| 研究生: |
吳品頡 Wu, Pin-Jie |
|---|---|
| 論文名稱: |
基於稀疏特徵擷取之粒子濾波器物件追蹤演算法 Sparse-Based Object Tracking Using Particle Filter |
| 指導教授: |
連震杰
Lien, Jenn-Jier |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 視覺追蹤 、稀疏表達 、粒子濾波器 、模板更新 |
| 外文關鍵詞: | visual tracking, sparse representation, particle filter, template update |
| 相關次數: | 點閱:146 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
稀疏表達在最近的追蹤演算法研究中是一項非常重要的技術,但是追蹤技術在現實生活中尚有許多需要克服的難題,例如遮蔽情況或者目標物的外型變化。在本篇論文裡,我們提出了一個以稀疏表達為基礎,能夠擷取全域性以及區域性特徵的追蹤方法。同時我們也提出一個完備的模板更新機制,能夠將目標物的變化情形持續更新到模板裡,對於全域性以及區域性的兩種模板都有獨立的更新機制。對於全域性的模板,我們使用兩個模板集合包含穩定模板以及普通模板,透過這兩種模板來獲得目標物變化的資訊,同時我們也會更新背景模板。對於區域性的資訊,我們利用更新一個由補釘影像所組成的字典來獲得最新的目標資訊。藉由這個完整的追蹤及模板更新機制,我們可以克服許多外型變化劇烈的追蹤任務。
Sparse representation is a significant technique in resent tracking research. However, there are many challenges in the real-world tracking task such as occlusion or appearance change. In this thesis, we propose a sparse-based tracking algorithm with global and local information. We also propose a robust template update scheme to catch the appearance variance. Two kinds of template are updated for global and local information independently. For global information, a stable template set and a normal template set are used to capture the appearance change. The background template set is also considered. For local information, a patches-based dictionary is updated in the tracking task. By the robust template update scheme, we can conquer serious appearance change in the tracking task.
[1] A. A. Argyros and M. Lourakis, “Real-time Tracking of Multiple Skin-colored Objects with a Possibly Moving Camera,” Computer Vision-ECCV, Springer Berlin Heidelberg, pp. 368-379, 2004.
[2] V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive Sensing for Background Subtraction,” Computer Vision-ECCV, Springer Berlin Heidelberg, pp. 155-168, 2008.
[3] J. Gu, S. Nayar, E. Grinspun, P. Belhumeur, and R. Ramamoorthi, “Compressive Structured Light for Recovering Inhomogeneous Participating Media,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, no. 3, pp. 1-1, 2013.
[4] J. Huang, X. Huang, and D. Metaxas, “Learning with Dynamic Group Sparsity,” Computer Vision, IEEE 12th International Conference on, pp. 64-71, 2009.
[5] M. Isard and A. Blake, “Condensation—Conditional Density Propagation for Visual Tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp. 5-28, 1998.
[6] Z. Kalal, K. Mikolajczyk, J. Matas, “Tracking–Learning–Detection,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 34, no. 7, pp. 1409–1422, 2012.
[7] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Discriminative Learned Dictionaries for Local Image Analysis,” Computer Vision and Pattern Recognition, IEEE Conference on, pp. 1-8, 2008.
[8] X. Mei and H. Ling, “Robust Visual Tracking Using L1 Minimization,” Computer Vision, IEEE 12th International Conference on, pp. 1436-1443, 2009.
[9] X. Mei and H. Ling, “Robust Visual Tracking and Vehicle Classification via Sparse Representation,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 33, no. 1, pp. 2259-2272, 2011.
[10] X. Mei, H. Ling, and D.W. Jacobs, “Sparse Representation of Cast Shadows via L1-Regularized Least Squares,” Computer Vision, IEEE 12th International Conference on, pp. 583-590, 2009.
[11] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. “Incremental Learning for Robust Visual Tracking,” International Journal of Computer Vision, vol. 77, no. 1-3, pp. 125–141, 2008.
[12] Q. Wang, F. Chen, J. Yang, W. Xu, M.-H. Yang “Transferring Visual Prior for Online Object Tracking” Image Processing, IEEE Transactions on, vol. 21, no. 7, pp. 3296-3305, 2012.
[13] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust Face Recognition via Sparse Representation,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 31, no. 2, pp. 210-227, Feb. 2009.
[14] Y. Wu, J. Lim, and M.-H. Yang. “Online Object Tracking: A Benchmark,” Computer Vision and Pattern Recognition, IEEE Conference on, pp. 2411-2418, 2013.
[15] X. Zhang, W. Li, W. Hu, H. Ling and S. Maybank, “Block Covariance Based L1 Tracker with a Subtle Template Dictionary,” Pattern Recognition, vol. 46, no. 7, pp. 1750-1761, 2012.
[16] S. Zhang , H. Yao , X. Sun and X. Lu “Sparse Coding Based Visual Tracking: Review and Experimental Comparison,” Patten Recognition, vol. 46, no. 7, pp.1772 -1788 2013
[17] W. Zhong, H. Lu, and M.-H. Yang. “Robust Object Tracking via Sparsity-based Collaborative Model,” Computer Vision and Pattern Recognition, IEEE Conference on, pp. 1838-1845, 2012.
校內:2024-12-31公開