-2-4最佳化設計 10 1-3探討的主題及方法 11 第二章 理論分析 13 2-1 空間流場解析 13 2-2紊流模式 16 2-2-1牆函數(wall function) 17 第三章 數值方法 23 3-1 概述 23 3-2 格點位置的配置 24 3-3 之差分方程式 25 3-3 壓力修正方程式 30 3-4 差分方程式的解法 34 3-5 收斂條件 34 第四章 最佳化設計 39 4-1 概述 39 4-2 反應曲面法 40 4-3 迴歸分析 41 4-3-1變異分析(Analysis of variance) 43 4-4 基因演算法 46 4-4-1 適應度 47 4-4-2 基因演算法編碼方式 48 4-4-3 基本基因演算法演算子 49 4-4-4終止條件 53 第五章 肋條渠道內紊流流場及熱傳特性的數值最佳化 61 5-1 前言 61 5-2 理論分析 62 5-2-1統御方程式 62 5-2-2紊流模型 63 5-2-3邊界條件 65 5-2-4參數定義 67 5-3數值方法 69 5-4結果與討論 69 5-4-1網格獨立測試 70 5-4-2紊流模式測試 70 5-4-3最佳化結果 71 5-4-4流場及熱傳表現分析 72 5-5結論 75 第六章 太陽能集熱器自然對流之最佳化數值研究 88 6-1 前言 88 6-2理論分析 88 6-2-1 統御方程式 88 6-2-2 邊界條件 91 6-2-3 參數定義 91 6-3 數值計算方法 92 6-4結果與討論 92 6-4-1隔板幾何參數的效果 93 6-4-2最佳化結果 97 6-5 結論 98 第七章 波形渠道應用基因演算法之數值最佳化 112 7-1 前言 112 7-2 理論分析 113 7-2-1 統御方程式 113 7-2-2邊界條件 114 7-2-3 參數定義 115 7-3數值計算方法 116 7-4 結果與討論 117 7-4-1網格獨立測試 117 7-4-2波形振幅的影響 117 7-4-3波長的影響 118 7-4-4寬高比的影響 119 7-4-5最佳化結果 120 7-5 結論 121 第八章 結論與未來研究方向建議 137 8-1 結論 137 8-2未來研究方向與建議 139 參考文獻 141

    [1] Marriott, J., Where and How to Use Plate Heat Exchangers, Chemical Engineering, vol. 78, pp. 127-134, 1971.
    [2] Focke, W.W., Zachariades, J., and Olivier, I., The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers, International Journal of Heat and Mass Transfer, vol. 28, no. 8, pp. 1469-1479, 1985.
    [3] Sundén, B., and Sköldheden, T., Heat Transfer and Pressure Drop in a New Type of Corrugated Channels, International Communications in Heat and Mass Transfer, vol. 12, no. 5, pp. 559-566, 1985.
    [4] Webb, B.W., and Ramadhyani, S., Conjugate Heat Transfer in a Channel with Staggered Ribs, International Journal of Heat and Mass Transfer, vol. 28, no. 9, pp. 1679-1687, 1985.
    [5] Focke, W.W., and Knibbe, P. G., Flow Visualization in Parallel-Plate Ducts with Corrugated Walls, Journal of Fluid Mechanics, vol. 165, pp. 73-77, 1986.
    [6] Heavner, R.L., Kumar H., and Wanniarachchi, A.S., Performance of an Industrial Plate Heat Exchanger: Effect of Chevron Angle, Heat Transfer AlChE Symp, vol. 89, no. 295, pp. 65-70, 1993.
    [7] Ros, S., Jallut, C., Grillot, J.M., and Amblard, M., A Transient-State Technique for the Heat Transfer Coefficient Measurement in a Corrugated Plate Heat Exchanger Channel Based on Frequency Response and Residence Time Distribution, International Journal of Heat and Mass Transfer, vol. 38, no. 7, pp. 1317-1325, 1995.
    [8] Lin, P.C., The Effect of Geometric Shape on Plate Heat Exchangers, Department of Mechanical Engineering, National Chiao Tung University Hsinchu, Taiwan, 1995.
    [9] Paras, S., Kanaris, A., Mouza, A., and Karabelas, A., Cfd Code Application to Flow through Narrow Channels with Corrugated Walls.
    [10] Mehrabian, M., and Poulter, R., Hydrodynamics and Thermal Characteristics of Corrugated Channels: Computational Approach, Applied Mathematical Modelling, vol. 24, no. 5, pp. 343-364, 2000.
    [11] Kim, K.Y., and Kim, S.S., Shape Optimization of Rib-Roughened Surface to Enhance Turbulent Heat Transfer, International journal of heat and mass transfer, vol. 45, no. 13, pp. 2719-2727, 2002.
    [12] Wei, J.H., Numerical Simulation of Fluid Flow and Conjugate Heat Transfer for in a Horizontal Channel with a Heat Section, Department Of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2003.
    [13] Chung, C.H., Transient Liquid Crystal Measurement of Heat Transfer Coefficient in Corrugated Plate Channels with Sine Wave Cross Section, Mechanical and Automation Engineering, Da-Yeh University Changhua, Taiwan, 2005.
    [14] Naphon, P., Heat Transfer Characteristics and Pressure Drop in Channel with V Corrugated Upper and Lower Plates, Energy conversion and management, vol. 48, no. 5, pp. 1516-1524, 2007.
    [15] Dvorak, F., Calculation of Turbulent Boundary Layers on Rough Surfaces in Pressure Gradient, AIAA journal, vol. 7, no. 9, pp. 1752-1759, 1969.
    [16] Tachie, M.F., and Shah, M.K., Favorable Pressure Gradient Turbulent Flow over Straight and Inclined Ribs on Both Channel Walls, Physics of Fluids, vol. 20, no. 9, pp. 095103, 2008.
    [17] Mulhearn, P., Turbulent Boundary Layer Wall‐Pressure Fluctuations Downstream from an Abrupt Change in Surface Roughness, Physics of Fluids, vol. 19, no. 6, pp. 796-801, 2008.
    [18] Sunden, B., and Trollheden, S., Periodic Laminar Flow and Heat Transfer in a Corrugated Two-Dimensional Channel, International Communications in Heat and Mass Transfer, vol. 16, no. 2, pp. 215-225, 1989.
    [19] Bhaganagar, K., Coleman, G., and Kim, J., Effect of Roughness on Pressure Fluctuations in a Turbulent Channel Flow, Physics of Fluids, vol. 19, no. 2, pp. 028103, 2007.
    [20] Amon, C.H., and Mikic, B.B., Numerical Prediction of Convective Heat Transfer in Self-Sustained Oscillatory Flows, Journal of thermophysics and heat transfer, vol. 4, no. 2, pp. 239-246, 1990.
    [21] Thianpong, C., Chompookham, T., Skullong, S., and Promvonge, P., Thermal Characterization of Turbulent Flow in a Channel with Isosceles Triangular Ribs, International Communications in Heat and Mass Transfer, vol. 36, no. 7, pp. 712-717, 2009.
    [22] Yalamanchili, R.C., Sirivat, A., and Rajagopal, K., An Experimental Investigation of the Flow of Dilute Polymer Solutions through Corrugated Channels, Journal of non-newtonian fluid mechanics, vol. 58, no. 2, pp. 243-277, 1995.
    [23] Nikuradse, J., Laws of Flow in Rough Pipes: National Advisory Committee for Aeronautics Washington, 1950.
    [24] Promvonge, P., Chompookham, T., Kwankaomeng, S., and Thianpong, C., Enhanced Heat Transfer in a Triangular Ribbed Channel with Longitudinal Vortex Generators, Energy Conversion and Management, vol. 51, no. 6, pp. 1242-1249, 2010.
    [25] Zimmerer, C., Gschwind, P., Gaiser, G., and Kottke, V., Comparison of Heat and Mass Transfer in Different Heat Exchanger Geometries with Corrugated Walls, Experimental thermal and fluid science, vol. 26, no. 2, pp. 269-273, 2002.
    [26] Nagano, Y., Hattori, H., and Houra, T., Dns of Velocity and Thermal Fields in Turbulent Channel Flow with Transverse-Rib Roughness, International journal of heat and fluid flow, vol. 25, no. 3, pp. 393-403, 2004.
    [27] Shah, R., and Focke, W., Plate Heat Exchangers and Their Design Theory, Heat Transfer Equipment Design, vol. 227-254, 1988.
    [28] Ding, J., and Manglik, R.M., Analytical Solutions for Laminar Fully Developed Flows in Double-Sine Shaped Ducts, Heat and Mass Transfer, vol. 31, no. 4, pp. 269-277, 1996.
    [29] Ciofalo, M., Collins, M., and Stasiek, J., Flow and Heat Transfer Predictions in Flow Passages of Air Preheaters- Assessment of Alternative Modeling Approaches, Computer simulations in compact heat exchangers, Southampton, United Kingdom and Boston, MA, Computational Mechanics Publications, 1998, pp. 169-225, 1998.
    [30] Saniei, N., and Dini, S., Heat Transfer Characteristics in a Wavy-Walled Channel, Journal of heat transfer, vol. 115, no. 3, pp. 788-792, 1993.
    [31] Fabbri, G., Heat Transfer Optimization in Corrugated Wall Channels, International Journal of Heat and Mass Transfer, vol. 43, no. 23, pp. 4299-4310, 2000.
    [32] Wang, G., and Vanka, S.P., Convective Heat Transfer in Periodic Wavy Passages, International Journal of Heat and Mass Transfer, vol. 38, no. 17, pp. 3219-3230, 1995.
    [33] Wang, C.C., and Chen, C.K., Forced Convection in a Wavy-Wall Channel, International Journal of Heat and Mass Transfer, vol. 45, no. 12, pp. 2587-2595, 2002.
    [34] Jang, J.Y., and Lin, C.N., A Numerical Analysis of Three-Dimensional Heat Transfer and Fluid Flow in Chevron Plate Channels, in Ashrae Transactions, Minneapolis, 2000, pp. 856-863.
    [35] Fabbri, G., and Rossi, R., Analysis of the Heat Transfer in the Entrance Region of Optimised Corrugated Wall Channel, International communications in heat and mass transfer, vol. 32, no. 7, pp. 902-912, 2005.
    [36] Kowalewski, T.A., Szumbarski, J., and Blonski, S., Low Reynolds Number Instability of the Laminar Flow between Wavy Walls. pp. 1473-1480.
    [37] Yang, Y.T., and Peng, H.S., Numerical Study of Thermal and Hydraulic Performance of Compound Heat Sink, Numerical Heat Transfer, Part A: Applications, vol. 55, no. 5, pp. 432-447, 2009.
    [38] Mahmud, S., Das, P.K., Hyder, N., and Sadrul Islam, A. K. M., Free Convection in an Enclosure with Vertical Wavy Walls, International Journal of Thermal Sciences, vol. 41, no. 5, pp. 440-446, 2002.
    [39] Dalal, A., and Das, M.K., Laminar Natural Convection in an Inclined Complicated Cavity with Spatially Variable Wall Temperature, International Journal of Heat and Mass Transfer, vol. 48, no. 18, pp. 3833-3854, 2005.
    [40] Kumar, B.V.R., Murthy, P.V.S.N., and Singh, P., Free Convection Heat Transfer from an Isothermal Wavy Surface in a Porous Enclosure, International Journal for Numerical Methods in Fluids, vol. 28, no. 4, pp. 633-661, 1998.
    [41] Nag, A., Sarkar, A., and Sastri, V., Effect of Thick Horizontal Partial Partition Attached to One of the Active Walls of a Differentially Heated Square Cavity, Numerical Heat Transfer, vol. 25, no. 5, pp. 611-625, 1994.
    [42] Khan, J.A., and Yao G.F., Comparison of Natural Convection of Water and Air in a Partitioned Rectangular Enclosure, International journal of heat and mass transfer, vol. 36, no. 12, pp. 3107-3117, 1993.
    [43] Kelkar, K.M., and Patankar, S.V., Numerical Prediction of Natural Convection in Square Partitioned Enclosures, Numerical heat transfer, vol. 17, no. 3, pp. 269-285, 1990.
    [44] Probert, S.D., and Ward, J., Improvements in the Thermal Resistance of Vertical, Air-Filled, Enclosed Cavities, in Proceedings of the Fifth International Heat Transfer Conference, Tokyo, 1974, pp. 124-128.
    [45] Eiyad, A.N., and Oztop, H.F., Numerical Analysis of Al2O3/Water Nanofluids Natural Convection in a Wavy Walled Cavity, Numerical Heat Transfer, Part A: Applications, vol. 59, no. 5, pp. 403-419, 2011.
    [46] Yadav, S., Kaushal, M., Varun, and Siddhartha, Nusselt Number and Friction Factor Correlations for Solar Air Heater Duct Having Protrusions as Roughness Elements on Absorber Plate, Experimental Thermal and Fluid Science, vol. 44, pp. 34-41, 2013.
    [47] Karmare, S., and Tikekar, A., Experimental Investigation of Optimum Thermohydraulic Performance of Solar Air Heaters with Metal Rib Grits Roughness, Solar Energy, vol. 83, no. 1, pp. 6-13, 2009.
    [48] Karwa, R., Solanki, S., and Saini, J., Heat Transfer Coefficient and Friction Factor Correlations for the Transitional Flow Regime in Rib-Roughened Rectangular Ducts, International Journal of Heat and Mass Transfer, vol. 42, no. 9, pp. 1597-1615, 1999.
    [49] Turan, O., Chakraborty, N., and Poole, R.J., Laminar Natural Convection of Bingham Fluids in a Square Enclosure with Differentially Heated Side Walls, Journal of Non-Newtonian Fluid Mechanics, vol. 165, no. 15–16, pp. 901-913, 2010.
    [50] Turan, O., Poole, R.J., and Chakraborty, N., Influences of Boundary Conditions on Laminar Natural Convection in Rectangular Enclosures with Differentially Heated Side Walls, International Journal of Heat and Fluid Flow, vol. 33, no. 1, pp. 131-146, 2012.
    [51] Amraqui, S., Mezrhab, A., and Abid, C., Combined Natural Convection and Surface Radiation in Solar Collector Equipped with Partitions, Appl. Sol. Energy, vol. 47, no. 1, pp. 36-47, 2011.
    [52] Fu, W.S., Perng, J.C., and Shieh, W.J., Transient Laminar Natural Convection in a Partitioned Enclosure Heated by Uniform Flux, Wärme- und Stoffübertragung, vol. 25, no. 4, pp. 233-243, 1990.
    [53] Acharya, S., and Jetli, R., Heat Transfer Due to Buoyancy in a Partially Divided Square Box, International Journal of Heat and Mass Transfer, vol. 33, no. 5, pp. 931-942, 1990.
    [54] Rahman, M., and Sharif, M.A.R., Numerical Study of Laminar Natural Convection in Inclined Rectangular Enclosures of Various Aspect Ratios, Numerical Heat Transfer, Part A: Applications, vol. 44, no. 4, pp. 355-373, 2003.
    [55] Yao, L.S., Natural Convection Along a Vertical Wavy Surface, Journal of Heat Transfer, vol. 105, no. 3, pp. 465-468, 1983.
    [56] Mohsin, S., Maqbool, A., and Khan, W.A., Optimization of Cylindrical Pin-Fin Heat Sinks Using Genetic Algorithms, Components and Packaging Technologies, IEEE Transactions on, vol. 32, no. 1, pp. 44-52, 2009.
    [57] Chiang, K.T., and Chang, F.P., Application of Response Surface Methodology in the Parametric Optimization of a Pin-Fin Type Heat Sink, International communications in heat and mass transfer, vol. 33, no. 7, pp. 836-845, 2006.
    [58] Gupta, D., Solanki, S., and Saini, J., Thermohydraulic Performance of Solar Air Heaters with Roughened Absorber Plates, Solar Energy, vol. 61, no. 1, pp. 33-42, 1997.
    [59] Valdevit, L., Pantano, A., Stone, H.A., and Evans, A.G., Optimal Active Cooling Performance of Metallic Sandwich Panels with Prismatic Cores, International Journal of Heat and Mass Transfer, vol. 49, no. 21–22, pp. 3819-3830, 2006.
    [60] Pettersson, F., and Söderman, J., Design of Robust Heat Recovery Systems in Paper Machines, Chemical Engineering and Processing: Process Intensification, vol. 46, no. 10, pp. 910-917, 2007.
    [61] Kim, K.Y., and Shin, D.Y., Optimization of a Staggered Dimpled Surface in a Cooling Channel Using Kriging Model, International Journal of Thermal Sciences, vol. 47, no. 11, pp. 1464-1472, 2008.
    [62] Kim, H.M., Moon, M.A., and Kim, K.Y., Multi-Objective Optimization of a Cooling Channel with Staggered Elliptic Dimples, Energy, vol. 36, no. 5, pp. 3419-3428, 2011.
    [63] Wang, Y., He, Y.L., Mei, D.H., and Tao, W.Q., Optimization Design of Slotted Fin by Numerical Simulation Coupled with Genetic Algorithm, Applied Energy, vol. 88, no. 12, pp. 4441-4450, 2011.
    [64] Bagley, J.D., The Behavior of Adaptive Systems Which Employ Genetic and Correlation Algorithms, University of Michigan, 1967.
    [65] Holland, J.H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence: U Michigan Press, 1975.
    [66] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning: Addison-wesley Reading Menlo Park, 1989.
    [67] Davis, L., Handbook of Genetic Algorithms: Van Nostrand Reinhold New York, 1991.
    [68] Koza, J.R., Genetic Programming: On the Programming of Computers by Means of Natural Selection: MIT press, 1992.
    [69] Ozkol, I., and Komurgoz, G., Determination of the Optimum Geometry of the Heat Exchanger Body Via a Genetic Algorithm, Numerical Heat Transfer, Part A: Applications, vol. 48, no. 3, pp. 283-296, 2005.
    [70] Fabbri, G., A Genetic Algorithm for Fin Profile Optimization, International Journal of Heat and Mass Transfer, vol. 40, no. 9, pp. 2165-2172, 1997.
    [71] Launder, B.E., and Spalding, D.B., Lectures in Mathematical Models of Turbulence: By Be Lauder and Db Spalding: Academic press, 1972.
    [72] Launder, B.E., and Spalding, D.B., The Numerical Computation of Turbulent Flows, Computer methods in applied mechanics and engineering, vol. 3, no. 2, pp. 269-289, 1974.
    [73] Serag-Eldin, M., and Spalding, D., Computations of Three Dimensional Gas Turbine Combustion Chamber Flows, Journal for Engineering for Power, vol. 101, no. 3, pp. 326-336, 1979.
    [74] Jayatilleke, C.L.V., The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer, Prog. Heat Mass Transfer, vol. 1, pp. 193-329, 1969.
    [75] Kim, S.E., and Choudhury, D., A near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient, Separated and complex flows- 1995, pp. 273-280, 1995.
    [76] Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: McGraw-Hill, 1980.
    [77] Patankar, S.V., and Spalding, D.B., A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, International Journal of Heat and Mass Transfer, vol. 15, no. 10, pp. 1787-1806, 1972.
    [78] Van, D.J., and Raithby, G., Enhancements of the Simple Method for Predicting Incompressible Fluid Flows, Numerical heat transfer, vol. 7, no. 2, pp. 147-163, 1984.
    [79] Box, G., and Wilson, K., On the Experimental Attainment of Optimum Conditions, Breakthroughs in Statistics, pp. 270-310: Springer, 1992.
    [80] Yakhot, V., and Orszag, S.A., Renormalization-Group Analysis of Turbulence, Physical review letters, vol. 57, no. 14, pp. 1722, 1986.
    [81] Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z., and Zhu, J., A New K-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows, Computers & Fluids, vol. 24, no. 3, pp. 227-238, 1995.
    [82] Dittus, F.W., and Boelter, L.M.K., Heat Transfer in Automobile Radiators of the Tubular Type, Univ. California Pub. Eng, vol. 2, pp. 443-461, 1930.
    [83] Blasius, H., Das hnlichkeitsgesetz Bei Reibungsvorgängen in Flüssigkeiten: Springer, 1913.
    [84] Gong, L., Kota, K., Tao, W., and Joshi, Y., Parametric Numerical Study of Flow and Heat Transfer in Microchannels with Wavy Walls, Journal of Heat Transfer, vol. 133, no. 5, pp. 051702, 2011.
    [85] Gee, D.L., and Webb, R., Forced Convection Heat Transfer in Helically Rib-Roughened Tubes, International Journal of Heat and Mass Transfer, vol. 23, no. 8, pp. 1127-1136, 1980.

    下載圖示 校內:2015-11-21公開
    校外:2017-11-21公開
    QR CODE