簡易檢索 / 詳目顯示

研究生: 許凱熙
Hsu, Kai-Hsi
論文名稱: 腸胃道間質瘤之CD44裂解對細胞週期失調及異常分裂增殖的影響
The Effect of CD44 Cleavage in Cell Cycle Deregulation and Enhanced Mitosis in Gastrointestinal Stromal Tumors
指導教授: 沈延盛
Shan, Yan-Shen
呂佩融
Lu, Pei-Jung
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 116
中文關鍵詞: 細胞凋亡β-catenin腸胃道間質瘤CD44CD44裂解cyclin D1Mcl-1細胞分裂骨橋蛋白細胞增殖
外文關鍵詞: apoptosis, β-catenin, CD44, CD44 cleavage, cyclin D1, gastrointestinal stromal tumor (GIST), Mcl-1, mitosis, osteopontin (OPN), proliferation
相關次數: 點閱:118下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸胃道間質瘤是人體胃腸道最常見的間質細胞瘤,其致病機轉大部份是由於Cajal間質細胞的KIT基因突變,造成其蛋白質產物,即酪胺酸激酶受體KIT受體,在不需配體結合的情況下持續產生激酶區的活化,引發細胞不受控制的增殖或反細胞凋亡而形成腫瘤。CD44為一個含有20 exon的CD44基因編碼細胞膜蛋白質產物,除具有細胞黏著分子的功能外,也和許多細胞生理及病態生理活動有關。我們的研究顯示,腸胃道間質瘤CD44的低表現與臨床上較差的預後有關。然而CD44表現的增減在不同甚至相同人類腫瘤的預後影響並不一致,推測造成CD44表現改變的機轉,包括CD44裂解,可能是更重要的影響因素。CD44如同一些跨膜蛋白,會經由本身蛋白質細胞外區域的裂解來調控細胞的功能。我們研究發現腸胃道間質瘤腫瘤組織,相較於正常組織,有不同程度的CD44的蛋白質裂解產物之表現,較高的CD44裂解表現和不良臨床預後、腫瘤大小以及腫瘤細胞分裂數有明顯相關。本研究的目的便是要探討腸胃道間質瘤之CD44裂解對細胞增殖的影響以及造成兩者之間變化的分子機轉。
    我們利用腫瘤庫之腸胃道間質瘤腫瘤及正常組織,分析兩者的CD44裂解產物與細胞增殖相關分子的表現以及臨床病理意義。我們也利用腸胃道間質瘤腫瘤組織及腫瘤細胞來探討和CD44有密切相關性的osteopontin(OPN)在腸胃道間質瘤以及CD44裂解中的角色及影響。另外我們也研究OPN及其與CD44之交互作用對腸胃道間質瘤之細胞增生與細胞凋亡的影響。實驗結果發現腫瘤組織相對於正常組織,在細胞周期中的Cyclin D1以及其重要調控分子β-catenin,如同CD44裂解在腸胃道間質瘤的表現一般,有明顯的腫瘤專一性及過度表現的情形。而Cyclin D1與β-catenin兩者之間除了具有明顯的相關性外,兩者分別與CD44裂解增加也呈現正相關,顯示Cyclin D1與β-catenin在CD44裂解活動可能引發的細胞分裂增加的效應之重要角色。此外腸胃道間質瘤的OPN的表現除了是不良預後的重要因子外,和CD44以及CD44裂解也有顯著的相關,在組織及細胞上也發現和CD44產生交互作用,並和腫瘤組織細胞分裂增加有顯著相關,並同時促進腫瘤細胞之增生,以及經由β-catenin以及抗細胞凋亡Mcl-1的過度表現來促進腫瘤細胞的抗細胞凋亡作用。
    我們因此認為在腸胃道間質瘤中,透過osteopontin與CD44的交互作用所引發的CD44的裂解,可促使β-catenin以及其所調控之細胞周期蛋白Cyclin D1及Mcl-1的過度表現,分別造成腫瘤細胞的異常分裂增殖及抗細胞凋亡作用而影響臨床預後。

    Gastrointestinal stromal tumors (GISTs) originate from the interstitial cell of Cajal (ICC) in the muscular layer of the gut. The pathogenesis of GIST is gain-of-function mutations in KIT gene in ICC with consequent uncontrolled cell proliferation and anti-apoptosis. Being associated with variable cellular functions, CD44 belongs to the type I transmembrane glycoprotein that is encoded by a 20-exon CD44 gene. We previously found that loss of CD44 expression is related to poor prognosis in GIST. However, the significance of CD44 expression has been controversial. It is thus likely that the mechanism underlying the change in CD44 expression may be more important than the expression of CD44 itself in human cancer. The proteolytic cleavage of membrane proteins, including CD44, has been considered an important mechanism for the regulation of cellular functions. Our study showed that CD44 cleavage is specifically overexpressed in the majority of GIST tumor samples. In the clinicopathologic factors associated with CD44 cleavage, increased mitosis was the most significant one. The aim of this study is to evaluate the possible mechanism underlying the association between increased CD44 cleavage and increased mitosis in GIST. We also aim to investigate the significance and effects of osteopontin (OPN), a multifunctional secreted glycophosphoprotein functionally related to CD44, in relation to tumor proliferation as well as apoptosis.
    In GIST tumor samples and their normal counterpart tissues, we analyzed the expression of specific cell cycle proteins in relation to CD44 cleavage activity. We also evaluated the expression and the significance of osteopontin (OPN), a molecule closely related to CD44. Cyclin D1 and its important regulator, β-catenin, showed similar tumor-specificity and overexpression as did CD44 cleavage activity in GIST. Cyclin D1 and β-catenin, in addition to their significant correlation, were also associated with CD44 cleavage, indicating a potential role of these two molecules in the mitotic effect of CD44 cleavage in GIST. OPN, being associated with CD44 and CD44 cleavage, was also found to be an independent prognostic factor clinically, and its interaction with CD44 most significantly correlated with increased mitosis. Further in vitro studies revealed the significant proliferation-promoting and anti-apoptotic effects of OPN and its interaction with CD44 with respect to CD44 cleavage in GIST.
    In conclusion, we identified the significant mitotic effect of CD44 cleavage in relation to OPN/CD44 interaction and dysregulated cell cycle in GIST. Increased OPN expression was an independent poor prognostic factor and its interaction with CD44 significantly correlated with increased mitosis as well as in vitro proliferation-promoting and anti-apoptotic effects through upregulation of cyclin D1 and Mcl-1 expression, respectively, in GIST.

    Table of Contents Abstract in Chinese-1 Abstract in English-3 Acknowledgement-5 Table of Contents-7 List of Tables-10 List of Figures-11 Abbreviations-13 Chapter One: Introduction-14 I.Gastrointestinal Stromal Tumor (GIST)-15 II.CD44 and CD44 Cleavage-17 1.CD44-17 2.CD44 Cleavage-18 3.Clinical Significance of CD44 and CD44 Cleavage-19 III.CD44 and Osteopontin Interaction-20 IV.Cell Cycle Protein in GIST-21 V.Hypothesis and Specific Aims-23 Chapter Two: Materials and Methods-24 I.Materials-25 II.Patients-27 III.Experimental Procedures-28 1.Western Blot-28 2.Immunohistochemistry (IHC)-29 3.Immunofluorescent staining-29 4.In Situ Proximity Ligation Assay (PLA)-30 5.Cell Culture and Transfection-31 6.Proliferation Assay-31 7.Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay-31 8.Statistical Analysis-32 Chapter Three: Results-33 I.Mitotic effects of CD44 cleavage in relation to deregulated cell cycle protein and CD44/OPN interaction in GIST-34 1.Clinicopathologic Characterization of Patients with GIST-34 2.CD44 Cleavage Activity was Increased in GIST with High Tumor-specificity-34 3.Increased Mitosis Associated with CD44 Cleavage in GIST-35 4.CD44 Cleavage Activity was Positively Correlated with Cyclin D1 and β-catenin Overexpression in GIST-35 5.Correlation and Interaction of OPN and CD44 in GIST-36 6.OPN and Its Interaction with CD44 were Significantly Associated with Increased CD44 Cleavage Activity in GIST-37 7.Survival Analysis in Relation to CD44 cleavage Activity in GIST-38 II.Clinicopathologic Significance of OPN and Its Interaction with CD44 in Patients with Resectable GIST-39 1.Significance of OPN Expression in Gastrointestinal Stromal Tumor-39 2.Recurrence and Survival Analysis in Gastrointestinal Stromal Tumor-39 3.Significance of OPN and CD44 Interaction in Gastrointestinal Stromal Tumor-40 4.In vitro Effects of OPN and CD44 Interaction on Proliferation in GIST Cell Lines-40 III.Anti-apoptotic Effect of Osteopontin and CD44 in Gastrointestinal Stromal Tumor-42 1.Expression of Apoptotic and Anti-apoptotic Proteins in Response to OPN in GIST882-42 2.In vitro Anti-apoptotic Effect of OPN on Imatinib-induced Apoptosis in GIST-42 3.Clinicopathologic Significance of anti-apoptotic protein Mcl-1 Expression and Its Correlation with B-catenin in GIST-43 Chapter Four: Discussion-45 I.Clinicopathologic Significance and Mitotic effects of CD44 cleavage in relation to deregulated cell cycle protein and CD44/OPN interaction in GIST-46 1.Mitotic effect of CD44 cleavage in relation to CD44 and OPN interaction-46 2.CD44 cleavage in relation to OPN and CD44 interaction-47 3.Mitotic effects through cell cycle proteins dysregulation-48 II.In vitro Effect and Significance of OPN and Its Interaction with CD44 in GIST-50 1.In vitro Effects of OPN and CD44 Interaction on Proliferation in GIST-50 2.OPN as An Independently Predictor for Poor Prognosis in GIST-51 III.Anti-apoptotic Effect of Osteopontin and Its Associated Mechanism in GIST-52 1.Anti-apoptotic Effect of OPN in Gastrointestinal Stromal Tumor-52 2.The Role of Mcl-1 in The Anti-apoptotic Effect of Osteopontin in GIST-53 IV.Limitations and Implications-55 V.Future Research-57 VI.Conclusion-58 References-59 Tables-74 Figures-82 Curriculum Vitae-113

    Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene 23:7274-7282. 2004.
    Backus HH, van Riel JM, van Groeningen CJ, Vos W, Dukers DF, Bloemena E, Wouters D, Pinedo HM, Peters GJ. Rb, mcl-1 and p53 expression correlate with clinical outcome in patients with liver metastases from colorectal cancer. Ann Oncol 12:779-785. 2001.
    Balakrishnan K, Burger JA, Wierda WG, Gandhi V. AT-101 induces apoptosis in CLL B cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood 113:149-153. 2009.
    Barboule N, Demeter K, Benmeradi N, Larminat F. Bcl-2 is an integral component of mitotic chromosomes. Cell Biol Int 33:572-577. 2009.
    Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 26:7560-7568. 2007.
    Blanke CD. Biomarkers in GIST: partly ready for prime-time use. Clin Cancer Res 15:5603-5605. 2009.
    Blasberg JD, Pass HI, Goparaju CM, Flores RM, Lee S, Donington JS. Reduction of elevated plasma osteopontin levels with resection of non-small-cell lung cancer. J Clin Oncol 28:936-941. 2010.
    Burdo TH, Wood MR, Fox HS. Osteopontin prevents monocyte recirculation and apoptosis. J Leukoc Biol 81:1504-1511. 2007.
    Campbell KJ, Bath ML, Turner ML, Vandenberg CJ, Bouillet P, Metcalf D, Scott CL, Cory S. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells and enhances drug-resistance. Blood 2010. [Epub ahead of print]
    Castellano G, Malaponte G, Mazzarino MC, Figini M, Marchese F, Gangemi P, Travali S, Stivala F, Canevari S, Libra M. Activation of the osteopontin/matrix metalloproteinase-9 pathway correlates with prostate cancer progression. Clin Cancer Res 14:7470-7480. 2008.
    Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T, Fletcher JA, Dewell S, Maki RG, Zheng D, Antonescu CR, Allis CD, Sawyers CL. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467:849-853. 2010.
    Coppola D, Szabo M, Boulware D, Muraca P, Alsarraj M, Chambers AF, Yeatman TJ. Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res 10:184–190. 2004.
    Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol 22:3813-3825. 2004.
    Cuff CA, Kothapalli D, Azonobi I, Chun S, Zhang Y, Belkin R, Yeh C, Secreto A, Assoian RK, Rader DJ, Puré E. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J Clin Invest 108:1031-1040. 2001
    Dai N, Bao Q, Lu A, Li J. Protein expression of osteopontin in tumor tissues is an independent prognostic indicator in gastric cancer. Oncology 72:89-96. 2007.
    Dei Tos AP. The reappraisal of gastrointestinal stromal tumors: from stout to the KIT revolution. Virchows Arch 442:421-428. 2003.
    DeMatteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 231:51-58. 2000.
    Dematteo RP, Ballman KV, Antonescu CR, Maki RG, Pisters PW, Demetri GD, Blackstein ME, Blanke CD, von Mehren M, Brennan MF, Patel S, McCarter MD, Polikoff JA, Tan BR, Owzar K; American College of Surgeons Oncology Group (ACOSOG) Intergroup Adjuvant GIST Study Team. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373:1097-1104. 2009.
    Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silberman SL, Capdeville R, Kiese B, Peng B, Dimitrijevic S, Druker BJ, Corless C, Fletcher CD, Joensuu H. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472-480. 2002.
    Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. FASEB J 7:1475-1482. 1993.
    Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107:1055-1061. 2001.
    Desai B, Rogers MJ, Chellaiah MA. Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer 6:18. 2007.
    Desai B, Ma T, Zhu J, Chellaiah MA. Characterization of the expression of variant and standard CD44 in prostate cancer cells: identification of the possible molecular mechanism of CD44/MMP9 complex formation on the cell surface. J Cell Biochem 108:272-284. 2009.
    Diaz LK, Zhou X, Wright ET, Cristofanilli M, Smith T, Yang Y, Sneige N, Sahin A, Gilcrease MZ. CD44 expression is associated with increased survival in node-negative invasive breast carcinoma. Clin Cancer Res 11:3309-3314. 2005.
    Du L, Wang H, He L, Zhang J, Ni B, Wang X, Jin H, Cahuzac N, Mehrpour M, Lu Y, Chen Q. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14:6751-6760. 2008.
    Fedarko NS, Jain A, Karadag A, Van Eman MR, Fisher LW. Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res 7:4060-4066. 2001.
    Fletcher CD, Berman JJ, Corless C, Gorstein F, Lasota J, Longley BJ, Miettinen M, O'Leary TJ, Remotti H, Rubin BP, Shmookler B, Sobin LH, Weiss SW. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 33:459-465. 2002.
    Fox SB, Fawcett J, Jackson DG, Collins I, Gatter KC, Harris AL, Gearing A, Simmons DL. Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res 54:4539-4546. 1994.
    Fujimoto Y, Nakanishi Y, Yoshimura K, Shimoda T. Clinicopathologic study of primary malignant gastrointestinal stromal tumor of the stomach, with special reference to prognostic factors: Analysis of results in 140 surgically resected patients. Gastric Cancer 6:39-48. 2003.
    Furth PA, Bar-Peled U, Li M, Lewis A, Laucirica R, Jäger R, Weiher H, Russell RG. Loss of anti-mitotic effects of Bcl-2 with retention of anti-apoptotic activity during tumor progression in a mouse model. Oncogene 18:6589-6596. 1999.
    Gallatin WM, Weissman IL, Butcher EC. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304:30-34. 1983.
    Gehrke I, Gandhirajan RK, Kreuzer KA. Targeting the WNT/beta-catenin/TCF/LEF1 axis in solid and haematological cancers: Multiplicity of therapeutic options. Eur J Cancer 45:2759-2767. 2009.
    Gold JS, Gönen M, Gutiérrez A, Broto JM, García-del-Muro X, Smyrk TC, Maki RG, Singer S, Brennan MF, Antonescu CR, Donohue JH, DeMatteo RP. Development and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localized primary gastrointestinal stromal tumour: a retrospective analysis. Lancet Oncol 10:1045-1052. 2009.
    Goodison S, Yoshida K, Churchman M, Tarin D. Multiple intron retention occurs in tumor cell CD44 mRNA processing. Am J Pathol 153:1221-8. 1998.
    Goodison S, Urquidi V, Tarin D. CD44 cell adhesion molecules. Mol Pathol 52:189-196. 1999.
    Gordon PM, Fisher DE. Role for the proapoptotic factor BIM in mediating imatinib-induced apoptosis in a c-KIT-dependent gastrointestinal stromal tumor cell line. J Biol Chem 2010 285:14109-14114. 2010.
    Graessmann M, Berg B, Fuchs B, Klein A, Graessmann A. Chemotherapy resistance of mouse WAP-SVT/t breast cancer cells is mediated by osteopontin, inhibiting apoptosis downstream of caspase-3. Oncogene 26:2840-2850. 2007.
    Granberg D, Wilander E, Oberg K, Skogseid B. Decreased survival in patients with CD44-negitive typical bronchial carcinoid tumors. Int J Cancer 84:484-488. 1999.
    Gu T, Ohashi R, Cui R, Tajima K, Yoshioka M, Iwakami S, Sasaki S, Shinohara A, Matsukawa T, Kobayashi J, Inaba Y, Takahashi K. Osteopontin is involved in the development of acquired chemo-resistance of cisplatin in small cell lung cancer. Lung Cancer 66:176-183. 2009.
    Heinrich MC, Corless CL. Gastric GI stromal tumors (GISTs): the role of surgery in the era of targeted therapy. J Surg Oncol 90:195-207. 2005.
    Higashiyama M, Ito T, Tanaka E, Shimada Y. Prognostic significance of osteopontin expression in human gastric carcinoma. Ann Surg Oncol 14:3419-3427. 2007.
    Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y. Gain-of-function mutations of c-KIT in human gastrointestinal stromal tumors. Science 279:577-580. 1998.
    Hooper NM, Karran EH, Turner AJ. Membrane protein secretases. Biochem J 321:265-279. 1997.
    Horny HP, Menke DM, Kaiserling E. Neoplastic human tissue mast cells express the adhesion molecule CD44/HCAM. Virchows Arch 429:91-94. 1996.
    Hsu KH, Yang TM, Shan YS, Lin PW. Tumor size is a major determinant of recurrence in patients with resectable gastrointestinal stromal tumor. Am J Surg. 194:148-152. 2007a.
    Hsu KH, Tsai HW, Shan YS, Lin PW. Significance of CD44 expression in gastrointestinal stromal tumors in relation to disease progression and survival. World J Surg 31:1438-1444. 2007b
    Hsu KH, Tsai HW, Lin PW, Hsu YS, Shan YS, Lu PJ. Clinical implication and mitotic effect of CD44 cleavage in relation to osteopontin/CD44 interaction and dysregulated cell cycle protein in gastrointestinal stromal tumor. Ann Surg Oncol 17:2199-2212. 2010a
    Hsu KH, Tsai HW, Lin PW, Hsu YS, Shan YS, Lu PJ. Osteopontin expression is an independent adverse prognostic factor in resectable gastrointestinal stromal tumor and its interaction with CD44 promotes tumor proliferation. Ann Surg Oncol 17:3043-3052. 2010b
    Huang H, Zhang XF, Zhou HJ, Xue YH, Dong QZ, Ye QH, Qin LX. Expression and prognostic significance of osteopontin and caspase-3 in hepatocellular carcinoma patients after curative resection. Cancer Sci 101:1314-1319. 2010.
    Humphrey G, Hazel DL, MacLennan K, Lewis I. Expression of CD44 by rhabdomyosarcoma: a new prognostic marker? Br J Cancer 80:918-921. 1999.
    Iesalnieks I, Rümmele P, Dietmaier W, Jantsch T, Zülke C, Schlitt HJ, Hofstädter F, Anthuber M. Factors associated with disease progression in patients with gastrointestinal stromal tumors in the pre-imatinib era. Am J Clin Pathol 124:740-748. 2005.
    Ivanov SV, Ivanova AV, Goparaju CM, Chen Y, Beck A, Pass HI. Tumorigenic properties of alternative OPN isoforms in mesothelioma. Biochem Biophys Res Commun 382:514-518. 2009.
    Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553-4557. 2006.
    Likui W, Qun L, Wanqing Z, Haifeng S, Fangqiu L, Xiaojun L. Prognostic role of myeloid cell leukemia-1 protein (Mcl-1) expression in human gastric cancer. J Surg Oncol 100:396-400. 2009.
    Jarvius M, Paulsson J, Weibrecht I, Leuchowius KJ, Andersson AC, Wählby C, Gullberg M, Botling J, Sjöblom T, Markova B, Ostman A, Landegren U, Söderberg O. In situ detection of phosphorylated platelet-derived growth factor receptor β using a generalized proximity ligation method. Mol Cell Proteomics 6:1500-1509. 2007.
    Joensuu H. Risk stratification of patients diagnosed with gastrointestinal stromal tumor. Hum Pathol 39:1411-1419. 2008.
    Kahara N, Ozaki T, Doi T, Nishida K, Kawai A, Shibahara M, Inoue H. CD44 expression in soft tissue sarcomas. Virchows Arch 436:574-578. 2000.
    Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893-904. 2001.
    Kallakury BV, Yang F, Figge J, Smith KE, Kausik SJ, Tacy NJ, Fisher HA, Kaufman R, Figge H, Ross JS. Decreased levels of CD44 protein and mRNA in prostate carcinoma. Correlation with tumor grade and ploidy. Cancer 78:1461-1469. 1996.
    Katsura M, Furumoto H, Nishimura M, Kamada M, Aono T. Overexpression of CD44 variants 6 and 7 in human endometrial cancer. Gynecol Oncol 71:185-189. 1998.
    Kawano Y, Okamoto I, Murakami D, Itoh H, Yoshida M, Ueda S, Saya H. Ras oncoprotein induces CD44 cleavage through phosphoinositide 3-OH kinase and the rho family of small G proteins. J Biol Chem 275:29628-29635. 2000.
    Kern MA, Haugg AM, Koch AF, Schilling T, Breuhahn K, Walczak H, Fleischer B, Trautwein C, Michalski C, Schulze-Bergkamen H, Friess H, Stremmel W, Krammer PH, Schirmacher P, Müller M. Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res 66:7059-7066. 2006.
    Keun Park C, Lee EJ, Kim M, Lim HY, Choi DI, Noh JH, Sohn TS, Kim S, Kim MJ, Lee HK, Kim KM. Prognostic stratification of high-risk gastrointestinal stromal tumors in the era of targeted therapy. Ann Surg 247:1011-1018. 2008.
    Kim JH, Skates SJ, Uede T, Wong KK, Schorge JO, Feltmate CM, Berkowitz RS, Cramer DW, Mok SC. Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA 287:1671-1679. 2002.
    Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM. Gastrointestinal pacemaker cell tumor (GIPACT). Gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 152:1259-1269. 1998.
    Klein EA, Assoian RK. Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 121:3853-3857. 2008.
    Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128:2054-2065. 2005.
    Korita PV, Wakai T, Shirai Y, Matsuda Y, Sakata J, Cui X, Ajioka Y, Hatakeyama K. Overexpression of osteopontin independently correlates with vascular invasion and poor prognosis in patients with hepatocellular carcinoma. Hum Pathol 39:1777-1783. 2008.
    Kothapalli D, Zhao L, Hawthorne EA, Cheng Y, Lee E, Puré E, Assoian RK. Hyaluronan and CD44 antagonize mitogen-dependent cyclin D1 expression in mesenchymal cells. J Cell Biol 176:535-544. 2007.
    Kothapalli D, Flowers J, Xu T, Puré E, Assoian RK. Differential Activation of ERK and Rac Mediates the Proliferative and Anti-proliferative Effects of Hyaluronan and CD44. J Biol Chem 283:31823-31829. 2008.
    Kwon SJ. Korean Gastric Cancer Study Group. Surgery and prognostic factors for gastric stromal tumor. World J of Surg 25:290-295. 2001.
    Lai CH, Shan YS, Sy ED, Hsieh YH, Tsai HW, Lee JC, Lin PW. The significance of CD44 expression in gastrointestinal neuroendocrine tumors. Hepatogastroenterology 52:1071-1076. 2005.
    Lee JL, Wang MJ, Sudhir PR, Chen GD, Chi CW, Chen JY. Osteopontin promotes integrin activation through outside-in and inside-out mechanisms: OPN-CD44V interaction enhances survival in gastrointestinal cancer cells. Cancer Res 67:2089-2097. 2007.
    Legg JW, Isacke CM. Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr Biol 8:705-708. 1998.
    Lin YH, Yang-Yen HF. The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J Biol Chem 276:46024-46030. 2001.
    Liu J, Jiang G. CD44 and hematologic malignancies. Cell Mol Immunol 3:359-365. 2006.
    Marhaba R, Zoller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol 35:211-231. 2004.
    Mason CK, McFarlane S, Johnston PG, Crowe P, Erwin PJ, Domostoj MM, Campbell FC, Manaviazar S, Hale KJ, El-Tanani M. Agelastatin A: a novel inhibitor of osteopontin-mediated adhesion, invasion, and colony formation. Mol Cancer Ther 7:548-558. 2008.
    Massagué J. G1 cell-cycle control and cancer. Nature 432:298-306. 2004.
    Mazur MT, Clark HB. Gastric stromal tumors. Reappraisal of histogenesis. Am J Surg Pathol 7:507-519. 1983.
    Miettinen M, Majidi M, Lasota J. Pathology and diagnostic criteria of gastrointestinal stromal tumors (GISTs): A review. Eur J Cancer 38:S39-S51. 2002.
    Montgomery E, Abraham SC, Fisher C, Deasel MR, Amr SS, Sheikh SS, House M, Lilliemoe K, Choti M, Brock M, Ephron DT, Zahuruk M, Chadburn A. CD44 loss in gastric stromal tumors as a prognostic marker. Am J Surg Pathol 28:168-177. 2004.
    Murai T, Miyazaki Y, Nishinakamura H, Sugahara KN, Miyauchi T, Sako Y, Yanagida T, Miyasaka M. Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J Biol Chem 279:4541-4550. 2004.
    Murai T, Miyauchi T, Yanagida T, Sako Y. Epidermal growth factor-regulated activation of Rac GTPase enhances CD44 cleavage by metalloproteinase disintegrin ADAM10. Biochem J 395:65-71. 2006.
    Musgrove EA. Cyclins: roles in mitogenic signaling and oncogenic transformation. Growth Factors 24:13-19. 2004.
    Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci 95:930-935. 2004.
    Nakamura H, Suenaga N, Taniwaki K, Matsuki H, Yonezawa K, Fujii M, Okada Y, Seiki M. Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res 64:876-882. 2004.
    Nakamura N, Yamamoto H, Yao T, Oda Y, Nishiyama K, Imamura M, Yamada T, Nawata H, Tsuneyoshi M. Prognostic significance of expressions of cell-cycle regulatory proteins in gastrointestinal stromal tumor and the relevance of the risk grade. Hum Pathol 36:828-837. 2005.
    Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv. Cancer Res 71:241-319. 1997.
    Nilsson B, Bümming P, Meis-Kindblom JM, Odén A, Dortok A, Gustavsson B, Sablinska K, Kindblom LG. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era–a population-based study in western Sweden. Cancer 103:821-829. 2005.
    Okamoto I, Kawano Y, Tsuiki H, Sasaki J, Nakao M, Matsumoto M, Suga M, Ando M, Nakajima M, Saya H. CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. Oncogene 18:1435-1446. 1999a.
    Okamoto I, Kawano Y, Matsumoto M, Suga M, Kaibuchi K, Ando M, Saya H. Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small G proteins. J Biol Chem 274:25525-15534. 1999b.
    Okamoto I, Tsuiki H, Kenyon LC, Godwin AK, Emlet DR, Holgado-Madruga M, Lanham IS, Joynes CJ, Vo KT, Guha A, Matsumoto M, Ushio Y, Saya H, Wong AJ. Proteolytic cleavage of the CD44 adhesion molecule in multiple human tumors. Am J Pathol 160:441-447. 2002.
    Okaro AC, Fennell DA, Corbo M, Davidson BR, Cotter FE. Pk11195, a mitochondrial benzodiazepine receptor antagonist, reduces apoptosis threshold in Bcl-X(L) and Mcl-1 expressing human cholangiocarcinoma cells. Gut 51:556-561. 2002.
    Pazolli E, Luo X, Brehm S, Carbery K, Chung JJ, Prior JL, Doherty J, Demehri S, Salavaggione L, Piwnica-Worms D, Stewart SA. Senescent stromal-derived osteopontin promotes preneoplastic cell growth. Cancer Res 69:1230-1239. 2009.
    Peiper M, Sato T, Zurakowski D. CD44s expression is associated with improved survival in soft tissue sarcoma. Anticancer Res 24:1053-1056. 2004.
    Poncelet C, Walker F, Madelenat P, Bringuier AF, Scoazec JY, Feldmann G, Darai E. Expression of CD44 standard and isoforms V3 and V6 in uterine smooth muscle tumors: a possible diagnostic tool for the diagnosis of leiomyosarcoma. Hum Pathol 32:1190-1196. 2001.
    Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signaling regulators. Nat Rev Mol Cell Biol 4:33-45. 2003.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104:973-978. 2007.
    Raheja LF, Genetos DC, Yellowley CE. Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway. Biochem Biophys Res Commun 366:1061-1066. 2008.
    Rangaswami H, Bulbule A, Kundu GC. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16:79-87. 2006.
    Rikhof B, van der Graaf WT, Meijer C, Le PT, Meersma GJ, de Jong S, Fletcher JA, Suurmeijer AJ. Abundant Fas expression by gastrointestinal stromal tumours may serve as a therapeutic target for MegaFasL. Br J Cancer 99:1600-1606. 2008.
    Rittling SR, Chambers AF. Role of osteopontin in tumour progression. Br J Cancer 90:1877-1881. 2004.
    Rohde F, Rimkus C, Friederichs J, Rosenberg R, Marthen C, Doll D, Holzmann B, Siewert JR, Janssen KP. Expression of osteopontin, a target gene of de-regulated Wnt signaling, predicts survival in colon cancer. Int J Cancer 121:1717-1723. 2007.
    Roberts PJ, Eisenberg B. Clinical presentation of gastrointestinal stromal tumors and treatment of operable disease. Eur J Cancer 38:S37-S38. 2002.
    Robertson BW, Chellaiah MA. Osteopontin induces beta-catenin signaling through activation of Akt in prostate cancer cells. Exp Cell Res 316:1-11. 2010.
    Rubin BP, Singer S, Tsao C, Duensing A, Lux ML, Ruiz R, Hibbard MK, Chen CJ, Xiao S, Tuveson DA, Demetri GD, Fletcher CD, Fletcher JA. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 61:8118-8121. 2001.
    Rudner J, Elsaesser SJ, Müller AC, Belka C, Jendrossek V. Differential effects of anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2, and Bcl-xL on celecoxib-induced apoptosis. Biochem Pharmacol 79:10-20. 2010.
    Rudolph P, Gloeckner K, Parwaresch R, Harms D, Schmidt D. Immunophenotype, proliferation, DNA-ploidy, and biological behavior of gastrointestinal stromal tumors: a multivariate clinicopathological study. Hum Pathol 29:791-800. 1998.
    Sabah M, Cummins R, Leader M, Kay E. Altered expression of cell cycle regulatory proteins in gastrointestinal stromal tumors: markers with potential prognostic implications. Hum Pathol 37:648-655. 2006.
    Savage DG, Antman KH. Imatinib mesylate - a new oral targeted therapy. N Engl J Med 346:683-693. 2002.
    Schneider-Stock R, Boltze C, Lasota J, Miettinen M, Peters B, Pross M, Roessner A, Günther T. High prognostic value of p16INK4 alterations in gastrointestinal stromal tumors. J Clin Oncol 21:1688-1697. 2003.
    Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 89:12160-12164. 1992.
    Senger DR, Wirth DF, Hynes RO. Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell 16:885-893. 1979.
    Shi M, Dennis K, Peschon JJ, Chandrasekaran R, Mikecz K. Antibody-induced shedding of CD44 from adherent cells is linked to the assembly of the cytoskeleton. J Immunol 167:123-131. 2001.
    Shimazu T, Degenhardt K, Nur-E-Kamal A, Zhang J, Yoshida T, Zhang Y, Mathew, R,White E, Inouye M. NBK/BIK antagonizes MCL-1 and BCL-XL and activates BAK-mediated apoptosis in response to protein synthesis inhibition. Genes Dev 21:929–941. 2007.
    Shinomura Y, Kinoshita K, Tsutsui S, Hirota S. Pathophysiology, diagnosis, and treatment of gastrointestinal stromal tumors. J Gastroenterol 40:775-780. 2005.
    Sieghart W, Losert D, Strommer S, Cejka D, Schmid K, Rasoul-Rockenschaub S, Bodingbauer M, Crevenna R, Monia BP, Peck-Radosavljevic M, Wacheck V. Mcl-1 overexpression in hepatocellular carcinoma:Apotential target for antisense therapy. J Hepatol 44:151–157. 2006.
    Singleton PA, Bourguignon LY. CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Exp Cell Res 295:102-118. 2004.
    Söderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U. Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45:227-232. 2008.
    Stamenkovic I, Amiot M, Pesando JM, Seed B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56:1057-1062. 1989.
    Steinert DM, Oyarzo M, Wang X, Choi H, Thall PF, Medeiros LJ, Benjamin RS, Zhang W, Trent JC. Expression of Bcl-2 in gastrointestinal stromal tumors correlation with progression-free survival in 81 patients treated with Imatinib Mesylate. Cancer 106:1617-1623. 2006.
    Sugahara KN, Murai T, Nishinakamura H, Kawashima H, Saya H, Miyasaka M. Hyaluronan oligosaccharides induce CD44 cleavage and promote cell migration in CD44-expressing tumor cells. J Biol Chem 278:32259-32265. 2003.
    Sugahara KN, Hirata T, Hayasaka H, Stern R, Murai T, Miyasaka M. Tumor cells enhance their own CD44 cleavage and motility by generating hyaluronan fragments. J Biol Chem 281:5861-5868. 2006.
    Sugahara KN, Hirata T, Tanaka T, Ogino S, Takeda M, Terasawa H, Shimada I, Tamura J, ten Dam GB, van Kuppevelt TH, Miyasaka M. Chondroitin sulfate E fragments enhance CD44 cleavage and CD44-dependent motility in tumor cells. Cancer Res 68:7191-7199. 2008.
    Sun J, Xu Y, Dai Z, Sun Y. Intermittent high glucose enhances proliferation of vascular smooth muscle cells by upregulating osteopontin. Mol Cell Endocrinol 313:64-69. 2009.
    Tajima K, Ohashi R, Sekido Y, Hida T, Nara T, Hashimoto M, Iwakami S, Minakata K, Yae T, Takahashi F, Saya H, Takahashi K. Osteopontin-mediated enhanced hyaluronan binding induces multidrug resistance in mesothelioma cells. Oncogene 29:1941-1951. 2010.
    Takafuji V, Forgues M, Unsworth E, Goldsmith P, Wang XW. An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma. Oncogene 26:6361-6371. 2007.
    Takahashi R, Tanaka S, Kitadai Y, Sumii M, Yoshihara M, Haruma K, Chayama K. Expression of vascular endothelial growth factor and angiogenesis in gastrointestinal stromal tumor of the stomach. Oncology 64:266-274. 2003.
    Takamune Y, Ikebe T, Nagano O, Nakayama H, Ota K, Obayashi T, Saya H, Shinohara M. ADAM-17 associated with CD44 cleavage and metastasis in oral squamous cell carcinoma. Virchows Arch 450:169-177. 2007.
    Takeda M, Ogino S, Umemoto R, Sakakura M, Kajiwara M, Sugahara KN, Hayasaka H, Miyasaka M, Terasawa H, Shimada I. Ligand-induced structural changes of the CD44 hyaluronan-binding domain revealed by NMR. J Biol Chem 281:40089-40095. 2006.
    Teramoto H, Castellone MD, Malek RL, Letwin N, Frank B, Gutkind JS, Lee NH. Autocrine activation of an osteopontin-CD44-Rac pathway enhances invasion and transformation by H-RasV12. Oncogene 24:489-501. 2005.
    Thomas LW, Lam C, Edwards SW. Mcl-1; the molecular regulation of protein function. FEBS Lett 584:2981-2989. 2010.
    Tolg C, Hofmann M, Herrlich P, Ponta H. Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids Res 21:1225-1229. 1993.
    Valcz G, Sipos F, Krenács T, Molnár J, Patai AV, Leiszter K, Tóth K, Solymosi N, Galamb O, Molnár B, Tulassay Z. Elevated osteopontin expression and proliferative/apoptotic ratio in the colorectal adenoma-dysplasia-carcinoma sequence. Pathol Oncol Res 16:541-545. 2010.
    Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442. 1988.
    Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY, Issels R, van Oosterom A, Hogendoorn PC, Van Glabbeke M, Bertulli R, Judson I. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364:1127–1134. 2004.
    Weber GF, Ashkar S, Glimcher MJ, Cantor H. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 271;509-512. 1996.
    Weber GF, Ashkar S, Cantor H. Interaction between CD44 and osteopontin as a potential basis for metastasis formation. Proc Assoc Am Physicians 109:1-9. 1997.
    Weber GF. The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta 1552:61-85. 2001.
    Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 91:439-442. 1997.
    Wu CY, Wu MS, Chiang EP, Wu CC, Chen YJ, Chen CJ, Chi NH, Chen GH, Lin JT. Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut 56:782-789. 2007.
    Yan H, Marchettini P, Acherman YI, Gething SA, Brun E, Sugarbaker PH. Prognostic assessment of gastrointestinal stromal tumor. Am J Clin Oncol 26:221-228. 2003.
    Yamaguchi J, Sawada N, Tobioka H, Takakuwa R, Goto T, Sakuma Y, Ikeda T, Satoh M, Mori M. Electron microscopic and immunohistochemical studies of gastrointestinal stromal tumors. Med Electron Microsc 32:213-220. 1999.
    Yanagisawa N, Mikami T, Mitomi H, Saegusa M, Koike M, Okayasu I. CD44 variant overexpression in gallbladder carcinoma associated with tumor dedifferentiation. Cancer 91:408-416. 2001.
    Zhao J, Dong L, Lu B, Wu G, Xu D, Chen J, Li K, Tong X, Dai J, Yao S, Wu M, Guo Y. Down-regulation of osteopontin suppresses growth and metastasis of hepatocellular carcinoma via induction of apoptosis. Gastroenterology 135:956-968. 2008.
    Zohar R, Suzuki N, Suzuki K, Arora P, Glogauer M, McCulloch CA, Sodek J. Intracellular osteopontin is an integral component of the CD44-ERM complex involved in cell migration. J Cell Physiol 184:118-130. 2000.
    Zagani R, Hamzaoui N, Cacheux W, de Reyniès A, Terris B, Chaussade S, Romagnolo B, Perret C, Lamarque D. Cyclooxygenase-2 inhibitors down-regulate osteopontin and Nr4A2-new therapeutic targets for colorectal cancers. Gastroenterology 137:1358-1366. 2009.

    下載圖示 校內:2012-12-16公開
    校外:2012-12-16公開
    QR CODE