| 研究生: |
陳名一 Chen, Ming-Yi |
|---|---|
| 論文名稱: |
氧化鋯對La1.9Sr0.1CuO4-d塊材熱電性質之影響 Effect of ZrO2 on thermoelectric properties of La1.9Sr0.1CuO4-d bulk material |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 共同指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 熱電材料 、La1.9Sr0.1CuO4-δ 、ZrO2 、燒結 、熱電優值 |
| 外文關鍵詞: | Thermoelectric material, La1.9Sr0.1CuO4-d, ZrO2, sintering, figure of merit |
| 相關次數: | 點閱:72 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
熱電材料及裝置目前已被廣泛應用於熱發電器,感測器、熱電偶以及熱電製冷部分。其中陶瓷氧化物型熱電材料具有耐用、低成本以及對環境友善等優點。 La1.9Sr0.1CuO4-δ由於其具有氧缺陷之鈣鈦礦結構,及具有金屬般的電子電導,被歸類為具有潛力的熱電材料之一。
本研究檢討了ZrO2的添加對La1.9Sr0.1CuO4-δ塊材熱電性質的影響,研究中的La1.9Sr0.1CuO4-δ粉末是以固相反應法,在800℃ 2.5小時大氣的煆燒條件下製備而得。粉末以XRD繞射檢驗結果為單一相,而塊材則由粉末經950℃10小時大氣中燒結緻密塊材,而相對密度是隨著ZrO2添加量的增加而減少。
在熱電性質的探討部分,ZrO2的添加會使La1.9Sr0.1CuO4-δ塊材的電子電導以及熱導率降低,Seebeck係數提升。La1.9Sr0.1CuO4-δ塊材在1wt%ZrO2添加時有最高的熱電優值(ZT),在300K時為0.027。
關鍵字:熱電材料、La1.9Sr0.1CuO4-δ、ZrO2、燒結、熱電優值
ABSTRACT
Effect of ZrO2 on sintering behavior and thermoelectric properties of La1.9Sr0.1CuO4-δ bulk were investigated in this study. The La1.9Sr0.1CuO4-d/xwt%ZrO2 (x=0-5) bulk materials were prepared using La1.9Sr0.1CuO4-d powders synthesized by solid state reaction in air.. The sintering behavior of La1.9Sr0.1CuO4-d was inhibited by the ZrO2. For the thermoelectric properties of The La1.9Sr0.1CuO4-d/xwt%ZrO2 (x=0-5) bulk, with the increase of ZrO2 amounts the electrical conductivity and thermal conductivity decreased, but the Seebeck coefficient increased. La1.9Sr0.1CuO4-d/1wt%ZrO2 bulk showed the highest ZT value of 0.027 at 300K.
Key words: Thermoelectric material, La1.9Sr0.1CuO4-d, ZrO2, sintering, figure of merit
INTRODUCTION
Thermoelectric materials have been widely investigated in power generator and thermoelectric refrigerator. The performance of thermoelectric material can be described by Figure of merit, ZT=S2σT/κ, where S, σ, T and κ are the Seebeck coefficient, electrical conductivity , absolute temperature and thermal conductivity, respectively. La1.9Sr0.1CuO4-d (LSCO) bulk has advantages of layer perovskite structure, and good electrical conductivity(1-3). However, the relatively low Seebeck coefficient and low thermal conductivity limit its application. Because ZrO2 shows wide band gap (~5eV),low electrical conductivity , thermal conductivity and stable in extremely high temperature ZrO2 was added as scattering source for increasing the Seebeck coefficient and decrease the thermal conductivity of La1.9Sr0.1CuO4-d.
EXPERIMENTAL
La1.9Sr0.1CuO4-d powders were prepared by solid-state reaction. Stoichiometric amounts of La2O3(99.9%), SrCO3(98%) and CuO(99%) powders were mixed ,and then calcined in air at 800℃ for2.5h to form La1.9Sr0.1CuO4-d powders. The powders were mixed and grinded with 0-5wt% ZrO2 (99%,monoclinic phase), powder into composite powder. The powder was cip-ed into pellets at 98 MPa for 1 minute and then sintered at 950℃ for 10h in air to form bulk. The XRD, SEM, thermoelectric properties analysis of the La1.9Sr0.1CuO4-δ/ZrO2 bulk began after sintering process.
RESULTS AND DISCUSSION
The XRD patterns with shifted and broaden peak and the lattice distortion were found in LSCO/ZrO2 bulk(Fig.1). Lattice parameter of a-axis and c-axis of LSCO/ZrO2 bulk increased with the increase of ZrO2 contents(Fig.2). It is resulted from the mismatch of thermal expansion coefficients between LSCO (1.1*10-4/ ℃) and ZrO2(8.9*10-6/ ℃), i.e. the thermal stress existed in the bulk. Another factor that induced these phenomena is the substitution of Zr4+ in Cu2+ site. The radius of Zr4+ ion (80pm) is slightly larger than Cu2+ ion (72pm), that the lattice parameter increased with the increase of ZrO2 contents, and induced the lower crystallinity.
The SEM images of LSCO/ZrO2 bulk show the relatively density and grain size decrease with the amount of ZrO2 .As the amount of ZrO2 increased more pores can limit atomic diffusion and grain boundary migration during sintering process, which lower the relatively density and grain size.
The Seebeck coefficient of LSCO/ZrO2 bulk increased with the increase of ZrO2 contents. It is due to the strongly scattering effect . The ZrO2 particles, grain boundaries and pores are the scattering source .The electrical conductivity decreased with the increase of ZrO2 contents ,It is because the substitution of Zr4+ in Cu2+ site will produce additional +2 charge, and the electrons will form to let the net charge equilibrium. The recombination of electrons and holes occurred which induced the decrease of the electrical conductivity. And that, the maximum power factor is at the 1 wt% ZrO2adding amount bulk, that is 4.786μW/κ2cm. The thermal conductivity decreased with the increasing ZrO2 amount, it is due to the thermal stress existed in LSCO/ZrO2bulk and the strongly scattering effect among the phonon and carriers. Finally, the maximum ZT value is about 0.027 for the LSCO/1wt%ZrO2 bulk in room temperature.
CONCLUSIONS
The LSCO/ZrO2 composite bulk was successfully prepared by solid-state reaction method. The lattice distortion and thermal strain existed in the bulk due to the mismatch of thermal expansion coefficients between LSCO and ZrO2. The substitution of Zr4+ in Cu2+ site induced the combination of electrons and holes and caused the decrease of electrical conductivity. Seebeck coefficient and ZT value increased up to 50% by strongly scattering effect of carriers and phonons due to the lattice distortion and smaller grain size. The maximum ZT value of LSCO/1wt%ZrO2 composite is 0.027 at 300K.
REFERENCE
1. Yong Liu, Yuan-Hua Lin, Bo-Ping Zhang, Ce-Wen Nan, and Jing-Feng Li, “High-Temperature Electrical Transport Behavior Observed in the La1.96M0.04CuO4 (M: Mg, Ca, Sr) Polycrystalline Ceramics”, J. Am. Ceram. Soc., 91 [6] 2055–2058 (2008)
2. Julio E. Rodriguez “thermoelectric properties of oxygen deficient La2-xSrxCuO4-d CERAMICS” Ceramics for Environmental and Energy Applications, 162-168 (2010).
3. Y. Ichino, T. N., M. Kaikawa. Thermoelectric Properties of RE2-xMxCuO4 Oxide Sintering Bulks. Elec. Com Japan, 91(12), 24-28. (2008).
1. Terry M.Tritt and M.A. Subramanian, Guest Editors,” Thermoelectric Materials, Phenomena, and Applications:A Bird’s Eye View”, MRS BULLETIN,Volume31,March (2006)
2.H.J.Goldsmid,D.M.Rowe, and B.Raton, in CRC Handbook of Thermoelecttrics, Chap.3-4 (1995)
3. Jeannine R. Szczech, Jeremy M. Higgins and Song Jin ,” Enhancement of the thermoelectric properties in nanoscale and nanostructured materials”, J. Mater. Chem.,21, 4037-4055 (2011).
4. H. J. Goldsmid, Applications of Thermoelectricity, Wiley, New York, 1960
5.Nolas G S, Morelli. D, T. Tritt TM.. Skutterudites: a phonon-glass-electron-crystal approach to advanced thermoelectrics energy conversion applications. Annu. Rev Material Science, 29, 89–116. (1999)
6. Uher, C.. Skutterudites: prospective novel thermoelectrics. In: Tritt T M (ed.) Semiconductors and Semimetals. Recent Trends in Thermoelectric Materials Research (vol. 69). San Diego: Academic Press. (2000)
7. Nolas G S, Slack. J, Goldsmid H J. Thermoelectrics: Basic Principles and New Materials Developments (2001).
8. Nolas G S, Slack. G. A, Schujman S B. Semiconducting clathrates: a phonon electron crystal material with potential for thermoelectric applications glass. In: Tritt T M (ed.) Semiconductors and Semimetals. Recent Trends in Thermoelectric Materials Research (vol. 69). San Diego: Academic Press. (2000)
9. Stabler, F. Automotive applications for high efficiency thermoelectrics. San Diego, California DARPA/DOE High Efficient Thermoelectric Workshop. (2002)
10. Nolas G S, Johnson. D, Mandrus D G.. Thermoelectric materials and devices. Materials Research Society, 691. (2002)
11. Tritt, T. e. Semiconductors and Semimetals, Recent Trends in Thermoelectric Materials Research (vol. 69–71). San Diego: Academic Press(2000)
12. Tritt T M, K. M. G., Lyon H B, Mahan G D (eds.). New material for small-scale thermoelectric refrigeration and power generation applications. Materials Research Society, 545. (1998)
13. Tritt T M, K. M., Lyon H B, Mahan G D, (eds.). Thermoelectric materials—new directions and approaches. Materials Research Society, 478. (1997)
14. S. B. Riffat, a. X. M. Thermo-electrics: A review of present and potential applications. Applied Thermal Engineering, 23, 913-935 (2003).
15. A. Roger, D. Souza, M. Saiful Islam and E. Ivers-Tiffee. “Formation and migration of cation defects in the perovskite oxide LaMnO3” Journal Material Chemical, 9, 1621-1627 (1999)
16. J. B. Goodenogh, J. M. L. Landolt-Bornstein New Series (V4). Berlin and New York: Speinger-Verlag (1970).
17. Pechini, M. P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coationg Method Using the Same to Form a Capacitor. U. S. Pat, 11(3 330 697) (1967)..
18. H. C. Yu, K. Z. F. Role of strontium addition on the phase transition of lanthanum copper oxide from K2NiF4 to perovskite structure. Journal of Alloys Compound, 440, 62-68(2007).
19.R.Richman, “prospects for efficient thermoelectric materials in the near term”, San Diego,CA.,2002,DARPA/DOE High Efficient Thermoelectric.(2002)
20.Hong Lan, Ren Shan,P.M. Vereecken,L. Sun, P.C.Searson,”半導體熱電材料Bi1-xSbx薄膜的電化學製備”中山大學學報(自然科學版) 2006年第45卷第一期(2006)
21.井群、司海剛、張世華、王淵旭,”室溫下矽與矽鍺合金的熱電性能研究”,石河大學生態物理重點實驗室師範學院物理系,新疆石河子(2000)
22. George S. Nolas, Joe Poon, and Mercouri Kanatzidis” Recent Developments in Bulk Thermoelectric Materials” MRS BULLETIN,Volume31,March (2006)
23. N. Murayama, S. Sakaguchi, F. Wakai, E. Sudo, A. Tsuzuki and Y. Torii. New Oxygen-Deficient Perovskite Phase, La1-xSrxCuO3-y (0.20≦x≦0.25). Journal Applied Physic, 27, 55-56. (1988).
24. A N Maljuk, G. A. E. c., I I Zver'kova, and A V Kosenko. Crystallization regions of the La2Cu2O5 and La1-xSrxCuO2.5 phases in the La2O3-SrO-CuO system. Superconductor Science Technology, 7, 596 (1994).
25. H. C. Yu, K. Z. F. La1−xSrxCuO2.5−δ as new cathode materials for intermediate temperature solid oxide fuel cells. Materials Research Bull, 38, 231-239. (2003).
26. Y. Ichino, T. N., M. Kaikawa. Thermoelectric Properties of RE2-xMxCuO4 Oxide Sintering Bulks. Elec. Com Japan, 91(12), 24-28. (2008).
27. J.E. Rodriguez , L. C. M. La1-xSrxCuO3-δ ceramics as new thermoelectric material for low temperature applications. Journal of Material Science, 65, 46-48. (2011).
28. Julio E. Rodriguez “thermoelectric properties of oxygen deficient La2-xSrxCuO4-d CERAMICS” Ceramics for Environmental and Energy Applications, 162-168 (2010).
29. Yong Liu, Yuan-Hua Lin, Bo-Ping Zhang, Ce-Wen Nan, and Jing-Feng Li, “High-Temperature Electrical Transport Behavior Observed in the La1.96M0.04CuO4 (M: Mg, Ca, Sr) Polycrystalline Ceramics”, J. Am. Ceram. Soc., 91 [6] 2055–2058 (2008)
30. Zandiehnadem F, Murray RA, Ching WY. Electronic structures of three phases of zirconium oxide. Physica B, C 1988;150:19–24.(1988)
31. Esfarjani K, Stokes HT. Method to extract anharmonic force constants from first principles calculations. Phys Rev B;77:144112.(2008)
32. Zhuiykov S. Electrochemistry of zirconia gas sensors. CRC Press; (2010).
33. Sumeet Walia, Sivacarendran Balendhran , Hussein Nili ,Serge Zhuiykov, Gary Rosengarten, Qing Hua Wang, Madhu Bhaskaran, Sharath Sriram, Michael S. Strano, Kourosh Kalantar-zadeh” Transition metal oxides – Thermoelectric Properties” Progress in Materials Science 58 ,1443–1489(2013)
34. Henrich VE, Cox PA. The surface science of metal oxides. Cambridge University Press; (1996).
35. Y.-M. Lin , X. S., M. S. Dresselhaus. Theoritical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys. Rev. B 62, 4610-4623 (2000).
36. Ming-Shan Jeng, D. Song, Gang Chen and Ronggui Yang Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation. Journal of Heat Transfer, 130(4) (2008).
37. Wenjie Xie, X. T., Yonggao Yan, Qingjie Zhang, and Terry M. Tritt. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 94(102111) (2009).
38. Yi Ma, Q. H., Bed Poudel, Yucheng Lan, Bo Yu, Dezhi Wang, Gang Chen, and Zhifeng Ren. Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks. Nano Letters, 8(8), 2580-2584 (2008).
39. Kornelius Nielsch , J. B., Johannes Kimling , and Harald Böttner. Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites. Adv. Energy Material, 1, 713-731(2011).
40. X. W. Wang, H. L., Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Applied Physic Letter, 93(193121) (2008).
41. Joshi G, L. H., Lan Y, Wang X, Zhu G, Wang D, Gould RW, Cuff DC, Tang MY, Dresselhaus MS, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 12, 4670-4674 (2008).
42. Andrew F. May, J.-P. F., and G. Jeffrey Snyder. Thermoelectric performance of lanthanum telluride produced via mechanical alloying. Physical Review B, 78(12), 5205-5217 (2008).
43. Min Ho Lee, J.-S. R., Mohammad Vaseem, Yoon-Bong Hahn, Su-Dong Park, Hee Jin Kim, Sung-Jin Kim, Hyeung Jin Lee, and Chilsung Kim. Thermoelectric properties of SrTiO3 nano-particles dispersed indium selenide bulk composites. Applied Physic Letters, 102(223901) (2013).
44. Jong-Soo Rhyee, E. C., Kyu Hyoung Lee, Sang Mock Lee, Sang Il Kim, Hyun-Sik Kim, Yong Seung Kwon and Sung Jin Kim. Thermoelectric properties and anisotropic electronic band structure on the In4Se3−x compounds. Applied Physic Letter, 95(21) (2009).
45.Joel Geny, James K. Meen, and Don Elthon, Phase Equilibria of La2O3-SrO-CuO System at 950℃ and 10 kbar, J. Am. Cream. Soc, 79 [12] 3083-89 (1996).