| 研究生: |
林智苓 Lin, Chi-Leng |
|---|---|
| 論文名稱: |
研究關於造牙骨質細胞瘤的病理性及正常
牙骨質細胞標誌 A Study about the Pathogenesis of a Cementoblastoma and Cell Markers of Normal Cementoblast |
| 指導教授: |
袁國
Yuan, Kuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 牙骨質細胞瘤 、牙骨質貼附蛋白 、人類造牙骨質細胞 、腫瘤易感受性基因101 |
| 外文關鍵詞: | cementoblastoma, cementum attachment protein, human cementoblast, tumor susceptibility gene 101 |
| 相關次數: | 點閱:58 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
造牙骨質細胞瘤(cementoblastoma)是一種良性的腫瘤,大多數關於此腫瘤的研究都是病例報告(case reports) 或病理診斷(pathological diagnosis),都沒有對其病理機制作探討。牙骨質(cementum)是貼附在牙根表面上一種獨特礦物質化的結締組織。在牙周再生過程當中扮演著不可缺少的角色。大多數有關於牙周再生的研究顯示,再生的過程中牙骨質的形成是絕對必要的。雖然牙骨質在組織學上已經有明確的界定,但是造牙骨質細胞(cementoblast)仍然沒有被廣為接受的細胞標誌。根據之前的研究,造牙骨質細胞相似骨細胞(osteoblasts)會表現bone sialoprotein (BSP),而齒齦纖維母細胞(gingival fibroblast)和牙周韌帶纖維母細胞
(periodontal ligament fibroblast, PDL)則不會表現。所以本實驗目的是想要了解造牙骨質細胞瘤的致病機轉及正常牙骨質細胞的細胞標誌。近年來,在造牙骨質瘤細胞培養液中可獲取某種特殊蛋白且可以在正常牙骨質細胞中獨特的表現出來,稱為牙骨質貼附蛋白(cementum attachment protein, CAP)。然而,牙骨質貼附蛋白(CAP)尚未完全的被認可當作造牙骨質細胞的細胞標誌。為了使造牙骨質細胞生物學上的鑑定更加清楚,就必須發展更深入的認識於細胞的表現。在本研究當中,我們利用了牙骨質貼附蛋白(CAP)上一段特殊的序列所生產的多株抗體來確認造牙骨質細胞瘤的細胞會表現牙骨質貼附蛋白(CAP)。隨後,我們使用cDNA
microarray(一個有力並可以大規模分析的工具)來比較同個病人中造牙骨質細胞瘤細胞(cementoblastoma cell) 和齒齦纖維母細胞(gingivalfibroblast)之間基因表現的差異。在cDNA microarray 的資料中,我們想知道哪個基因在牙骨質細胞瘤細胞表現較高且和腫瘤形成的機制有關。Tumor susceptibility gene 101 (TSG101)只在牙骨質細胞瘤細胞中表現。而
在牙骨質細胞瘤細胞alkaline phosphatase (ALP)的活性表現量相對高於其他細胞。這些因素可能是造成它病理性的原因。而我們也發現在cDNA microarray 的資料中,junctophilin-2 (JPH2)是在牙骨質瘤細胞裡表現量最高的基因,因此,我們利用西方墨點法確認JPH2 在體外的表現,它是一個特殊分子存在於牙骨質細胞瘤細胞及正常牙骨質細胞。它應可以當作牙骨質細胞標誌的候選分子。我們希望這項研究的結果將可以幫助更加
詳細瞭解牙骨質的生物性,也許可為未來臨床應用提供有用的資訊。
A cementoblastoma is a benign tumor. Most cementoblastoma studies are case reports or pathological diagnoses that do not discuss its pathological mechanism. Cementum is a unique mineralized connective tissue that covers
the root surfaces of the teeth. It is indispensable for periodontal regeneration.
Although cementum is well-defined histologically, there is no universally-accepted cell marker for the cementoblast. Previous studies suggested that cementoblasts as well as osteoblasts expressed bone sialoprotein (BSP), but that human gingival and periodontal ligament
fibroblasts did not. The aim of this study was to understand the pathogenesis of a cementoblastoma and the cell markers of a normal cementoblast.Recently, a protein isolated from the conditioned medium of cementoblastoma
culture was uniquely expressed by cementoblasts and called “cementum attachment protein (CAP)”. However, CAP is not yet unequivocally accepted as the cell marker for a cementoblast. To clarify the biological identity of the
cementoblast, it is necessary to develop a deeper understanding of its expression profile. In the present study, we produced a polyclonal antibody against a specific CAP sequence to confirm that a cementoblastoma expressed
CAP. Subsequently, we used a cDNA microarray, a powerful large-scale screening tool, to compare the differences in expression between a human
cementoblastoma cell and a human gingival fibroblast from the same patient.
In addition to the cDNA microarray data, we wanted to know which genes were upregulated in cementoblastomas, and we wanted to learn more about the mechanism of tumorigenesis. The tumor susceptibility gene 101 (TSG101) was overexpressed only in cementoblastomas. ALP activity in cementoblastomas was relatively higher than in other cells. That might be the
reason for its pathogenesis. We also found, in the cDNA microarray data, that the human junctophilin-2 (JPH2) gene was the most highly expressed in the cementoblastoma; therefore, we used Western blotting to confirm the in vitro
expression of JPH2, a special protein in cementoblastomas and cementoblasts.
It might be a candidate molecule for a cementoblast marker. We hope that the
results of this study will add to a detailed understanding of cementum biology
and provide useful information for future clinical application.
Alatli I, Lundmark C, Hammarstrom L (1996). The localization of epithelial root sheath
cells during cementum formation in rat molars. J Periodontal Res 31(6):433-40.
Alvarez-Perez MA, Narayanan S, Zeichner-David M, Rodriguez Carmona B, Arzate H
(2006). Molecular cloning, expression and immunolocalization of a novel human
cementum-derived protein (CP-23). Bone 38(3):409-19.
Alvarez Perez MA, Pitaru S, Alvarez Fregoso O, Reyes Gasga J, Arzate H (2003).
Anti-cementoblastoma-derived protein antibody partially inhibits mineralization on a
cementoblastic cell line. J Struct Biol 143(1):1-13.
Arzate H, Olson SW, Page RC, Gown AM, Narayanan AS (1992). Production of a
monoclonal antibody to an attachment protein derived from human cementum. Faseb J
6(11):2990-5.
Aubin JE, Heersche JN, Merrilees MJ, Sodek J (1982). Isolation of bone cell clones with
differences in growth, hormone responses, and extracellular matrix production. J Cell Biol
92(2):452-61.
Aukhil I (1991). Biology of tooth-cell adhesion. Dent Clin North Am 35(3):459-67.
Banovac K, Koren E (2000). Triiodothyronine stimulates the release of membrane-bound
alkaline phosphatase in osteoblastic cells. Calcif Tissue Int 67(6):460-5.
Beresford JN, Joyner CJ, Devlin C, Triffitt JT (1994). The effects of dexamethasone and
1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in
vitro. Arch Oral Biol 39(11):941-7.
Bianco P, Fisher LW, Young MF, Termine JD, Robey PG (1991). Expression of bone
sialoprotein (BSP) in developing human tissues. Calcif Tissue Int 49(6):421-6.
Biggs JT, Benenati FW (1995). Surgically treating a benign cementoblastoma while
retaining the involved tooth. J Am Dent Assoc 126(9):1288-90.
Birkedal-Hansen H, Butler WT, Taylor RE (1977). Proteins of the periodontium.
Characterization of the insoluble collagens of bovine dental cementum. Calcif Tissue Res
53
23(1):39-44.
Blumberg P, Brenner R, Budny S, Kresse H (1997). Increased turnover of small
proteoglycans synthesized by human osteoblasts during cultivation with ascorbate and
beta-glycerophosphate. Calcif Tissue Int 60(6):554-60.
Boabaid F, Gibson CW, Kuehl MA, Berry JE, Snead ML, Nociti FH, Jr., Katchburian E,
Somerman MJ (2004). Leucine-rich amelogenin peptide: a candidate signaling molecule
during cementogenesis. J Periodontol 75(8):1126-36.
Bosshardt DD, Zalzal S, McKee MD, Nanci A (1998). Developmental appearance and
distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec
250(1):13-33.
Bronckers AL, Farach-Carson MC, Van Waveren E, Butler WT (1994).
Immunolocalization of osteopontin, osteocalcin, and dentin sialoprotein during dental root
formation and early cementogenesis in the rat. J Bone Miner Res 9(6):833-41.
Chang JG, Su TH, Wei HJ, Wang JC, Chen YJ, Chang CP, Jeng CJ (1999). Analysis of
TSG101 tumour susceptibility gene transcripts in cervical and endometrial cancers. Br J
Cancer 79(3-4):445-50.
Chen J, Shapiro HS, Sodek J (1992). Development expression of bone sialoprotein mRNA
in rat mineralized connective tissues. J Bone Miner Res 7(8):987-97.
Chen L, Scholler J, Foged NT (1996). ALP induction by beta-glycerophosphate during the
non-mineralization phase in vitro. J Tongji Med Univ 16(1):20-4.
Cheng H, Caterson B, Neame PJ, Lester GE, Yamauchi M (1996). Differential distribution
of lumican and fibromodulin in tooth cementum. Connect Tissue Res 34(2):87-96.
Christner P, Robinson P, Clark CC (1977). A preliminary characterization of human
cementum collagen. Calcif Tissue Res 23(2):147-50.
Cochran DL, Wozney JM (1999). Biological mediators for periodontal regeneration.
Periodontol 2000 19(40-58.
54
Cundiff EJ, 2nd (2000). Developing cementoblastoma: case report and update of
differential diagnosis. Quintessence Int 31(3):191-5.
D'Errico JA, MacNeil RL, Takata T, Berry J, Strayhorn C, Somerman MJ (1997).
Expression of bone associated markers by tooth root lining cells, in situ and in vitro. Bone
20(2):117-26.
Draper JS, Pigott C, Thomson JA, Andrews PW (2002). Surface antigens of human
embryonic stem cells: changes upon differentiation in culture. J Anat 200(Pt 3):249-58.
Fisher LW, Whitson SW, Avioli LV, Termine JD (1983). Matrix sialoprotein of developing
bone. J Biol Chem 258(20):12723-7.
Fleming P, Ryan D (2002). Benign cementoblastoma: a case report. J Ir Dent Assoc
48(1):3-5.
Fong CD, Slaby I, Hammarstrom L (1996). Amelin: an enamel-related protein, transcribed
in the cells of epithelial root sheath. J Bone Miner Res 11(7):892-8.
Ganss B, Kim RH, Sodek J (1999). Bone sialoprotein. Crit Rev Oral Biol Med
10(1):79-98.
Ganta DR, McCarthy MB, Gronowicz GA (1997). Ascorbic acid alters collagen integrins
in bone culture. Endocrinology 138(9):3606-12.
Gao J, Symons AL, Haase H, Bartold PM (1999). Should cementoblasts express alkaline
phosphatase activity? Preliminary study of rat cementoblasts in vitro. J Periodontol
70(9):951-9.
Garrett S (1996). Periodontal regeneration around natural teeth. Ann Periodontol
1(1):621-66.
Glimcher MJ, Lefteriou B (1989). Soluble glycosylated phosphoproteins of cementum.
Calcif Tissue Int 45(3):165-72.
Grzesik WJ, Cheng H, Oh JS, Kuznetsov SA, Mankani MH, Uzawa K, Robey PG,
Yamauchi M (2000). Cementum-forming cells are phenotypically distinct from
55
bone-forming cells. J Bone Miner Res 15(1):52-9.
Hanash SM, Strahler JR, Kuick R, Chu EH, Nichols D (1988). Identification of a
polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem
263(26):12813-5.
Harrison G, Shapiro IM, Golub EE (1995). The phosphatidylinositol-glycolipid anchor on
alkaline phosphatase facilitates mineralization initiation in vitro. J Bone Miner Res
10(4):568-73.
Hunter GK, Poitras MS, Underhill TM, Grynpas MD, Goldberg HA (2001). Induction of
collagen mineralization by a bone sialoprotein--decorin chimeric protein. J Biomed Mater
Res 55(4):496-502.
Ikezawa K, Ohtsubo M, Norwood TH, Narayanan AS (1998). Role of cyclin E and cyclin
E-dependent kinase in mitogenic stimulation by cementum-derived growth factor in human
fibroblasts. Faseb J 12(12):1233-9.
Ivanovski S, Li H, Haase HR, Bartold PM (2001). Expression of bone associated
macromolecules by gingival and periodontal ligament fibroblasts. J Periodontal Res
36(3):131-41.
Koike H, Uzawa K, Grzesik WJ, Seki N, Endo Y, Kasamatsu A, Yamauchi M, Tanzawa H
(2005). GLUT1 is highly expressed in cementoblasts but not in osteoblasts. Connect Tissue
Res 46(3):117-24.
Komori T, Kishimoto T (1998). Cbfa1 in bone development. Curr Opin Genet Dev
8(4):494-9.
Koonin EV, Abagyan RA (1997). TSG101 may be the prototype of a class of dominant
negative ubiquitin regulators. Nat Genet 16(4):330-1.
Lekic P, McCulloch CA (1996). Periodontal ligament cell population: the central role of
fibroblasts in creating a unique tissue. Anat Rec 245(2):327-41.
Lekic P, Sodek J, McCulloch CA (1996). Osteopontin and bone sialoprotein expression in
regenerating rat periodontal ligament and alveolar bone. Anat Rec 244(1):50-8.
56
Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y, Hurley M, Guo C, Boskey A, Sun L, Harris
SE, Rowe DW, Ke HZ, Wu D (2005). Dkk2 has a role in terminal osteoblast differentiation
and mineralized matrix formation. Nat Genet 37(9):945-52.
Lu Q, Hope LW, Brasch M, Reinhard C, Cohen SN (2003). TSG101 interaction with HRS
mediates endosomal trafficking and receptor down-regulation. Proc Natl Acad Sci U S A
100(13):7626-31.
Macneil RL, Sheng N, Strayhorn C, Fisher LW, Somerman MJ (1994). Bone sialoprotein is
localized to the root surface during cementogenesis. J Bone Miner Res 9(10):1597-606.
Marks SC, Jr., Popoff SN (1988). Bone cell biology: the regulation of development,
structure, and function in the skeleton. Am J Anat 183(1):1-44.
Maucuer A, Camonis JH, Sobel A (1995). Stathmin interaction with a putative kinase and
coiled-coil-forming protein domains. Proc Natl Acad Sci U S A 92(8):3100-4.
McKee MD, Zalzal S, Nanci A (1996). Extracellular matrix in tooth cementum and mantle
dentin: localization of osteopontin and other noncollagenous proteins, plasma proteins, and
glycoconjugates by electron microscopy. Anat Rec 245(2):293-312.
Minamisawa S, Oshikawa J, Takeshima H, Hoshijima M, Wang Y, Chien KR, Ishikawa Y,
Matsuoka R (2004). Junctophilin type 2 is associated with caveolin-3 and is
down-regulated in the hypertrophic and dilated cardiomyopathies. Biochem Biophys Res
Commun 325(3):852-6.
Mornet E, Stura E, Lia-Baldini AS, Stigbrand T, Menez A, Le Du MH (2001). Structural
evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone
mineralization. J Biol Chem 276(33):31171-8.
Mosqueda-Taylor A, Ledesma-Montes C, Caballero-Sandoval S, Portilla-Robertson J,
Ruiz-Godoy Rivera LM, Meneses-Garcia A (1997). Odontogenic tumors in Mexico: a
collaborative retrospective study of 349 cases. Oral Surg Oral Med Oral Pathol Oral
Radiol Endod 84(6):672-5.
Mueckler M (1994). Facilitative glucose transporters. Eur J Biochem 219(3):713-25.
57
Mueckler M, Hresko RC, Sato M (1997). Structure, function and biosynthesis of GLUT1.
Biochem Soc Trans 25(3):951-4.
Narisawa S, Hofmann MC, Ziomek CA, Millan JL (1992). Embryonic alkaline
phosphatase is expressed at M-phase in the spermatogenic lineage of the mouse.
Development 116(1):159-65.
Nishi M, Mizushima A, Nakagawara K, Takeshima H (2000). Characterization of human
junctophilin subtype genes. Biochem Biophys Res Commun 273(3):920-7.
Nishi M, Sakagami H, Komazaki S, Kondo H, Takeshima H (2003). Coexpression of
junctophilin type 3 and type 4 in brain. Brain Res Mol Brain Res 118(1-2):102-10.
Ochsenius G, Ortega A, Godoy L, Penafiel C, Escobar E (2002). Odontogenic tumors in
Chile: a study of 362 cases. J Oral Pathol Med 31(7):415-20.
Ohki K, Kumamoto H, Nitta Y, Nagasaka H, Kawamura H, Ooya K (2004). Benign
cementoblastoma involving multiple maxillary teeth: report of a case with a review of the
literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(1):53-8.
Orsini G, Fioroni M, Rubini C, Piattelli A (2001). Zebra XXI, Part 2. Cementoblastoma. J
Endod 27(8):546-7.
Piattelli A, D'Addona A, Piattelli M (1990). Benign cementoblastoma: review of the
literature and report of a case at an unusual location. Acta Stomatol Belg 87(3):209-15.
Piattelli A, Di Alberti L, Scarano A, Piattelli M (1998). Benign cementoblastoma
associated with an unerupted third molar. Oral Oncol 34(3):229-31.
Polson AM (1986). The root surface and regeneration; present therapeutic limitations and
future biologic potentials. J Clin Periodontol 13(10):995-9.
Pynn BR, Sands TD, Bradley G (2001). Benign cementoblastoma: a case report. J Can
Dent Assoc 67(5):260-2.
Saito M, Iwase M, Maslan S, Nozaki N, Yamauchi M, Handa K, Takahashi O, Sato S,
58
Kawase T, Teranaka T, Narayanan AS (2001). Expression of cementum-derived attachment
protein in bovine tooth germ during cementogenesis. Bone 29(3):242-8.
Saygin NE, Giannobile WV, Somerman MJ (2000). Molecular and cell biology of
cementum. Periodontol 2000 24(73-98.
Schroeder HE (1992). Biological problems of regenerative cementogenesis: synthesis and
attachment of collagenous matrices on growing and established root surfaces. Int Rev Cytol
142(1-59.
Schroeder HE (1993). Human cellular mixed stratified cementum: a tissue with alternating
layers of acellular extrinsic- and cellular intrinsic fiber cementum. Schweiz Monatsschr
Zahnmed 103(5):550-60.
Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD,
Huggins GR, Gearhart JD (1998). Derivation of pluripotent stem cells from cultured
human primordial germ cells. Proc Natl Acad Sci U S A 95(23):13726-31.
Sobel A (1991). Stathmin: a relay phosphoprotein for multiple signal transduction? Trends
Biochem Sci 16(8):301-5.
Solheim E (1998). Growth factors in bone. Int Orthop 22(6):410-6.
Sommer B, Bickel M, Hofstetter W, Wetterwald A (1996). Expression of matrix proteins
during the development of mineralized tissues. Bone 19(4):371-80.
Stiglbauer R, Steurer M, Schimmerl S, Kramer J (1992). MRI of cartilaginous tumours of
the larynx. Clin Radiol 46(1):23-7.
Taira M, Nakao H, Takahashi J, Araki Y (2003). Effects of two vitamins, two growth
factors and dexamethasone on the proliferation of rat bone marrow stromal cells and
osteoblastic MC3T3-E1 cells. J Oral Rehabil 30(7):697-701.
Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000). Junctophilins: a novel
family of junctional membrane complex proteins. Mol Cell 6(1):11-22.
Tenenbaum HC (1981). Role of organic phosphate in mineralization of bone in vitro. J
59
Dent Res 60 Spec No C(1586-9.
Tenenbaum HC, Heersche JN (1982). Differentiation of osteoblasts and formation of
mineralized bone in vitro. Calcif Tissue Int 34(1):76-9.
Tenorio D, Cruchley A, Hughes FJ (1993). Immunocytochemical investigation of the rat
cementoblast phenotype. J Periodontal Res 28(6 Pt 1):411-9.
Terranova VP, Martin GR (1982). Molecular factors determining gingival tissue interaction
with tooth structure. J Periodontal Res 17(5):530-3.
Ulmansky M, Hjorting-Hansen E, Praetorius F, Haque MF (1994). Benign
cementoblastoma. A review and five new cases. Oral Surg Oral Med Oral Pathol
77(1):48-55.
Uwanogho DA, Hardcastle Z, Balogh P, Mirza G, Thornburg KL, Ragoussis J, Sharpe PT
(1999). Molecular cloning, chromosomal mapping, and developmental expression of a
novel protein tyrosine phosphatase-like gene. Genomics 62(3):406-16.
Wang J, Zhou J, Bondy CA (1999). Igf1 promotes longitudinal bone growth by insulin-like
actions augmenting chondrocyte hypertrophy. Faseb J 13(14):1985-90.
Yamamoto T, Hinrichsen KV (1993). The development of cellular cementum in rat molars,
with special reference to the fiber arrangement. Anat Embryol (Berl) 188(6):537-49.
Yamamoto T, Domon T, Takahashi S, Wakita M (1996). Cellular cementogenesis in rat
molars: the role of cementoblasts in the deposition of intrinsic matrix fibers of cementum
proper. Anat Embryol (Berl) 193(5):495-500.
Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996). Evolution of bone
transplantation: molecular, cellular and tissue strategies to engineer human bone.
Biomaterials 17(2):175-85.