簡易檢索 / 詳目顯示

研究生: 陳冠華
Chen, Kuan-Hua
論文名稱: 多道次管件液壓成形之預成形設計與分析
Preform Design and Analysis of Multi-Stage Tube Hydroforming
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 111
中文關鍵詞: 鈷基超合金管件液壓成形預成形設計
外文關鍵詞: cobalt-based superalloy, tube hydroforming, preform design
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文根據能量破壞準則探討以液壓鼓脹進行具有截面變化之零件外形的多道次製程,包括預成形管件以及模具幾何。並且發展出適合評估具有截面變化管件之預成形設計法則。
    文中經由材料試驗取得材料破壞資訊,並且透過理論分析之成形極限圖和實驗結果比較,得知材料破壞條件符合能量準則所預測。同時,經由有限元素套裝軟體LS-DYNA針對鈷基超合金HA-188進行液壓鼓脹模擬分析,在後處理分析取得材料應變路徑得知接近線性。
    本文利用具截面變化之管件為目標,根據體積不變,並且提出控制截面的概念設計初始管件外形,評估不同截面幾何管件的可成形性。對於模具幾何設計,首先進行道次規劃,並且使用有限元素分析軟體LS-DYNA進行初步分析,根據評估結果規劃出幾何參數組合,並且進行多道次的模擬分析,觀察管件於成形極限時的幾何外形。模擬結果得到道次數最少的模具幾何參數組合,並且有效減少原來製程的道次數量。

    In this sttuy, an energy criterion was used for evaluating the forming limit of the components with variable cross-section shape in multi-stage tube hydroforming. A preform design rule was developing for assessing the tube with variable cross-section rule.
    The material fracture data were obtained through material test. The experimental results were compared with forming limit diagram by theoretical analysis. The material fracture conditions agrees well with the prediction by fracture energy criterion. The finite element software LS-DYNA was applied to the cobalt-based superalloy HA-188 for tube hydroforming simulation analysis. By the post-processing analysis, the strain path obtained was nearly linear.
    With variable cross-section shape as the goal, according to the constant volume, the concept of controlling the section of tube was proposed to design initial tube shape. Then, the formability of different cross-sectional tube shape was assessed. For the die geometry design, first perform the stage planning. Then, the initial result was obtained by the finite element simulation. According to the initial results, the geometrical parameter combination was planned, and then multi-stage simulation result was performed. The tube shapes with the forming limit were observed. The least number of stages was obtained in this study. It effectively reduced number of stages compared with original design in the industry.

    中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號說明 XIV 第一章 緒論 1 1-1、 前言 1 1-2、 文獻回顧 4 1-2-1、 管件液壓鼓脹 4 1-2-2、 預成形設計 6 1-2-3、 能量破壞準則 7 1-2-4、 成形極限圖預測 8 1-3、 本文研究範疇 10 第二章 理論分析 12 2-1、 材料性質實驗理論 12 2-1-1、 正向異向性指標 12 2-1-2、 應變硬化指數 12 2-2、 成形極限理論 14 2-2-1、 基本假設 14 2-2-2、 能量破壞準則 15 2-3、 成形極限圖 19 第三章 材料性質試驗 21 3-1、 材料性質基本資訊 21 3-2、 網格蝕刻與應變量測 21 3-2-1、 網格蝕刻 21 3-2-2、 網格量測 24 3-3、 材料成形試驗 26 3-3-1、 單軸拉伸試驗與平面應變拉伸試驗 26 3-3-2、 應變硬化指數測定 29 3-3-3、 正向異向性指標測定 31 3-4、 可成形性試驗 36 3-5、 成形極限圖建立 38 3-5-1、 成形極限曲線建立 38 3-5-2、 能量準則驗證 41 第四章 管件預成形設計 43 4-1、 管件胚料設計 45 4-1-1、 錐管設計 46 4-2、 有限元素模擬設定 51 第五章 結果與討論 53 5-1、 預成形管件之可行性分析 53 5-1-1、 不同截面幾何的等效應變 53 5-1-2、 橢圓錐管可成形性分析 57 5-2、 模具幾何設計 62 5-2-1、 參考面選定 63 5-2-2、 道次規劃 64 5-2-3、 第一道次模具幾何設計 66 5-3、 製程模擬結果與討論 70 5-3-1、 製程模擬結果 70 5-3-2、 幾何參數對製程模擬的影響 81 5-4、 預成形設計流程與法則 91 5-4-1、 材料破壞資訊建立 91 5-4-2、 預成形管件:控制截面設定、體積計算、截面幾何選定 93 5-4-3、 模具設計:設計範圍選定、製程道次規劃、幾何設計 95 第六章 結論與建議 104 6-1、 結論 104 6-2、 建議 107 參考文獻 108

    Ahmed, M. and M. S. J. Hashmi, "Finite-element analysis of bulge forming applying pressure and in-plane compressive load", Journal of Materials Processing Technology 77(Elsevier Science), pp.95-102, 1998.
    Ahmed, M. and M. S. J. Hashmi, "Three-dimensional finite-element simulation of bulge forming", Journal of Materials Processing Technology 119(1-3), pp.387-392, 2001.
    Bortot, P., E. Ceretti and C. Giardini, "The determination of flow stress of tubular material for hydroforming applications" Journal of Materials Processing Technology 203, pp.381-388, 2008.
    Chen Yang, Gracious Nagile,”Preform Design for Tube Hydroforming Based on Wrinkle Formation”, Journal of Manufacturing Science and Engineering, Vol. 133., 2001.
    Cockcroft, M. G. and D.J. Latham, "Ductility and the workability of metals", Journal of the institute of metals 96, pp.33, 1968.
    Freudenthal, A.M., “The inelastic behavior of engineer material and structure”, John Wiley, 1950.
    Fuchizawa, S., "Influence of plastic anisotropy on the deformation of thin-walled tubes in buging forming", Advanced Technology of Plasticity 2, pp.727-732, 1987.
    G. T. Kridli, L. Bao, P. K. Mallick, Y. Tian, “ Investigation of thickness variation and corner filling in tube hydroforming”, Journal of Material Processing Technology 133, pp.287-296, 2003.
    Hwang, Y.M., Y.K. Lin and T. Altan, "Evaluation of tubular materials by a hydraulic bulge test", International Journal of Machine Tools and Manufacture 47(2), pp.343-351, 2007.
    Kim Jeong, B. S. K., Sang Moon Hwang, “Preform design in hydroforming by the three-dimensional backward tracing scheme of the FEM”, Journal of Material Processing Technology 130-131, 2002.
    Li Shuhui, Xu Xianghe, Zhang Weigang, Lin Zhongqin, “Study on the crushing and hydroforming processes of tube in a trapezoid-sectional die’, Int J Adv Manuf Technol 43:67-77, 2009.
    M. Koc, t. Allen, S. Jiratheranat, T. Altan, “The use of FEA and design of experiments to establish design guidelines for simple hydroforming parts”,Int. J. Mech. Sci.,40, pp.2249-2266, 2000.
    Manabe, K. and S. Mori, "Bulge forming of thin-walled tubes by microcomputer controlled hydraulic press", Advanced Technology of Plasticity 1, pp.279-284, 1984.
    Norris, D. M., J. E. Reaugh, B. Moran, D. F. Quinones, “A plastic strain mean-stress criterion for ductile fracture”, J. Engng. Mater. Tech., Vol.100, pp.279-286, 1978.
    Oyane, M., T. Sato, K. Okimoto and S. Shima, "Criteria for ductile fracture and their applications", Journal of Mechanical Working Technology 4(1), pp.65-81, 1980
    S. Fuchizawa, H.Takeyama, “Study on the bulge forming of thin walled cylinder (1st Report) – analysis by the logarithmic total strain theory”, J. Japan Soc. Precision Engng., Vol.37, No.8, p.565, 1971.
    Song, W. J., S.C. Heo, J. Kim and B.S. Kang, "Investigation on preformed shape design to improve formability in tube hydroforming process using FEM", Journal of Materials Processing Technology 177, pp.658-622, 2006.
    Song, W. J., J. Kim and B.S. Kang, "Experimental and analytical evaluation on flow stress of tubular material for tube hydroforming simulation", Journal of Materials Processing Technology 191, pp.368-371, 2007.
    Song Woo-Jin, Choi Han-Ho, Kim Keun-Hwan, Park Sung-Ho, Kim Jeong, Kang Beom-Soo,“Preform Design for Formability Enhancement of Tube Hydroforming Process using Deformation History”, Key Engineering Material Vols. 340-341, pp593-598, 2007.
    Song, W. J., S. C. Heo, T. W. Ku, J. Kim and B. S. Kang, "Evaluation of effect of flow stress characteristics of tubular material on forming limit in tube hydroforming process", International Journal of Machine Tools and Manufacture 50(9), pp.753-764, 2010.
    Woo D.M., “The analysis of axisymmetric forming of sheet metal and the hydrostatic bulging process” Int. J. Mech. Sci., Vol.6, p.303, 1964
    林群福,"應用有限元素法於板金成形極限能量準則之建立及應變路徑之模擬",機械工程研究所,台南,國立成功大學,碩士論文,1991。
    河南天時不銹鋼有限公司, http://www.hntsbxg.com/index.asp
    邱厚諭,"HA-188鈷基超合金管件液壓成形之可成形性分析",機械工程研究所,台南,國立成功大學,碩士論文,2011。
    張智傑,"板金厚度對成形極限影響之研究",機械工程研究所,台南,國立成功大學,碩士論文,1996。
    莊益彰,"應用能量準則於板金成形之可成形性評估系統之研究",機械工程研究所,台南,國立成功大學,碩士論文,1995。
    莊偉倫,"應用有限元素法於板金成形極限之模擬分析",機械工程研究所,台南,國立成功大學,碩士論文,1990。
    陳文智,”管材於方形模具內液壓膨脹成形之解析”, 機械與機電工程研究所,高雄,國立中山大學,碩士論文,2002。
    陳彥儒,”以能量準則進行冷作成形製程之可成形性分析研究”, 機械工程研究所,台南,國立成功大學,博士論文,2012。
    陳復國、邱黃政凱、林瑞豪, “管件液壓成形模具設計分析”, 鍛造 第十四卷第四期 94年12月,pp.28-40。
    陳麒翰,"考慮晶粒尺寸效應對精微薄板成形之成形極限預測",機械工程學系,台南,國立成功大學,博士論文,2010。
    溫州創世管閥設備有限公司, http://www.wsjqf.com/hjwt/89977.html
    董福清,"應用微影方法於網格微細化之板金可成形性研究,機械工程研究所,台南,國立成功大學,碩士論文,2000。

    下載圖示 校內:2015-07-29公開
    校外:2015-07-29公開
    QR CODE