簡易檢索 / 詳目顯示

研究生: 毛士承
Mao, Shi-Cheng
論文名稱: 氧化鉭閾值切換憶阻器之氧空缺對閾值切換與仿脈衝神經元行為之影響
Influence of Oxygen Vacancy in TaOx-based Threshold Switching Memristor on Threshold Switching and Spiking Neuron Behavior
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: 閾值切換憶阻器揮發性元件神經元元件氧空缺
外文關鍵詞: threshold switching memristor, volatile, spiking neuron, oxygen vacancy
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Extended Abstract II 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 理論基礎與文獻回顧 3 2-1 閾值切換憶阻器 (Threshold switching memristor) 3 2-1-1 擴散型憶阻器 (Diffusive memristor) 6 2-1-2 莫特憶阻器 (Mott memristor) 9 2-1-3 陷阱輔助閾值換憶阻器 (Trap-assist threshold switching memristor) 11 2-2 阻態轉換機制 13 2-2-1 金屬電化學效應 (Electrochemical metallization) 14 2-2-2 介面自由能最小化 (Interfacial energy minimization) 16 2-2-3 熱效應 (Thermal effect) 18 2-2-4 陷阱輔助機制 (Trap assist mechanisms) 20 2-3 神經元之探討 22 2-3-1 生物神經元之組成與訊息傳遞原理 22 2-3-2 人工仿神經元之組成與訊息傳遞原理 25 2-3-3 人工神經元之訊息編碼 28 2-3-4 脈衝神經網路 (Spiking neural network, SNN) 30 2-4 相關文獻探討 32 2-4-1 擴散型憶阻器之隨機脈衝神經元與真隨亂數產生器27 32 2-4-2 擴散型憶阻器之痛覺感受器行為28 34 第三章 實驗方法與步驟 36 3-1 實驗材料 36 3-1-1 基板 36 3-1-2 基板清洗藥品 36 3-1-3 金屬電極 36 3-1-4 金屬氧化物 37 3-1-5 實驗使用氣氛 37 3-1-6 耗材 37 3-2 實驗設備 39 3-2-1 乾式熱氧化系統 39 3-2-2 濺鍍系統 39 3-3 實驗流程 40 3-3-1 基板清洗 40 3-3-2 乾式熱氧化成長SiO2 40 3-3-3 清洗已成長SiO2之基板 41 3-3-4 元件製備 41 3-4 分析儀器 42 3-4-1 表面粗度儀 (α-step) 42 3-4-2 前瞻聚焦離子束系統 (Advanced Focused Ion Beam System, FIB) 42 3-4-3 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 43 3-4-4 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 44 3-4-5 示波器 (Oscilloscope) 44 3-4-6 精密半導體參數分析儀 (Precision Semiconductor Parameter Analyzer) 45 第四章 結果與討論 46 4-1 元件結構與命名 46 4-2 材料分析結果與討論 49 4-2-1 表面粗度儀 (α-step) 49 4-2-2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 50 4-2-2 能量散佈光譜 (Energy Dispersive Spectroscopy, EDS) 54 4-2-3 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 57 4-3 電性量測與探討 66 4-3-1 Ag/TaOx/Pt電流電壓曲線 66 4-3-2 Ag/TaOx/Pt在不同掃伏速度量測下對元件電性影響 68 4-3-3 Ag/TaOx/Pt在不同電流範圍對元件電性的影響 70 4-3-4 不同溫度下進行量測對Ag/TaOx/Pt元件電性之影響 72 4-3-5 不同氧化層鍍膜氣氛對Ag/TaOx/Pt元件電性之影響 74 4-4 元件開關切換時間 76 4-5 元件電性的差異性 81 4-5-1 相同製程下的元件電性差異性 (Device to device variation) 81 4-5-2 多次量測下的元件電性差異性 (Cycle to cycle variation) 87 4-6 不同氧化層鍍膜氣氛下的元件阻抗分析 90 4-7 元件的阻態切換行為 95 4-8 仿脈衝神經元行為 97 4-9 文獻比較 101 第五章 結論 104 第六章 參考文獻 105

    (1) Moore, G. E. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter 2006, 11, 33-35, DOI: 10.1109/N-SSC.2006.4785860.
    (2) Hwang, C. S. Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 2015, 1, 1400056, DOI: 10.1002/aelm.201400056.
    (3) Xia, Q.; Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309-323, DOI: 10.1038/s41563-019-0291-x.
    (4) Yin, J.; Zeng, F.; Wan, Q.; Sun, Y.; Hu, Y.; Liu, J.; Li, G.; Pan, F. Self-Modulating Interfacial Cation Migration Induced Threshold Switching in Bilayer Oxide Memristive Device. J. Phys. Chem. C 2019, 123, 878-885, DOI: 10.1021/acs.jpcc.8b09793.
    (5) Huang, Y.-J.; Chao, S.-C.; Lien, D.-H.; Wen, C.-Y.; He, J.-H.; Lee, S.-C. Dual-functional memory and threshold resistive switching based on the push-pull mechanism of oxygen ions. Sci Rep 2016, 6, 23945, DOI: 10.1038/srep23945.
    (6) Kim, S. E.; Kim, M.-H.; Jang, J.; Kim, H.; Kim, S.; Jang, J.; Bae, J.-H.; Kang, I. M.; Lee, S.-H. Systematic Engineering of Metal Ion Injection in Memristors for Complex Neuromorphic Computing with High Energy Efficiency. Adv. Intell. Syst. 2022, 4, 2200110, DOI: 10.1002/aisy.202200110.
    (7) Midya, R.; Wang, Z.; Zhang, J.; Savel'ev, S. E.; Li, C.; Rao, M.; Jang, M. H.; Joshi, S.; Jiang, H.; Lin, P. Anatomy of Ag/Hafnia‐based selectors with 1010 nonlinearity. Adv. Mater. 2017, 29, 1604457, DOI: 10.1002/adma.201604457.
    (8) Jiang, H.; Belkin, D.; Savel’ev, S. E.; Lin, S.; Wang, Z.; Li, Y.; Joshi, S.; Midya, R.; Li, C.; Rao, M.; Barnell, M.; Wu, Q.; Yang, J. J.; Xia, Q. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 2017, 8, 882, DOI: 10.1038/s41467-017-00869-x.
    (9) Wang, Z.; Joshi, S.; Savel’ev, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Asapu, S.; Zhuo, Y.; Jiang, H.; Lin, P.; Li, C.; Yoon, J. H.; Upadhyay, N. K.; Zhang, J.; Hu, M.; Strachan, J. P.; Barnell, M.; Wu, Q.; Wu, H.; Williams, R. S.; Xia, Q.; Yang, J. J. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137-145, DOI: 10.1038/s41928-018-0023-2.
    (10) Kumar, S.; Williams, R. S.; Wang, Z. Third-order nanocircuit elements for neuromorphic engineering. Nature 2020, 585, 518-523, DOI: 10.1038/s41586-020-2735-5.
    (11) Pickett, M. D.; Williams, R. S. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 2012, 23, 215202, DOI: 10.1088/0957-4484/23/21/215202.
    (12) Wegkamp, D.; Stähler, J. Ultrafast dynamics during the photoinduced phase transition in VO2. Prog. Surf. Sci. 2015, 90, 464-502, DOI: 10.1016/j.progsurf.2015.10.001.
    (13) Shao, Z.; Cao, X.; Luo, H.; Jin, P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 2018, 10, 581-605, DOI: 10.1038/s41427-018-0061-2.
    (14) Woo, K. S.; Wang, Y.; Kim, J.; Kim, Y.; Kwon, Y. J.; Yoon, J. H.; Kim, W.; Hwang, C. S. A true random number generator using threshold‐switching‐based memristors in an efficient circuit design. Adv. Electron. Mater. 2019, 5, 1800543, DOI: 10.1002/aelm.201800543.
    (15) Guo, X.; Schindler, C.; Menzel, S.; Waser, R. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl. Phys. Lett. 2007, 91, 133513, DOI: 10.1063/1.2793686.
    (16) Wang, Z.; Joshi, S.; Savel’ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J. P.; Li, Z.; Wu, Q.; Barnell, M.; Li, G.-L.; Xin, H. L.; Williams, R. S.; Xia, Q.; Yang, J. J. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101-108, DOI: 10.1038/nmat4756.
    (17) del Valle, J.; Salev, P.; Tesler, F.; Vargas, N. M.; Kalcheim, Y.; Wang, P.; Trastoy, J.; Lee, M.-H.; Kassabian, G.; Ramírez, J. G.; Rozenberg, M. J.; Schuller, I. K. Subthreshold firing in Mott nanodevices. Nature 2019, 569, 388-392, DOI: 10.1038/s41586-019-1159-6.
    (18) Lee, J.; Kim, J.; Jeong, J.; Sohn, H. Electroforming and threshold switching characteristics of NbOx films with crystalline NbO2 phase. J. Vac. Sci. Technol. B 2021, 39, 053206, DOI: 10.1116/6.0001215.
    (19) Duan, Q.; Zhang, T.; Liu, C.; Yuan, R.; Li, G.; Jun Tiw, P.; Yang, K.; Ge, C.; Yang, Y.; Huang, R. Artificial Multisensory Neurons with Fused Haptic and Temperature Perception for Multimodal In‐Sensor Computing. Adv. Intell. Syst. 2022, 4, 2200039, DOI: 10.1002/aisy.202200039.
    (20) Purves, D.; Augustine, G. J.; Fitzpatrick, D.; Hall, W.; LaMantia, A.-S.; White, L. Neurosciences, De Boeck Supérieur: 2019.
    (21) Yang, J. Q.; Wang, R.; Ren, Y.; Mao, J. Y.; Wang, Z. P.; Zhou, Y.; Han, S. T. Neuromorphic Engineering: From Biological to Spike‐Based Hardware Nervous Systems. Adv. Mater. 2020, 32, 2003610, DOI: 10.1002/adma.202003610.
    (22) Hua, Q.; Wu, H.; Gao, B.; Zhang, Q.; Wu, W.; Li, Y.; Wang, X.; Hu, W.; Qian, H. Low-Voltage Oscillatory Neurons for Memristor-Based Neuromorphic Systems. Glob. Chall. 2019, 3, 1900015, DOI: 10.1002/gch2.201900015.
    (23) Wang, T.; Wang, X.-X.; Wen, J.; Shao, Z.-Y.; Huang, H.-M.; Guo, X. A Bio-Inspired Neuromorphic Sensory System. Adv. Intell. Syst. 2022, 4, 2200047, DOI: 10.1002/aisy.202200047.
    (24) Zheng, N.; Mazumder, P. Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design, John Wiley & Sons: 2019.
    (25) Bouvier, M.; Valentian, A.; Mesquida, T.; Rummens, F.; Reyboz, M.; Vianello, E.; Beigne, E. Spiking Neural Networks Hardware Implementations and Challenges: A Survey. J. Emerg. Technol. Comput. Syst. 2019, 15, Article 22, DOI: 10.1145/3304103.
    (26) Zhang, X.; Wu, Z.; Lu, J.; Wei, J.; Lu, J.; Zhu, J.; Qiu, J.; Wang, R.; Lou, K.; Wang, Y.; Shi, T.; Dou, C.; Shang, D.; Liu, Q.; Liu, M. In Fully Memristive SNNs with Temporal Coding for Fast and Low-power Edge Computing, 2020 IEEE International Electron Devices Meeting (IEDM), 12-18 Dec. 2020; 2020; pp 29.6.1-29.6.4. DOI: 10.1109/IEDM13553.2020.9371937.
    (27) Lu, Y.-F.; Li, H.-Y.; Li, Y.; Li, L.-H.; Wan, T.-Q.; Yang, L.; Zuo, W.-B.; Xue, K.-H.; Miao, X.-S. A High-Performance Ag/TiN/HfOx/HfOy/HfOx/Pt Diffusive Memristor for Calibration-Free True Random Number Generator. Adv. Electron. Mater. 2022, 8, 2200202, DOI: 10.1002/aelm.202200202.
    (28) Yoon, J. H.; Wang, Z.; Kim, K. M.; Wu, H.; Ravichandran, V.; Xia, Q.; Hwang, C. S.; Yang, J. J. An artificial nociceptor based on a diffusive memristor. Nat. Commun. 2018, 9, 417, DOI: 10.1038/s41467-017-02572-3.
    (29) Sheridan, P.; Kim, K.-H.; Gaba, S.; Chang, T.; Chen, L.; Lu, W. Device and SPICE modeling of RRAM devices. Nanoscale 2011, 3, 3833-3840, DOI: 10.1039/c1nr10557d.
    (30) Sun, H.; Liu, Q.; Li, C.; Long, S.; Lv, H.; Bi, C.; Huo, Z.; Li, L.; Liu, M. Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology. Adv. Funct. Mater. 2014, 24, 5679-5686, DOI: 10.1002/adfm.201401304.
    (31) Azadmanjiri, J.; Berndt, C. C.; Wang, J.; Kapoor, A.; Srivastava, V. K.; Wen, C. A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications. J. Mater. Chem. A 2014, 2, 3695-3708, DOI: 10.1039/C3TA14034B.
    (32) Oehrlein, G. S.; Reisman, A. Electrical properties of amorphous tantalum pentoxide thin films on silicon. J. Appl. Phys. 1983, 54, 6502-6508, DOI: 10.1063/1.331880.
    (33) Hua, Q.; Wu, H.; Gao, B.; Zhao, M.; Li, Y.; Li, X.; Hou, X.; Chang, M. F.; Zhou, P.; Qian, H. A threshold switching selector based on highly ordered Ag nanodots for X‐point memory applications. Adv. Sci. 2019, 6, 1900024, DOI: 10.1002/advs.201900024.
    (34) Song, Y. G.; Kim, J. E.; Kwon, J. U.; Chun, S. Y.; Soh, K.; Nahm, S.; Kang, C.-Y.; Yoon, J. H. Highly Reliable Threshold Switching Characteristics of Surface-Modulated Diffusive Memristors Immune to Atmospheric Changes. ACS Appl. Mater. Interfaces 2023, 15, 5495-5503, DOI: 10.1021/acsami.2c21019.
    (35) Liu, T.; Verma, M.; Kang, Y.; Orlowski, M. Volatile resistive switching in Cu/TaOx/δ-Cu/Pt devices. Appl. Phys. Lett. 2012, 101, 073510, DOI: 10.1063/1.4746276.
    (36) Liu, D.; Cheng, H.; Wang, G.; Zhu, X.; Wang, N. Diode-like volatile resistive switching properties in amorphous Sr-doped LaMnO3 thin films under lower current compliance. J. Appl. Phys. 2013, 114, 154906, DOI: 10.1063/1.4826362.
    (37) Wang, H.; Du, Y.; Li, Y.; Zhu, B.; Leow, W. R.; Li, Y.; Pan, J.; Wu, T.; Chen, X. Configurable resistive switching between memory and threshold characteristics for protein‐based devices. Adv. Funct. Mater. 2015, 25, 3825-3831, DOI: 10.1002/adfm.201501389.
    (38) Zhao, X.; Xu, H.; Wang, Z.; Zhang, L.; Ma, J.; Liu, Y. Nonvolatile/volatile behaviors and quantized conductance observed in resistive switching memory based on amorphous carbon. Carbon 2015, 91, 38-44, DOI: 10.1016/j.carbon.2015.04.031.
    (39) Li, Y.; Yuan, P.; Fu, L.; Li, R.; Gao, X.; Tao, C. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure. Nanotechnology 2015, 26, 391001, DOI: 10.1088/0957-4484/26/39/391001.
    (40) Song, J.; Prakash, A.; Lee, D.; Woo, J.; Cha, E.; Lee, S.; Hwang, H. Bidirectional threshold switching in engineered multilayer (Cu2O/Ag: Cu2O/Cu2O) stack for cross-point selector application. Appl. Phys. Lett. 2015, 107, 113504, DOI: 10.1063/1.4931136.
    (41) Lim, S.; Yoo, J.; Song, J.; Woo, J.; Park, J.; Hwang, H. CMOS compatible low-power volatile atomic switch for steep-slope FET devices. Appl. Phys. Lett. 2018, 113, 033501, DOI: 10.1063/1.5039898.
    (42) Zhang, R.; Jiang, H.; Wang, Z.; Lin, P.; Zhuo, Y.; Holcomb, D.; Zhang, D.; Yang, J.; Xia, Q. Nanoscale diffusive memristor crossbars as physical unclonable functions. Nanoscale 2018, 10, 2721-2726, DOI: 10.1039/C7NR06561B.
    (43) Zhang, X.; Wang, W.; Liu, Q.; Zhao, X.; Wei, J.; Cao, R.; Yao, Z.; Zhu, X.; Zhang, F.; Lv, H. An artificial neuron based on a threshold switching memristor. IEEE Electron Device Lett. 2017, 39, 308-311, DOI: 10.1109/LED.2017.2782752.
    (44) Dev, D.; Krishnaprasad, A.; Shawkat, M. S.; He, Z.; Das, S.; Fan, D.; Chung, H.-S.; Jung, Y.; Roy, T. 2D MoS2-based threshold switching memristor for artificial neuron. IEEE Electron Device Lett. 2020, 41, 936-939, DOI: 10.1109/LED.2020.2988247.
    (45) Yang, J. H.; Mao, S. C.; Chen, K. T.; Chen, J. S. Emulating Nociceptive Receptor and LIF Neuron Behavior via ZrOx‐based Threshold Switching Memristor. Adv. Electron. Mater. 2022, 2201006, DOI: 10.1002/aelm.202201006.
    (46) Kim, T.; Kim, S. H.; Park, J. H.; Park, J.; Park, E.; Kim, S. G.; Yu, H. Y. An artificial neuron using a bipolar electrochemical metallization switch and its enhanced spiking properties through filament confinement. Adv. Electron. Mater. 2021, 7, 2000410, DOI: 10.1002/aelm.202000410.
    (47) Chekol, S. A.; Menzel, S.; Ahmad, R. W.; Waser, R.; Hoffmann‐Eifert, S. Effect of the Threshold Kinetics on the Filament Relaxation Behavior of Ag‐Based Diffusive Memristors. Adv. Funct. Mater. 2022, 32, 2111242, DOI: 10.1002/adfm.202111242.
    (48) Sun, Y.; Zhao, X.; Song, C.; Xu, K.; Xi, Y.; Yin, J.; Wang, Z.; Zhou, X.; Chen, X.; Shi, G. Performance‐enhancing selector via symmetrical multilayer design. Adv. Funct. Mater. 2019, 29, 1808376, DOI: 10.1002/adfm.201808376.
    (49) Li, H. Y.; Huang, X. D.; Yuan, J. H.; Lu, Y. F.; Wan, T. Q.; Li, Y.; Xue, K. H.; He, Y. H.; Xu, M.; Tong, H. Controlled memory and threshold switching behaviors in a heterogeneous memristor for neuromorphic computing. Adv. Electron. Mater. 2020, 6, 2000309, DOI: 10.1002/aelm.202000309.
    (50) Shi, K.; Heng, S.; Wang, X.; Liu, S.; Cui, H.; Chen, C.; Zhu, Y.; Xu, W.; Wan, C.; Wan, Q. An Oxide Based Spiking Thermoreceptor for Low-Power Thermography Edge Detection. IEEE Electron Device Lett. 2022, 43, 2196-2199, DOI: 10.1109/LED.2022.3215693.
    (51) Fu, Y.; Zhou, Y.; Huang, X.; Dong, B.; Zhuge, F.; Li, Y.; He, Y.; Chai, Y.; Miao, X. Reconfigurable synaptic and neuronal functions in a V/VOx/HfWOx/Pt memristor for nonpolar spiking convolutional neural network. Adv. Funct. Mater. 2022, 32, 2111996, DOI: 10.1002/adfm.202111996.

    無法下載圖示 校內:2028-08-07公開
    校外:2028-08-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE