| 研究生: |
毛士承 Mao, Shi-Cheng |
|---|---|
| 論文名稱: |
氧化鉭閾值切換憶阻器之氧空缺對閾值切換與仿脈衝神經元行為之影響 Influence of Oxygen Vacancy in TaOx-based Threshold Switching Memristor on Threshold Switching and Spiking Neuron Behavior |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 閾值切換憶阻器 、揮發性元件 、神經元元件 、氧空缺 |
| 外文關鍵詞: | threshold switching memristor, volatile, spiking neuron, oxygen vacancy |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(1) Moore, G. E. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter 2006, 11, 33-35, DOI: 10.1109/N-SSC.2006.4785860.
(2) Hwang, C. S. Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 2015, 1, 1400056, DOI: 10.1002/aelm.201400056.
(3) Xia, Q.; Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309-323, DOI: 10.1038/s41563-019-0291-x.
(4) Yin, J.; Zeng, F.; Wan, Q.; Sun, Y.; Hu, Y.; Liu, J.; Li, G.; Pan, F. Self-Modulating Interfacial Cation Migration Induced Threshold Switching in Bilayer Oxide Memristive Device. J. Phys. Chem. C 2019, 123, 878-885, DOI: 10.1021/acs.jpcc.8b09793.
(5) Huang, Y.-J.; Chao, S.-C.; Lien, D.-H.; Wen, C.-Y.; He, J.-H.; Lee, S.-C. Dual-functional memory and threshold resistive switching based on the push-pull mechanism of oxygen ions. Sci Rep 2016, 6, 23945, DOI: 10.1038/srep23945.
(6) Kim, S. E.; Kim, M.-H.; Jang, J.; Kim, H.; Kim, S.; Jang, J.; Bae, J.-H.; Kang, I. M.; Lee, S.-H. Systematic Engineering of Metal Ion Injection in Memristors for Complex Neuromorphic Computing with High Energy Efficiency. Adv. Intell. Syst. 2022, 4, 2200110, DOI: 10.1002/aisy.202200110.
(7) Midya, R.; Wang, Z.; Zhang, J.; Savel'ev, S. E.; Li, C.; Rao, M.; Jang, M. H.; Joshi, S.; Jiang, H.; Lin, P. Anatomy of Ag/Hafnia‐based selectors with 1010 nonlinearity. Adv. Mater. 2017, 29, 1604457, DOI: 10.1002/adma.201604457.
(8) Jiang, H.; Belkin, D.; Savel’ev, S. E.; Lin, S.; Wang, Z.; Li, Y.; Joshi, S.; Midya, R.; Li, C.; Rao, M.; Barnell, M.; Wu, Q.; Yang, J. J.; Xia, Q. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 2017, 8, 882, DOI: 10.1038/s41467-017-00869-x.
(9) Wang, Z.; Joshi, S.; Savel’ev, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Asapu, S.; Zhuo, Y.; Jiang, H.; Lin, P.; Li, C.; Yoon, J. H.; Upadhyay, N. K.; Zhang, J.; Hu, M.; Strachan, J. P.; Barnell, M.; Wu, Q.; Wu, H.; Williams, R. S.; Xia, Q.; Yang, J. J. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137-145, DOI: 10.1038/s41928-018-0023-2.
(10) Kumar, S.; Williams, R. S.; Wang, Z. Third-order nanocircuit elements for neuromorphic engineering. Nature 2020, 585, 518-523, DOI: 10.1038/s41586-020-2735-5.
(11) Pickett, M. D.; Williams, R. S. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 2012, 23, 215202, DOI: 10.1088/0957-4484/23/21/215202.
(12) Wegkamp, D.; Stähler, J. Ultrafast dynamics during the photoinduced phase transition in VO2. Prog. Surf. Sci. 2015, 90, 464-502, DOI: 10.1016/j.progsurf.2015.10.001.
(13) Shao, Z.; Cao, X.; Luo, H.; Jin, P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 2018, 10, 581-605, DOI: 10.1038/s41427-018-0061-2.
(14) Woo, K. S.; Wang, Y.; Kim, J.; Kim, Y.; Kwon, Y. J.; Yoon, J. H.; Kim, W.; Hwang, C. S. A true random number generator using threshold‐switching‐based memristors in an efficient circuit design. Adv. Electron. Mater. 2019, 5, 1800543, DOI: 10.1002/aelm.201800543.
(15) Guo, X.; Schindler, C.; Menzel, S.; Waser, R. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl. Phys. Lett. 2007, 91, 133513, DOI: 10.1063/1.2793686.
(16) Wang, Z.; Joshi, S.; Savel’ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J. P.; Li, Z.; Wu, Q.; Barnell, M.; Li, G.-L.; Xin, H. L.; Williams, R. S.; Xia, Q.; Yang, J. J. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101-108, DOI: 10.1038/nmat4756.
(17) del Valle, J.; Salev, P.; Tesler, F.; Vargas, N. M.; Kalcheim, Y.; Wang, P.; Trastoy, J.; Lee, M.-H.; Kassabian, G.; Ramírez, J. G.; Rozenberg, M. J.; Schuller, I. K. Subthreshold firing in Mott nanodevices. Nature 2019, 569, 388-392, DOI: 10.1038/s41586-019-1159-6.
(18) Lee, J.; Kim, J.; Jeong, J.; Sohn, H. Electroforming and threshold switching characteristics of NbOx films with crystalline NbO2 phase. J. Vac. Sci. Technol. B 2021, 39, 053206, DOI: 10.1116/6.0001215.
(19) Duan, Q.; Zhang, T.; Liu, C.; Yuan, R.; Li, G.; Jun Tiw, P.; Yang, K.; Ge, C.; Yang, Y.; Huang, R. Artificial Multisensory Neurons with Fused Haptic and Temperature Perception for Multimodal In‐Sensor Computing. Adv. Intell. Syst. 2022, 4, 2200039, DOI: 10.1002/aisy.202200039.
(20) Purves, D.; Augustine, G. J.; Fitzpatrick, D.; Hall, W.; LaMantia, A.-S.; White, L. Neurosciences, De Boeck Supérieur: 2019.
(21) Yang, J. Q.; Wang, R.; Ren, Y.; Mao, J. Y.; Wang, Z. P.; Zhou, Y.; Han, S. T. Neuromorphic Engineering: From Biological to Spike‐Based Hardware Nervous Systems. Adv. Mater. 2020, 32, 2003610, DOI: 10.1002/adma.202003610.
(22) Hua, Q.; Wu, H.; Gao, B.; Zhang, Q.; Wu, W.; Li, Y.; Wang, X.; Hu, W.; Qian, H. Low-Voltage Oscillatory Neurons for Memristor-Based Neuromorphic Systems. Glob. Chall. 2019, 3, 1900015, DOI: 10.1002/gch2.201900015.
(23) Wang, T.; Wang, X.-X.; Wen, J.; Shao, Z.-Y.; Huang, H.-M.; Guo, X. A Bio-Inspired Neuromorphic Sensory System. Adv. Intell. Syst. 2022, 4, 2200047, DOI: 10.1002/aisy.202200047.
(24) Zheng, N.; Mazumder, P. Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design, John Wiley & Sons: 2019.
(25) Bouvier, M.; Valentian, A.; Mesquida, T.; Rummens, F.; Reyboz, M.; Vianello, E.; Beigne, E. Spiking Neural Networks Hardware Implementations and Challenges: A Survey. J. Emerg. Technol. Comput. Syst. 2019, 15, Article 22, DOI: 10.1145/3304103.
(26) Zhang, X.; Wu, Z.; Lu, J.; Wei, J.; Lu, J.; Zhu, J.; Qiu, J.; Wang, R.; Lou, K.; Wang, Y.; Shi, T.; Dou, C.; Shang, D.; Liu, Q.; Liu, M. In Fully Memristive SNNs with Temporal Coding for Fast and Low-power Edge Computing, 2020 IEEE International Electron Devices Meeting (IEDM), 12-18 Dec. 2020; 2020; pp 29.6.1-29.6.4. DOI: 10.1109/IEDM13553.2020.9371937.
(27) Lu, Y.-F.; Li, H.-Y.; Li, Y.; Li, L.-H.; Wan, T.-Q.; Yang, L.; Zuo, W.-B.; Xue, K.-H.; Miao, X.-S. A High-Performance Ag/TiN/HfOx/HfOy/HfOx/Pt Diffusive Memristor for Calibration-Free True Random Number Generator. Adv. Electron. Mater. 2022, 8, 2200202, DOI: 10.1002/aelm.202200202.
(28) Yoon, J. H.; Wang, Z.; Kim, K. M.; Wu, H.; Ravichandran, V.; Xia, Q.; Hwang, C. S.; Yang, J. J. An artificial nociceptor based on a diffusive memristor. Nat. Commun. 2018, 9, 417, DOI: 10.1038/s41467-017-02572-3.
(29) Sheridan, P.; Kim, K.-H.; Gaba, S.; Chang, T.; Chen, L.; Lu, W. Device and SPICE modeling of RRAM devices. Nanoscale 2011, 3, 3833-3840, DOI: 10.1039/c1nr10557d.
(30) Sun, H.; Liu, Q.; Li, C.; Long, S.; Lv, H.; Bi, C.; Huo, Z.; Li, L.; Liu, M. Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology. Adv. Funct. Mater. 2014, 24, 5679-5686, DOI: 10.1002/adfm.201401304.
(31) Azadmanjiri, J.; Berndt, C. C.; Wang, J.; Kapoor, A.; Srivastava, V. K.; Wen, C. A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications. J. Mater. Chem. A 2014, 2, 3695-3708, DOI: 10.1039/C3TA14034B.
(32) Oehrlein, G. S.; Reisman, A. Electrical properties of amorphous tantalum pentoxide thin films on silicon. J. Appl. Phys. 1983, 54, 6502-6508, DOI: 10.1063/1.331880.
(33) Hua, Q.; Wu, H.; Gao, B.; Zhao, M.; Li, Y.; Li, X.; Hou, X.; Chang, M. F.; Zhou, P.; Qian, H. A threshold switching selector based on highly ordered Ag nanodots for X‐point memory applications. Adv. Sci. 2019, 6, 1900024, DOI: 10.1002/advs.201900024.
(34) Song, Y. G.; Kim, J. E.; Kwon, J. U.; Chun, S. Y.; Soh, K.; Nahm, S.; Kang, C.-Y.; Yoon, J. H. Highly Reliable Threshold Switching Characteristics of Surface-Modulated Diffusive Memristors Immune to Atmospheric Changes. ACS Appl. Mater. Interfaces 2023, 15, 5495-5503, DOI: 10.1021/acsami.2c21019.
(35) Liu, T.; Verma, M.; Kang, Y.; Orlowski, M. Volatile resistive switching in Cu/TaOx/δ-Cu/Pt devices. Appl. Phys. Lett. 2012, 101, 073510, DOI: 10.1063/1.4746276.
(36) Liu, D.; Cheng, H.; Wang, G.; Zhu, X.; Wang, N. Diode-like volatile resistive switching properties in amorphous Sr-doped LaMnO3 thin films under lower current compliance. J. Appl. Phys. 2013, 114, 154906, DOI: 10.1063/1.4826362.
(37) Wang, H.; Du, Y.; Li, Y.; Zhu, B.; Leow, W. R.; Li, Y.; Pan, J.; Wu, T.; Chen, X. Configurable resistive switching between memory and threshold characteristics for protein‐based devices. Adv. Funct. Mater. 2015, 25, 3825-3831, DOI: 10.1002/adfm.201501389.
(38) Zhao, X.; Xu, H.; Wang, Z.; Zhang, L.; Ma, J.; Liu, Y. Nonvolatile/volatile behaviors and quantized conductance observed in resistive switching memory based on amorphous carbon. Carbon 2015, 91, 38-44, DOI: 10.1016/j.carbon.2015.04.031.
(39) Li, Y.; Yuan, P.; Fu, L.; Li, R.; Gao, X.; Tao, C. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure. Nanotechnology 2015, 26, 391001, DOI: 10.1088/0957-4484/26/39/391001.
(40) Song, J.; Prakash, A.; Lee, D.; Woo, J.; Cha, E.; Lee, S.; Hwang, H. Bidirectional threshold switching in engineered multilayer (Cu2O/Ag: Cu2O/Cu2O) stack for cross-point selector application. Appl. Phys. Lett. 2015, 107, 113504, DOI: 10.1063/1.4931136.
(41) Lim, S.; Yoo, J.; Song, J.; Woo, J.; Park, J.; Hwang, H. CMOS compatible low-power volatile atomic switch for steep-slope FET devices. Appl. Phys. Lett. 2018, 113, 033501, DOI: 10.1063/1.5039898.
(42) Zhang, R.; Jiang, H.; Wang, Z.; Lin, P.; Zhuo, Y.; Holcomb, D.; Zhang, D.; Yang, J.; Xia, Q. Nanoscale diffusive memristor crossbars as physical unclonable functions. Nanoscale 2018, 10, 2721-2726, DOI: 10.1039/C7NR06561B.
(43) Zhang, X.; Wang, W.; Liu, Q.; Zhao, X.; Wei, J.; Cao, R.; Yao, Z.; Zhu, X.; Zhang, F.; Lv, H. An artificial neuron based on a threshold switching memristor. IEEE Electron Device Lett. 2017, 39, 308-311, DOI: 10.1109/LED.2017.2782752.
(44) Dev, D.; Krishnaprasad, A.; Shawkat, M. S.; He, Z.; Das, S.; Fan, D.; Chung, H.-S.; Jung, Y.; Roy, T. 2D MoS2-based threshold switching memristor for artificial neuron. IEEE Electron Device Lett. 2020, 41, 936-939, DOI: 10.1109/LED.2020.2988247.
(45) Yang, J. H.; Mao, S. C.; Chen, K. T.; Chen, J. S. Emulating Nociceptive Receptor and LIF Neuron Behavior via ZrOx‐based Threshold Switching Memristor. Adv. Electron. Mater. 2022, 2201006, DOI: 10.1002/aelm.202201006.
(46) Kim, T.; Kim, S. H.; Park, J. H.; Park, J.; Park, E.; Kim, S. G.; Yu, H. Y. An artificial neuron using a bipolar electrochemical metallization switch and its enhanced spiking properties through filament confinement. Adv. Electron. Mater. 2021, 7, 2000410, DOI: 10.1002/aelm.202000410.
(47) Chekol, S. A.; Menzel, S.; Ahmad, R. W.; Waser, R.; Hoffmann‐Eifert, S. Effect of the Threshold Kinetics on the Filament Relaxation Behavior of Ag‐Based Diffusive Memristors. Adv. Funct. Mater. 2022, 32, 2111242, DOI: 10.1002/adfm.202111242.
(48) Sun, Y.; Zhao, X.; Song, C.; Xu, K.; Xi, Y.; Yin, J.; Wang, Z.; Zhou, X.; Chen, X.; Shi, G. Performance‐enhancing selector via symmetrical multilayer design. Adv. Funct. Mater. 2019, 29, 1808376, DOI: 10.1002/adfm.201808376.
(49) Li, H. Y.; Huang, X. D.; Yuan, J. H.; Lu, Y. F.; Wan, T. Q.; Li, Y.; Xue, K. H.; He, Y. H.; Xu, M.; Tong, H. Controlled memory and threshold switching behaviors in a heterogeneous memristor for neuromorphic computing. Adv. Electron. Mater. 2020, 6, 2000309, DOI: 10.1002/aelm.202000309.
(50) Shi, K.; Heng, S.; Wang, X.; Liu, S.; Cui, H.; Chen, C.; Zhu, Y.; Xu, W.; Wan, C.; Wan, Q. An Oxide Based Spiking Thermoreceptor for Low-Power Thermography Edge Detection. IEEE Electron Device Lett. 2022, 43, 2196-2199, DOI: 10.1109/LED.2022.3215693.
(51) Fu, Y.; Zhou, Y.; Huang, X.; Dong, B.; Zhuge, F.; Li, Y.; He, Y.; Chai, Y.; Miao, X. Reconfigurable synaptic and neuronal functions in a V/VOx/HfWOx/Pt memristor for nonpolar spiking convolutional neural network. Adv. Funct. Mater. 2022, 32, 2111996, DOI: 10.1002/adfm.202111996.
校內:2028-08-07公開