| 研究生: |
陳冠華 Chen, Kuan-Hua |
|---|---|
| 論文名稱: |
多道次管件液壓成形之預成形設計與分析 Preform Design and Analysis of Multi-Stage Tube Hydroforming |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 鈷基超合金 、管件液壓成形 、預成形設計 |
| 外文關鍵詞: | cobalt-based superalloy, tube hydroforming, preform design |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文根據能量破壞準則探討以液壓鼓脹進行具有截面變化之零件外形的多道次製程,包括預成形管件以及模具幾何。並且發展出適合評估具有截面變化管件之預成形設計法則。
文中經由材料試驗取得材料破壞資訊,並且透過理論分析之成形極限圖和實驗結果比較,得知材料破壞條件符合能量準則所預測。同時,經由有限元素套裝軟體LS-DYNA針對鈷基超合金HA-188進行液壓鼓脹模擬分析,在後處理分析取得材料應變路徑得知接近線性。
本文利用具截面變化之管件為目標,根據體積不變,並且提出控制截面的概念設計初始管件外形,評估不同截面幾何管件的可成形性。對於模具幾何設計,首先進行道次規劃,並且使用有限元素分析軟體LS-DYNA進行初步分析,根據評估結果規劃出幾何參數組合,並且進行多道次的模擬分析,觀察管件於成形極限時的幾何外形。模擬結果得到道次數最少的模具幾何參數組合,並且有效減少原來製程的道次數量。
In this sttuy, an energy criterion was used for evaluating the forming limit of the components with variable cross-section shape in multi-stage tube hydroforming. A preform design rule was developing for assessing the tube with variable cross-section rule.
The material fracture data were obtained through material test. The experimental results were compared with forming limit diagram by theoretical analysis. The material fracture conditions agrees well with the prediction by fracture energy criterion. The finite element software LS-DYNA was applied to the cobalt-based superalloy HA-188 for tube hydroforming simulation analysis. By the post-processing analysis, the strain path obtained was nearly linear.
With variable cross-section shape as the goal, according to the constant volume, the concept of controlling the section of tube was proposed to design initial tube shape. Then, the formability of different cross-sectional tube shape was assessed. For the die geometry design, first perform the stage planning. Then, the initial result was obtained by the finite element simulation. According to the initial results, the geometrical parameter combination was planned, and then multi-stage simulation result was performed. The tube shapes with the forming limit were observed. The least number of stages was obtained in this study. It effectively reduced number of stages compared with original design in the industry.
Ahmed, M. and M. S. J. Hashmi, "Finite-element analysis of bulge forming applying pressure and in-plane compressive load", Journal of Materials Processing Technology 77(Elsevier Science), pp.95-102, 1998.
Ahmed, M. and M. S. J. Hashmi, "Three-dimensional finite-element simulation of bulge forming", Journal of Materials Processing Technology 119(1-3), pp.387-392, 2001.
Bortot, P., E. Ceretti and C. Giardini, "The determination of flow stress of tubular material for hydroforming applications" Journal of Materials Processing Technology 203, pp.381-388, 2008.
Chen Yang, Gracious Nagile,”Preform Design for Tube Hydroforming Based on Wrinkle Formation”, Journal of Manufacturing Science and Engineering, Vol. 133., 2001.
Cockcroft, M. G. and D.J. Latham, "Ductility and the workability of metals", Journal of the institute of metals 96, pp.33, 1968.
Freudenthal, A.M., “The inelastic behavior of engineer material and structure”, John Wiley, 1950.
Fuchizawa, S., "Influence of plastic anisotropy on the deformation of thin-walled tubes in buging forming", Advanced Technology of Plasticity 2, pp.727-732, 1987.
G. T. Kridli, L. Bao, P. K. Mallick, Y. Tian, “ Investigation of thickness variation and corner filling in tube hydroforming”, Journal of Material Processing Technology 133, pp.287-296, 2003.
Hwang, Y.M., Y.K. Lin and T. Altan, "Evaluation of tubular materials by a hydraulic bulge test", International Journal of Machine Tools and Manufacture 47(2), pp.343-351, 2007.
Kim Jeong, B. S. K., Sang Moon Hwang, “Preform design in hydroforming by the three-dimensional backward tracing scheme of the FEM”, Journal of Material Processing Technology 130-131, 2002.
Li Shuhui, Xu Xianghe, Zhang Weigang, Lin Zhongqin, “Study on the crushing and hydroforming processes of tube in a trapezoid-sectional die’, Int J Adv Manuf Technol 43:67-77, 2009.
M. Koc, t. Allen, S. Jiratheranat, T. Altan, “The use of FEA and design of experiments to establish design guidelines for simple hydroforming parts”,Int. J. Mech. Sci.,40, pp.2249-2266, 2000.
Manabe, K. and S. Mori, "Bulge forming of thin-walled tubes by microcomputer controlled hydraulic press", Advanced Technology of Plasticity 1, pp.279-284, 1984.
Norris, D. M., J. E. Reaugh, B. Moran, D. F. Quinones, “A plastic strain mean-stress criterion for ductile fracture”, J. Engng. Mater. Tech., Vol.100, pp.279-286, 1978.
Oyane, M., T. Sato, K. Okimoto and S. Shima, "Criteria for ductile fracture and their applications", Journal of Mechanical Working Technology 4(1), pp.65-81, 1980
S. Fuchizawa, H.Takeyama, “Study on the bulge forming of thin walled cylinder (1st Report) – analysis by the logarithmic total strain theory”, J. Japan Soc. Precision Engng., Vol.37, No.8, p.565, 1971.
Song, W. J., S.C. Heo, J. Kim and B.S. Kang, "Investigation on preformed shape design to improve formability in tube hydroforming process using FEM", Journal of Materials Processing Technology 177, pp.658-622, 2006.
Song, W. J., J. Kim and B.S. Kang, "Experimental and analytical evaluation on flow stress of tubular material for tube hydroforming simulation", Journal of Materials Processing Technology 191, pp.368-371, 2007.
Song Woo-Jin, Choi Han-Ho, Kim Keun-Hwan, Park Sung-Ho, Kim Jeong, Kang Beom-Soo,“Preform Design for Formability Enhancement of Tube Hydroforming Process using Deformation History”, Key Engineering Material Vols. 340-341, pp593-598, 2007.
Song, W. J., S. C. Heo, T. W. Ku, J. Kim and B. S. Kang, "Evaluation of effect of flow stress characteristics of tubular material on forming limit in tube hydroforming process", International Journal of Machine Tools and Manufacture 50(9), pp.753-764, 2010.
Woo D.M., “The analysis of axisymmetric forming of sheet metal and the hydrostatic bulging process” Int. J. Mech. Sci., Vol.6, p.303, 1964
林群福,"應用有限元素法於板金成形極限能量準則之建立及應變路徑之模擬",機械工程研究所,台南,國立成功大學,碩士論文,1991。
河南天時不銹鋼有限公司, http://www.hntsbxg.com/index.asp
邱厚諭,"HA-188鈷基超合金管件液壓成形之可成形性分析",機械工程研究所,台南,國立成功大學,碩士論文,2011。
張智傑,"板金厚度對成形極限影響之研究",機械工程研究所,台南,國立成功大學,碩士論文,1996。
莊益彰,"應用能量準則於板金成形之可成形性評估系統之研究",機械工程研究所,台南,國立成功大學,碩士論文,1995。
莊偉倫,"應用有限元素法於板金成形極限之模擬分析",機械工程研究所,台南,國立成功大學,碩士論文,1990。
陳文智,”管材於方形模具內液壓膨脹成形之解析”, 機械與機電工程研究所,高雄,國立中山大學,碩士論文,2002。
陳彥儒,”以能量準則進行冷作成形製程之可成形性分析研究”, 機械工程研究所,台南,國立成功大學,博士論文,2012。
陳復國、邱黃政凱、林瑞豪, “管件液壓成形模具設計分析”, 鍛造 第十四卷第四期 94年12月,pp.28-40。
陳麒翰,"考慮晶粒尺寸效應對精微薄板成形之成形極限預測",機械工程學系,台南,國立成功大學,博士論文,2010。
溫州創世管閥設備有限公司, http://www.wsjqf.com/hjwt/89977.html
董福清,"應用微影方法於網格微細化之板金可成形性研究,機械工程研究所,台南,國立成功大學,碩士論文,2000。