| 研究生: |
郭周斌 Kuo, Chou-Bin |
|---|---|
| 論文名稱: |
研究凝血酶調節素與其相關蛋白之交互作用 Study on the Interaction between Thrombomodulin and Its Associated Proteins |
| 指導教授: |
施桂月
Shi, Guey-Yueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 凝血脢調節素 |
| 外文關鍵詞: | thrombomodulin, actinin |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝血酶調節素(Thrombomodulin, TM)是血管內皮細胞表面的一種醣蛋白,並且是一種為人所知的抗凝血分子。在有功能性的心血管系統尚未建立之前,將凝血酶調節素的基因剔除掉,會造成早期胚胎的死亡。然而,凝血酶調節素在抗凝血之外的其他生理功能仍然尚未被研究的很清楚。在本實驗室最近的研究發現TM可以當作一個細胞黏著分子去媒介細胞與細胞之間的聯結,而且lectin-like結構區在此過程中是重要的。而細胞連結的作用,主要是藉由細胞表面的蛋白與鄰近細胞表面(細胞對細胞)或細胞基質(細胞對細胞基質)上的蛋白結合,以及調節細胞內的訊息傳遞路徑來調控細胞連結所造成的細胞生理機能的改變。
做為一個有效的細胞黏著分子,TM的胞內區域可能與細胞骨架做直接的聯結或是間接的透過一些聯繫蛋白的幫助,像是ERM家族中的其中一員,ezrin。為了進一步探討是否有其他的分子參與相關的連結或作用,我們利用μMAC的磁珠去找尋和TM可能有互相結合的蛋白。在本研究之中,由我們的結論顯示α-actinin,一種和actin結合的蛋白,被認為可能是與TM胞內區域有結合的候選分子,並且扮演著連繫蛋白的角色幫助細胞表面黏著蛋白與細胞骨架之間的連結。
在螢光免疫染色的觀察方面,我們發現TM和α-actinin在細胞連接處有同樣的分佈情形,不論是在TM過度表現的外生性系統(A2058-TMG黑色素瘤細胞)或是內生性TM表現的系統(HaCaT上皮細胞)都有一致的結果;而在A2058-TMG細胞中,我們也可以發現兩個分子在細胞前端(leading edge)有部分的相同分佈(partially colocalized)。另外利用細胞內共同免疫沉澱(Co-immunoprecipitation)以及細胞外的蛋白結合測試(in vitro binding assay)證實了TM和α-actinin之間的直接結合。為了找尋TM胞內區域中α-actinin的結合位置,我們進一步利用截短片段以及點突變的TM胞內區域去進行細胞外的蛋白結合測試並且加以分析。實驗結果發現,在TM胞內區域的前九個胺基酸中,靠近細胞膜附近的帶正電胺基酸群RKK和RAK被認為與α-actinin的結合有關。總結以上實驗的結果,並且比較α-actinin和ezrin在細胞裡面不同的分佈,我們認為α-actinin在TM所調節細胞與細胞連結的生理現象中扮演著重要的角色,當作是一個聯繫蛋白負責與細胞骨架做連結,而ezrin可能參與TM其他功能的調節。
Thrombomodulin (TM) is an integral membrane glycoprotein that is originally found on vascular endothelium and is a well-established potent anticoagulant factor. Ablation of the TM gene causes early postimplantation embryonic lethality that precedes the establishment of a functional cardiovascular system. Until recently the physiological function of TM beyond its anticoagulation activity has not been well investigated. Recently our lab reported that TM may function as a cell adhesion molecule to mediate cell-cell adhesion through its lectin-like domain. These adhesive interactions, mediated by cell surface proteins that bind to others on adjacent cells (cell-to-cell) or in the extracellular matrix (cell-to-extracellular matrix), also regulate intracellular signal transduction pathways that control adhesion-induced changes in cell physiology.
To be an effective adhesion molecule, cytoplasmic domain of TM may associate with actin cytoskeleton directly or indirectly through some linkage proteins such as ezrin, the member of ezrin/radixin/moesin (ERM) family. To further investigate molecules involved in this interaction, we used μMAC magnetic beads to pull down the proteins interacted with TM. In the study, our result indicated that α-actinin, an actin binding protein, which functions as a linker between cell surface adhesion molecules and the actin-containing cytoskeleton was indentified as a potential candidate to interact with TM cytoplasmic domain.
In the immunofluorescence study, we found that exogenous (A2058-TMG melanoma cells) and endogenous (HaCaT keratinocytes) systems showed a consistent result that TM and α-actinin were colocalized in cell-cell junctions, whereas there was partially colocalized in the leading edge of TMG stable expressed A2058 cells. Co-immunoprecipitation analysis in vivo and in vitro binding assay showed a direct interaction between α-actinin and TM. In vitro binding assay was further performed by truncated and mutated forms of TM cytoplsamic domain to study the α-actinin interaction sites in TM cytoplasmic domain. Based on these results, we conclued that α-actinin required the juxta-membrane positively charged residue clusters RKK and RAK within the first nine amino acids of the TM cytoplasmic domain for its binding. Together, comparing the different subcellular distributions between α-actinin and ezrin, we hypothesize that α-actinin rather than ezrin seems to be an important cytoskeletal linkage protein involved in TM-mediated cell-cell adhesion.
Asada M, Irie K, Morimoto K, Yamada A, Ikeda W, Takeuchi M, Takai Y. ADIP, a novel Afadin- and alpha-actinin-binding protein localized at cell-cell adherens junctions. J Biol Chem. 278:4103-11, 2003
Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb. Vasc. Biol. 20:2511-2518, 2000.
Balzar M, Bakker HA, Briaire-de-Bruijn IH, Fleuren GJ, Warnaar SO, Litvinov SV. Cytoplasmic tail regulates the intercellular adhesion function of the epithelial cell. Mol Cell Biol . 18:4833-43, 1998
Bauer K, Kratzer M, Otte M, de Quintana KL, Hagmann J, Arnold GJ, Eckerskorn C, Lottspeich F, Siess W. Human CLP36, a PDZ-domain and LIM-domain protein, binds to alpha-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood. 96:4236-45, 2000.
Beggs AH, Byers TJ, Knoll JH, Boyce FM, Bruns GA, Kunkel LM. Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem. 267:9281-8, 1992.
Belkin AM, Koteliansky VE. Interaction of iodinated vinculin, metavinculin and alpha-actinin with cytoskeletal proteins. FEBS Lett. 220:291-4, 1987
Blanchard A, Ohanian V, Critchley D. The structure and function of alpha-actinin. J Muscle Res Cell Motil. 10:280-9, 1989
Boyd D, Beckwith J. The role of charged amino acids in the localization of secreted and membrane proteins. Cell. 62(6):1031-1033, 1990.
Bracke ME, Van Roy FM, Mareel MM. The E-cadherin/catenin complex in invasion and metastasis. Curr Top Microbiol Immunol. 213:123-61, 1996
Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol. 3:586-99, 2002.
Broze GJ Jr, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis:role of carboxypeptidase and the premature lysis of clots from hemophilic plasma. Blood. 88:3815-3823, 1996.
Burridge K, Feramisco JR. Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature. 294:565-7, 1981.
Carpen O, Pallai P, Staunton DE, Springer TA. Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. J Cell Biol. 118:1223-34, 1992
Conway E, Nowakowski B, Steiner-Mosonyi M. Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J. Cell Physiol. 158:285-298, 1994.
Conway EM, Pollefeyt S, Collen D, Steiner-Mosonyi M. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood. 89:652-661, 1997.
Conway EM, Pollefeyt S, Cornelissen J, DeBaere I, Steiner-Mosonyi M, Weitz JI, Weiler-Guettler H, Carmeliet P, Collen D. Structure-function analyses of thrombomodulin by gene-targeting in mice: the cytoplasmic domain is not required for normal fetal development. Blood. 93(10): 3442-3450, 1999.
Crawford AW, Michelsen JW, Beckerle MC. An interaction between zyxin and alpha-actinin. J Cell Biol. 116:1381-93, 1992
Critchley DR, Holt MR, Barry ST, Priddle H, Hemmings L, Norman J. Integrin-mediated cell adhesion: the cytoskeletal connection. Biochem Soc Symp. 65:79-99, 1999
Daniliuc S, Bitterman H, Rahat MA, Kinarty A, Rosenzweig D, Lahat N. Hypoxia inactivates inducible nitric oxide synthase in mouse macrophages by disrupting its interaction with alpha-actinin 4. J Immunol. 171:3225-32, 2003.
DeBault LE, Esmon NL, Olson JR, and Esmon CT. Distribution of the thrombomodulin antigen in the rabbit vasculature. Lab. Invest. 54:172-178, 1986.
Diaz-Rodriguez E, Esparis-Ogando A, Montero JC, Yuste L, Pandiella A. Stimulation of cleavage of membrane proteins by calmodulin inhibitors. Biochem J. 346:359-67, 2000.
Dittman WA, Kumada T, Sadler JE, Majerus PW. The structure and function of mouse thrombomodulin. Phorbol myristate acetate stimulates degradation and synthesis of thrombomodulin without affecting mRNA levels in hemangioma cells. J. Biol. Chem. 263(30):15815-15822, 1988.
Djinovic-Carugo K, Gautel M, Ylanne J, Young P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 513:119-23, 2002.
Dwir O, Kansas GS, Alon R. Cytoplasmic anchorage of L-selectin controls leukocyte capture and rolling by increasing the mechanical stability of the selectin tether. J Cell Biol. 155:145-56, 2001.
Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc. Natl .Acad. Sci. USA. 78:2249-2252, 1981.
Galliano MF, Huet C, Frygelius J, Polgren A, Wewer UM, Engvall E. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha -actinin-2, is required for myoblast fusion. J Biol Chem. 275:13933-9, 2000.
Goldsmith SC, Pokala N, Shen W, Fedorov AA, Matsudaira P, Almo SC. The structure of an actin-crosslinking domain from human fimbrin. Nat Struct Biol. 4:708-12, 1997
Gonzalez AM, Otey C, Edlund M, Jones JC. Interactions of a hemidesmosome component and actinin family members. J Cell Sci. 114:4197-206, 2001
Greene DK, Tumova S, Couchman JR, Woods A. Syndecan-4 associates with alpha-actinin. J Biol Chem. 278:7617-23, 2003
Greenwood JA, Theibert AB, Prestwich GD, Murphy-Ullrich JE. Restructuring of focal adhesion plaques by PI 3-kinase. Regulation by PtdIns (3,4,5)-p(3) binding to alpha-actinin. J Cell Biol. 150:627-42, 2000.
Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci 92:850-4, 1995
Helander, T. S. et al. ICAM-2 redistributed by ezrin as a target for killer cells. Nature. 382: 265-268, 1996.
Heiska L. et al. Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5- bisphosphate. J. Biol. Chem. 273; 21893-21900, 1998.
Heiska L, Kantor C, Parr T, Critchley DR, Vilja P, Gahmberg CG, Carpen O. Binding of the cytoplasmic domain of intercellular adhesion molecule-2 (ICAM-2) to alpha-actinin. J Biol Chem. 271:26214-9, 1996.
Honda G, Masaki C, Zushi M, Tsuruta K, Sata M. The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J. Biochem. 118:1030-1036, 1995.
Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, Yamada Y, Chiba H, Hirohashi S. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol. 140:1383-93, 1998.
Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin–mediated cell adhesion: involvement of its lectin-like domain. J. Biol. Chem. 278:46750-46759, 2003.
Hynes RO, Wagner DD. Genetic manipulation of vascular adhesion molecules in mice. J Clin Invest. 98:2193-5, 1996
Ivetic A, Deka J, Ridley A, Ager A. The cytoplasmic tail of L-selectin interacts with members of the Ezrin-Radixin-Moesin (ERM) family of proteins: cell activation-dependent binding of Moesin but not Ezrin. J Biol Chem. 277:2321-9, 2002
Ivetic A, Florey O, Deka J, Haskard DO, Ager A, Ridley AJ. Mutagenesis of the ezrin-radixin-moesin binding domain of L-selectin tail affects shedding, microvillar positioning, and leukocyte tethering. J Biol Chem. 279:33263-72, 2004.
Kahn J, Walcheck B, Migaki GI, Jutila MA, Kishimoto TK. Calmodulin regulates L-selectin adhesion molecule expression and function through a protease-dependent mechanism. Cell. 92:809-18, 1998.
Knudsen KA, Soler AP, Johnson KR, Wheelock MJ. Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol. 130:67-77, 1995
Kokame K, Zheng X, Sadler JE. Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J. Biol. Chem. 273:12135-12139, 1998.
Koyama T, Parkinson JF, Aoki N, Bang NU, Muller-Berghaus G, Preissner KT. Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. British. J. Haematol. 78:515-522, 1991.
Kurosawa S, Galvin JB, Esmon NL, Esmon CT. Proteolytic formation and properties of functional domains of thrombomodulin. J. Biol. Chem. 262:2206-2212, 1987.
Lager DJ, Callaghan EJ, Worth SF, Raife TJ,and Lentz SR. Cellular localization of thrombomodulin in human epithelium and squamous malignancies. Am. J. Pathol. 146:933-943, 1995.
Larue L, Ohsugi M, Hirchenhain J, Kemler R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci. 91:8263-7, 1994
Lazarides E, Burridge K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell. 6:289-98. 1975
Maruyama I, Bell CE, and Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries and lymphatics, and on syncytiotrophoblast of human placenta. J. Cell Biol. 101:363-371, 1985.
Maruno M, Yoshimine T, kuroda R, Ishii H, and Hayakawa T. Expression of thrombomodulin astrocytomas of various malignancy and in gliotic and normal brains. J. Neurooncol. 19:155-160, 1994.
Matsudaira P. Modular organization of actin crosslinking proteins. Trends Biochem Sci. 16:87-92, 1991
McCachren SS, Diggs J, Weinberg JB, and Dittman WA. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood.78:3128-3132, 1991.
McEver R. Leukocyte interactions mediated by selectins. Thromb. Haemost. 66:80-87, 1991
Molinari A, Giorgetti C, Lansen J, Vaghi F, Orsini G, Faioni EM, Mannucci PM. Thrombomodulin is a cofactor for thrombin degradation of recombinant single-chain urokinase plasminogen activator in vitro and in a perfused rabbit heart model. Thromb. Haemost. 69:226-232, 1992.
Parast MM, Otey CA. Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J Cell Biol. 150:643-56, 2000.
Patrie KM, Drescher AJ, Welihinda A, Mundel P, Margolis B. Interaction of two actin-binding proteins, synaptopodin and alpha-actinin-4, with the tight junction protein MAGI-1. J Biol Chem. 277:30183-90, 2002.
Patthy L. Detecting distant homologies of mosaic proteins. Analysis of the sequences of thrombomodulin, thrombospondin complement components C9, C8 alpha and C8 beta, vitronectin and plasma cell membrane glycoprotein PC-1. J. Mol. Biol. 202:689-696, 1988.
Pavalko FM, Schneider G, Burridge K, Lim SS. Immunodetection of alpha-actinin in focal adhesions is limited by antibody inaccessibility. Exp Cell Res. 217:534-40, 1995
Pavalko FM, Walker DM, Graham L, Goheen M, Doerschuk CM, Kansas GS. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via alpha-actinin: receptor positioning in microvilli does not require interaction with alpha-actinin. J Cell Biol. 129:1155-64, 1995.
Petersen T. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett. 231:51-53, 1988.
Podlubnaya ZA, Tskhovrebova LA, Zaalishtsbvili MM, Stefanenko GA. Electron microscopic study of alpha-actinin. J Mol Biol. 92:357-9, 1975
Raife TJ, Lager DJ, Madison KC, Piette WW, Howard EJ, Sturm MT, Chen Y and Lentz SR. Thrombomodulin expression by human keratinocytes.
J. Clin. Invest. 93:1846-1851, 1994.
Resendiz JC, Feng S, Ji G, Kroll MH. von Willebrand factor binding to platelet glycoprotein Ib-IX-V stimulates the assembly of an alpha-actinin-based signaling complex. J Thromb Haemost. 2:161-9, 2004.
Riethmacher D, Brinkmann V, Birchmeier C. A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci. 92: 855-9, 1995
Shibasaki F, Fukami K, Fukui Y, Takenawa T. Phosphatidylinositol 3-kinase binds to alpha-actinin through the p85 subunit. Biochem J. 302:551-7, 1994.
Shirai T, Shiojiri S, Ito H, Yamamoto S, Kusumoto H, Deyashiki Y, Maruyama I, Suzuki K. Gene structure of human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C. J. Biochem. 103:281-285, 1988.
Suehiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K, and Sugimachi K. Thrombomodulin inhibits intrahepatic spread in human hepato-cellular carcinoma. Hepatology. 21:1285-1290, 1995.
Tang J, Taylor DW, Taylor KA. The three-dimensional structure of alpha-actinin obtained by cryoelectron microscopy suggests a model for Ca(2+)-dependent actin binding. J Mol Biol. 310:845-58, 2001.
Teasdale M, Bird C, Bird P. Internalization of the anticoagulant thrombomodulin is constitutive and does not require a signal in the cytoplasmic domain. Immunol. Cell Biol. 72:480-488, 1994.
Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 55:4196-4200, 1995.
Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in inflammation. Crit. Care Med. 32:254-261, 2004.
Wachsstock DH, Wilkins JA, Lin S. Specific interaction of vinculin with alpha-actinin. Biochem Biophys Res Commun. 146:554-60, 1987.
Weiler-Guettler H, Aird WC, Rayburn H, Husain M, and Rosenberg RD. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development. 122:2271-2281, 1996.
Wen DZ, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE. Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry. 26:4350-4357, 1987.
Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM, Sheng M. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature. 385:439-42, 1997.
Ylanne J, Scheffzek K, Young P, Saraste M. Crystal structure of the alpha-actinin rod reveals an extensive torsional twist. Structure. 9:597-604, 2001.
Zushi M, Gomi K, Yamamoto S, Maruyama I, Hayashi T, Suzuki K. The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for protein C-activating cofactor activity and anticoagulant activity. J. Biol Chem. 264:10351-10353, 1989.
Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E, Stern D, Rosenberg R, Ziegler R, Nawroth P. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J. Clin. Invest. 101:1301-1309, 1998.
校內:2106-07-24公開