| 研究生: |
巫雨諼 Wu, Yu-Hsuan |
|---|---|
| 論文名稱: |
貴金屬摻雜氧化錫奈米材料之醛類氣體選擇性表面增強拉曼散射感測 Selective Surface-Enhanced Raman Scattering Detection of Aldehyde Gases by Noble Metal-Doped Tin Oxide Nanostructure |
| 指導教授: |
黃志嘉
Huang, Chih-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 表面增強拉曼散射 、氧化錫 、氣體感測 、選擇性檢測 |
| 外文關鍵詞: | Surface-Enhanced Raman Scattering, SnO₂, Gas Sensing, Selective Detection |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發具高靈敏度之表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS)感測平台。SnO₂具備良好的電子傳輸特性與化學穩定性,是常見的感測材料,但單一SnO₂在訊號增強方面的表現仍有限。因此,我們嘗試以貴金屬摻雜來提升其SERS活性。實驗中,將摻雜Pd、Pt或Au的SnO₂膠體溶液與金鹽共同沉積在紙張基材上,並經紫外光照射還原金鹽,生成金奈米粒子,形成具SERS活性的金/半導體異質結構。SERS測量結果顯示,經Au摻雜的SnO₂基板,其SERS訊號強度較未摻雜基板提升約2.6倍,我們利用XPS、TEM及UV-vis等分析技術闡明了其中的基本機制與原理。
另外,進一步在基板表面修飾4-胺基苯硫酚(4-ATP)分子後,成功建立針對醛類揮發性有機化合物(VOCs)的選擇性偵測系統。感測平台對甲醛與戊二醛的偵測極限分別為40 ppm及4 ppb,且呈現良好線性關係(R² > 0.95)。此優異偵測性能主要歸因於4-ATP分子胺基與醛基間的專一性化學交互作用。
綜合而言,本研究成功整合金奈米結構、SnO₂基材與具官能基分子的表面設計,不僅有效提升SERS訊號與醛類氣體的選擇性,更建立具實用潛力之量化偵測策略,未來可望應用於環境污染監測與生物氣體感測等領域。
This study establish a sensitive SERS sensing platform. SnO₂ is a standard sensing material with favorable electron transport, yet its undoped form shows limited Raman signal enhancement. Therefore, noble metal doping was employed to improve its SERS performance. In the experiments, Pd-, Pt-, or Au-doped SnO₂ colloidal solutions were co-deposited with gold salts onto paper substrates, followed by UV irradiation to reduce the gold salts and generate gold nanoparticles, forming SERS-active metal/semiconductor heterostructures. SERS measurements revealed that the Au-doped SnO₂ substrates exhibited approximately 2.6-fold higher Raman signal intensity compared to undoped substrates. The fundamental mechanisms were clarified through XPS, TEM, and UV-vis analyses.
Furthermore, a selective detection system for aldehyde VOCs was established by functionalizing the substrate with 4-ATP. The platform demonstrated detection limits of 40 ppm for formaldehyde and 4 ppb for glutaraldehyde, with excellent linearity (R² > 0.95). The outstanding detection performance is primarily attributed to the specific chemical interactions between the amino groups of 4-ATP and the aldehyde groups.
In summary, this work successfully integrates gold nanostructures, SnO₂ substrates, and functional molecules for surface modification, effectively enhancing SERS signals and aldehyde gas selectivity. The proposed quantitative sensing strategy demonstrates considerable potential for environmental pollution monitoring and biomedical gas detection applications.
[1] Y. Saito, K. Nishio, Y. Yoshida, E. Niki, Toxicology 2005, 210, 235.
[2] G. La Torre, T. Vitello, R. Cocchiara, C. Della Rocca, Public Health 2023, 218, 186.
[3] L. Bernardini, E. Barbosa, M. F. Charão, N. Brucker, Drug and chemical toxicology 2022, 45, 972.
[4] V. J. Cogliano, Y. Grosse, R. A. Baan, K. Straif, M. B. Secretan, F. E. Ghissassi, W. G. f. V. 88, Environmental health perspectives 2005, 113, 1205.
[5] Y. Wang, F. Pan, F. Xie, R. He, Q. Guo, Frontiers in Aging Neuroscience 2022, 14, 820385.
[6] I. Attiah, L. Redha, S. A. Ansari, Aging and Health Research 2024, 100194.
[7] Y. Zhang, Y. Yang, X. He, P. Yang, T. Zong, P. Sun, R. c. Sun, T. Yu, Z. Jiang, Journal of cellular and molecular medicine 2021, 25, 5358.
[8] E. Nalivaiko, C. G. De Pasquale, W. W. Blessing, Autonomic Neuroscience 2003, 105, 101.
[9] B. Ballantyne, S. L. Jordan, Journal of Applied Toxicology: An International Journal 2001, 21, 131.
[10] S. Copeland, K. Nugent, The International Journal of Occupational and Environmental Medicine 2015, 6, 177.
[11] X. Zhang, S.-Y. Li, R. A. Brown, J. Ren, Alcohol 2004, 32, 175.
[12] T. Salthammer, Environmental Science: Atmospheres 2023, 3, 474.
[13] S. Wei, Z. Li, K. Murugappan, Z. Li, M. Lysevych, K. Vora, H. H. Tan, C. Jagadish, B. I. Karawdeniya, C. J. Nolan, Advanced Science 2024, 11, 2309481.
[14] N. Tanda, Y. Hinokio, J. Washio, N. Takahashi, T. Koseki, Journal of Breath Research 2014, 8, 046008.
[15] T. Xiao, X.-Y. Wang, Z.-H. Zhao, L. Li, L. Zhang, H.-C. Yao, J.-S. Wang, Z.-J. Li, Sensors and Actuators B: Chemical 2014, 199, 210.
[16] D. Jakhar, S. K. Sarin, S. Kaur, npj Gut and Liver 2024, 1, 1.
[17] R. Gallego-Durán, A. Hadjihambi, J. Ampuero, C. F. Rose, R. Jalan, M. Romero-Gómez, Nature Reviews Gastroenterology & Hepatology 2024, 21, 774.
[18] K. Duarte, C. I. Justino, A. C. Freitas, A. C. Duarte, T. A. Rocha-Santos, TrAC Trends in Analytical Chemistry 2014, 53, 21.
[19] S. Schlücker, Angewandte Chemie International Edition 2014, 53, 4756.
[20] R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, V. K. Valev, Nanoscale research letters 2019, 14, 1.
[21] R. t. Vulchi, V. Morgunov, R. Junjuri, T. Bocklitz, Molecules 2024, 29, 4748.
[22] Y. Zou, Q. Ma, Z. Zheng, S. Weng, G. Acuna, I. Bald, D. Garoli, Nanoscale 2025.
[23] D. L. Jeanmaire, R. P. Van Duyne, Journal of electroanalytical chemistry and interfacial electrochemistry 1977, 84, 1.
[24] Y. Yu, W. Lu, X. Yao, Y. Jiang, J. Li, M. Yang, X. Huang, X. Tang, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2025, 125806.
[25] A. Nyamdavaa, K. Kaladharan, E.-O. Ganbold, S. Jeong, S. Paek, Y. Su, F.-G. Tseng, T.-O. Ishdorj, Scientific Reports 2025, 15, 12245.
[26] S. X. Leong, Y. C. Kao, X. Han, Z. W. Poh, J. R. T. Chen, E. X. Tan, Y. X. Leong, Y. H. Lee, W. X. Teo, G. W. Yip, Angewandte Chemie International Edition 2023, 62, e202309610.
[27] L. Shao, A. Zhang, Z. Rong, C. Wang, X. Jia, K. Zhang, R. Xiao, S. Wang, Nanomedicine: Nanotechnology, Biology and Medicine 2018, 14, 451.
[28] X. Chen, X. Li, J. Xie, H. Yang, A. Liu, Analytica Chimica Acta 2022, 1191, 339296.
[29] Z.-h. Wang, W. Liu, Y. Dai, Z.-p. Liu, M.-d. Ma, S. Cui, X. He, Y. Liu, Energetic Materials Frontiers 2024.
[30] R. Xu, M. Z. Adil, S. Jabeen, M. Tanveer, S. Younis, B. Shafique, L. Li, Food Control 2025, 111247.
[31] S.-Y. Ding, E.-M. You, Z.-Q. Tian, M. Moskovits, Chemical Society Reviews 2017, 46, 4042.
[32] H. Hu, Y. Tian, P. Chen, W. Chu, Advanced Materials 2024, 36, 2303001.
[33] B. P. Nanda, P. Rani, P. Paul, S. S. Ganti, R. Bhatia, Journal of Pharmaceutical Analysis 2024, 14, 100959.
[34] X. Chen, A. Cui, M. He, M. Yan, X. Zhang, J. Ruan, S. Yang, Nano Letters 2023, 23, 6736.
[35] S. Augustine, M. Saini, B. K. Parida, S. Hans, V. Pachchigar, B. Satpati, M. Ranjan, Optical Materials 2023, 135, 113319.
[36] Y. Sun, W. Li, L. Zhao, F. Li, Y. Xie, W. Yao, W. Liu, Z. Lin, Food Chemistry 2021, 357, 129741.
[37] T. Wang, P. Dong, C. Zhu, W. Gao, P. Sha, Y. Wu, X. Wu, Ceramics International 2021, 47, 30082.
[38] G. Kaur, V. Kaur, N. Kaur, C. Kaur, K. Sood, A. Shanavas, T. Sen, ChemPhysChem 2023, 24, e202200809.
[39] X. Huang, Q. Chen, Y. Ma, C. Huang, W. Zhi, J. Li, R. Zeng, J. Pi, J.-f. Xu, J. Xu, Chemical Engineering Journal 2024, 479, 147528.
[40] J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguié, J. J. Baumberg, G. C. Bazan, S. E. Bell, A. Boisen, A. G. Brolo, ACS nano 2019, 14, 28.
[41] V. Rajput, R. K. Gupta, J. Prakash, Journal of Materials Chemistry C 2022, 10, 73.
[42] Y. Liu, H. Ma, X. X. Han, B. Zhao, Materials horizons 2021, 8, 370.
[43] M. U. Amin, R. Zhang, L. Li, H. You, J. Fang, Analytical chemistry 2021, 93, 7657.
[44] J. Ahn, S. Shi, B. Vannatter, D. Qin, The Journal of Physical Chemistry C 2019, 123, 21571.
[45] Y. Zhou, Q. Gu, T. Qiu, X. He, J. Chen, R. Qi, R. Huang, T. Zheng, Y. Tian, Angewandte Chemie 2021, 133, 26464.
[46] Y. Cheng, W. Wang, L. Yao, J. Wang, H. Han, T. Zhu, Y. Liang, J. Fu, Y. Wang, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 607, 125507.
[47] H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, M. E. Kordesch, Nano letters 2006, 6, 783.
[48] A. O. Govorov, H. H. Richardson, Nano today 2007, 2, 30.
[49] X. Zhong, Y. Feng, Research on Chemical Intermediates 2008, 34, 287.
[50] X. Fan, P. Wei, G. Li, M. Li, L. Lan, Q. Hao, T. Qiu, ACS Applied Materials & Interfaces 2021, 13, 51618.
[51] B. Jeon, C. Lee, J. Y. Park, ACS Applied Materials & Interfaces 2021, 13, 9252.
[52] H. Hu, A. K. Pal, A. Berestennikov, T. Weber, A. Stefancu, E. Cortés, S. A. Maier, A. Tittl, Advanced Optical Materials 2024, 12, 2302812.
[53] S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, R. P. Van Duyne, Physical Chemistry Chemical Physics 2013, 15, 21.
[54] A. Chen, A. E. DePrince III, A. Demortière, A. Joshi‐Imre, E. V. Shevchenko, S. K. Gray, U. Welp, V. K. Vlasko‐Vlasov, Small 2011, 7, 2365.
[55] Q. Zhao, H. Hilal, J. Kim, W. Park, M. Haddadnezhad, J. Lee, W. Park, J.-W. Lee, S. Lee, I. Jung, Journal of the American Chemical Society 2022, 144, 13285.
[56] C. S. Kumar, Raman spectroscopy for nanomaterials characterization, Springer Science & Business Media, 2012.
[57] T. Wang, W. Yang, Z. Wang, B. Wang, M. Li, L. Shi, S. Rao, International Journal of Heat and Mass Transfer 2024, 219, 124920.
[58] F. Wang, Q. Yuan, Journal of Colloid and Interface Science 2023, 637, 522.
[59] F. L. Yap, P. Thoniyot, S. Krishnan, S. Krishnamoorthy, Acs Nano 2012, 6, 2056.
[60] Z. Ye, C. Li, Q. Chen, Y. Xu, S. E. Bell, Nanoscale 2021, 13, 5937.
[61] J. F. Betz, W. Y. Wei, Y. Cheng, I. M. White, G. W. Rubloff, Physical Chemistry Chemical Physics 2014, 16, 2224.
[62] R. J. Brown, M. J. Milton, Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 2008, 39, 1313.
[63] Y. Lu, X. Zhang, L. Zhao, H. Liu, M. Yan, X. Zhang, K. Mochizuki, S. Yang, Nature Communications 2023, 14, 5860.
[64] H. J. Han, S. H. Cho, S. Han, J. S. Jang, G. R. Lee, E. N. Cho, S. J. Kim, I. D. Kim, M. S. Jang, H. L. Tuller, Advanced Materials 2021, 33, 2105199.
[65] A. Benilov, I. Gavrilchenko, I. Benilova, V. Skryshevsky, M. Cabrera, Sensors and Actuators A: Physical 2007, 137, 345.
[66] M. Lee, K. Oh, H.-K. Choi, S. G. Lee, H. J. Youn, H. L. Lee, D. H. Jeong, ACS sensors 2018, 3, 151.
[67] Z. Huang, G. Cao, Y. Sun, S. Du, Y. Li, S. Feng, J. Lin, J. Lei, Journal of Nanomaterials 2017, 2017, 4807064.
[68] Y.-H. Chen, C.-C. Chen, L.-C. Lu, C.-Y. Lan, H.-L. Chen, T.-H. Yen, D. Wan, Sensors and Actuators B: Chemical 2023, 391, 134035.
[69] J. Yan, M. Wang, H. Yin, M. Ma, Y. Li, H. Hu, W. Ye, Y. Li, H. Zhang, ACS Applied Nano Materials 2023, 6, 18188.
[70] X. Liu, W. Deng, Y. Yang, J. Xi, S. Li, L. Zhang, P. Li, W. Wu, International Journal of Biological Macromolecules 2024, 282, 137171.
[71] D. Li, A. Yadav, H. Zhou, K. Roy, P. Thanasekaran, C. Lee, Global Challenges 2023, 8.
[72] R. Adam, M. Mon, R. Greco, L. H. Kalinke, A. Vidal-Moya, A. Fernandez, R. E. Winpenny, A. Doménech-Carbó, A. Leyva-Perez, D. Armentano, Journal of the American Chemical Society 2019, 141, 10350.
[73] J. Pu, W. Tian, W. Shang, Y. Zhang, G. Ma, F. Xu, Sensors and Actuators B: Chemical 2024, 419, 136457.
[74] Y. Liu, K. K. Chui, Y. Fang, S. Wen, X. Zhuo, J. Wang, ACS nano 2024, 18, 11234.
[75] X. Meng, Y. Wang, X. Song, Y. Liu, Y. Xie, L. Xu, J. Yu, L. Qiu, X. Wang, J. Lin, Materials Chemistry Frontiers 2025.
[76] S. X. Leong, Y. X. Leong, E. X. Tan, H. Y. F. Sim, C. S. L. Koh, Y. H. Lee, C. Chong, L. S. Ng, J. R. T. Chen, D. W. C. Pang, ACS nano 2022, 16, 2629.
[77] G. Fang, X. Lin, J. Wu, W. Xu, W. Hasi, B. Dong, Small 2025, 2408670.
[78] Y. Che, Y. Ni, Y. Jiao, F. Lei, C. Liu, X. Zhao, Z. Li, C. Zhang, J. Yu, ACS Photonics 2024, 11, 3331.
[79] J. H. Fu, Z. Zhong, D. Xie, Y. J. Guo, D. X. Kong, Z. X. Zhao, Z. X. Zhao, M. Li, Angewandte Chemie 2020, 132, 20670.
[80] M. Li, X. He, C. Wu, L. Wang, X. Zhang, X. Gong, X. Zeng, Y. Huang, ACS sensors 2024, 9, 979.
[81] C. Qu, H. Fang, F. Yu, J. Chen, M. Su, H. Liu, Chemical Engineering Journal 2024, 482, 148773.
[82] J. Sun, Z. Zhang, H. Li, H. Yin, P. Hao, X. Dai, K. Jiang, C. Liu, T. Zhang, J. Yin, Analytical Chemistry 2022, 94, 5273.
[83] L. B. T. Nguyen, Y. X. Leong, C. S. L. Koh, S. X. Leong, S. K. Boong, H. Y. F. Sim, G. C. Phan‐Quang, I. Y. Phang, X. Y. Ling, Angewandte Chemie International Edition 2022, 61, e202207447.
[84] Y. Kou, X.-G. Zhang, H. Li, K.-L. Zhang, Q.-C. Xu, Q.-N. Zheng, J.-H. Tian, Y.-J. Zhang, J.-F. Li, Analytical Chemistry 2024, 96, 4275.
[85] D. Xu, M. Muhammad, L. Chu, Q. Sun, C. Shen, Q. Huang, Analytical chemistry 2021, 93, 8228.
[86] L. Hou, X. Xu, X. Wang, L. Wang, F. Tian, Y. Xu, Journal of Materials Chemistry A 2024, 12, 9817.
[87] N. Hussain, H. Pu, A. Hussain, D.-W. Sun, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 236, 118357.
[88] A. Hussain, H. Pu, D.-W. Sun, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 229, 117994.
[89] A. Zhu, S. Ali, Y. Xu, Q. Ouyang, Q. Chen, Biosensors and Bioelectronics 2021, 172, 112806.
[90] D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I. H. Shewael, G. H. Valiev, E. Kianfar, Advances in materials science and engineering 2021, 2021, 5102014.
[91] K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, S. E. Skrabalak, Dalton transactions 2015, 44, 17883.
[92] C. Xue, Y.-c. Shu, Y.-n. Hu, G.-p. Li, L. Chang, Transactions of Nonferrous Metals Society of China 2013, 23, 725.
[93] P. Chetri, A. Choudhury, Physica E: Low-dimensional Systems and Nanostructures 2013, 47, 257.
[94] S. Das, V. Jayaraman, Progress in Materials Science 2014, 66, 112.
[95] A. Muthuvinayagam, N. Melikechi, P. D. Christy, P. Sagayaraj, Physica B: Condensed Matter 2010, 405, 1067.
[96] S. Sharma, A. Srivastava, S. Chawla, Applied surface science 2012, 258, 8662.
[97] B. M. Leonard, R. E. Schaak, Journal of the American Chemical Society 2006, 128, 11475.
[98] A. Katoch, G.-J. Sun, S.-W. Choi, S. Hishita, V. V. Kulish, P. Wu, S. S. Kim, Scientific reports 2014, 4, 4622.
[99] A. Ahmed, M. N. Siddique, T. Ali, P. Tripathi, Applied Surface Science 2019, 483, 463.
[100] S. Ali, V. Myasnichenko, E. Neyts, Physical Chemistry Chemical Physics 2016, 18, 792.
[101] B. Molleman, T. Hiemstra, Physical Chemistry Chemical Physics 2018, 20, 20575.
[102] A. S. Barnard, X. Lin, L. A. Curtiss, The Journal of Physical Chemistry B 2005, 109, 24465.
[103] S.-H. Liu, W. A. Saidi, Y. Zhou, K. A. Fichthorn, The Journal of Physical Chemistry C 2015, 119, 11982.
[104] J. Zhang, H. Liu, Z. Wang, N. Ming, Advanced Functional Materials 2007, 17, 3295.
[105] C. M. Hung, H. V. Phuong, V. Van Thinh, L. T. Hong, N. T. Thang, N. H. Hanh, N. Q. Dich, N. Van Duy, N. Van Hieu, N. D. Hoa, Sensors and Actuators A: Physical 2021, 317, 112454.
[106] S. Wang, J. Guo, Z. Lin, L. Liu, Y. Hui, X. Zhang, Journal of Materials Science: Materials in Electronics 2022, 1.
[107] Q. Wang, J. Hu, A. Song, Journal of Electronic Materials 2024, 53, 2094.
[108] H. B. Lee, N. Kumar, M. M. Ovhal, Y. J. Kim, Y. M. Song, J. W. Kang, Advanced Functional Materials 2020, 30, 2001559.
[109] Y. Liu, X. Li, Y. Wang, X. Li, P. Cheng, Y. Zhao, F. Dang, Y. Zhang, Sensors and Actuators B: Chemical 2020, 319, 128299.
[110] J. W. Song, Y. S. Shin, M. Kim, J. Lee, D. Lee, J. Seo, Y. Lee, W. Lee, H. B. Kim, S. I. Mo, Advanced Energy Materials 2024, 14, 2401753.
[111] J. Kim, J. Park, Y. H. Kim, W. Jo, Small 2022, 18, 2204173.
[112] Q. Zeng, Y. Cui, L. Zhu, Y. Yao, Materials Science in Semiconductor Processing 2020, 111, 104962.
[113] H. Wang, K. Dou, W. Y. Teoh, Y. Zhan, T. F. Hung, F. Zhang, J. Xu, R. Zhang, A. L. Rogach, Advanced Functional Materials 2013, 23, 4847.
[114] X. Cui, X. Tian, X. Xiao, T. Chen, Y. Wang, Advanced Materials Technologies 2023, 8, 2300572.
[115] A. S. Reddy, N. Figueiredo, A. Cavaleiro, Vacuum 2012, 86, 1323.
[116] Y. Chen, W. Fang, F. Liu, K. Kuang, X. Xiao, H. Wei, M. Li, Y. He, Applied Surface Science 2023, 637, 157939.
[117] J. Mu, S. Xu, Ceramics International 2024, 50, 692.
[118] J. Cuadra, S. Molina-Prados, G. Mínguez-Vega, L. Abderrahim, J. Colombari, J. Carda, N. P. Gonçalves, R. Novais, J. Labrincha, Applied Surface Science Advances 2025, 27, 100751.
[119] Z.-Q. Tian, B. Ren, D.-Y. Wu, Vol. 106, ACS Publications, 2002.
[120] K. Zhang, Y. Xiang, X. Wu, L. Feng, W. He, J. Liu, W. Zhou, S. Xie, Langmuir 2009, 25, 1162.
[121] J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, Y. Han, Journal of the American Chemical Society 2013, 135, 8552.
[122] S. He, J. Chua, E. K. M. Tan, J. C. Y. Kah, RSC advances 2017, 7, 16264.
[123] W. Jang, H. Byun, J.-H. Kim, Materials Chemistry and Physics 2020, 240, 122124.
[124] P. K. Jain, S. Eustis, M. A. El-Sayed, The Journal of Physical Chemistry B 2006, 110, 18243.
[125] G. Prévot, N. T. Nguyen, D. Alloyeau, C. Ricolleau, J. Nelayah, ACS nano 2016, 10, 4127.
[126] D. K. Pattadar, F. P. Zamborini, Langmuir 2019, 35, 16416.
[127] V. P. Zhdanov, E. M. Larsson, C. Langhammer, Chemical Physics Letters 2012, 533, 65.
[128] Z. Wang, P. K. Nayak, J. A. Caraveo‐Frescas, H. N. Alshareef, Advanced Materials 2016, 28, 3831.
[129] J. Yu, K. M. Rosso, S. M. Bruemmer, The Journal of Physical Chemistry C 2012, 116, 1948.
[130] Y. Zhang, J. Liu, Y. Zhang, Y. Bi, Nano Energy 2018, 51, 504.
[131] Y. Zhang, H. Hu, X. Huang, Y. Bi, Journal of Materials Chemistry A 2019, 7, 5938.
[132] X. Liu, T. Bu, J. Li, J. He, T. Li, J. Zhang, W. Li, Z. Ku, Y. Peng, F. Huang, Nano Energy 2018, 44, 34.
[133] P. J. Boruah, R. R. Khanikar, H. Bailung, Plasma Chemistry and Plasma Processing 2020, 40, 1019.
[134] S. Corby, E. Pastor, Y. Dong, X. Zheng, L. Francàs, M. Sachs, S. Selim, A. Kafizas, A. A. Bakulin, J. R. Durrant, The journal of physical chemistry letters 2019, 10, 5395.
[135] K. Kato, Y. Uemura, K. Asakura, A. Yamakata, The Journal of Physical Chemistry C 2022, 126, 9257.
[136] M. Sachs, J.-S. Park, E. Pastor, A. Kafizas, A. A. Wilson, L. Francas, S. Gul, M. Ling, C. Blackman, J. Yano, Chemical Science 2019, 10, 5667.
[137] A. L. Prajapat, P. Das, P. R. Gogate, Chemical Engineering Journal 2016, 290, 391.
[138] N. Singh, A. M. Shrivastav, N. Vashistha, I. Abdulhalim, Sensors and Actuators B: Chemical 2023, 374, 132813.
[139] Q. Zhou, X. Li, Q. Fan, X. Zhang, J. Zheng, Angewandte Chemie International Edition 2006, 45, 3970.
[140] F. Chen, X. Li, J. Hihath, Z. Huang, N. Tao, Journal of the American Chemical Society 2006, 128, 15874.
[141] R. Ueno, B. Kim, Microelectronic Engineering 2017, 171, 6.
[142] W. Jin, G. Chen, X. Duan, Y. Yin, H. Ye, D. Wang, J. Yu, X. Mei, Y. Wu, Applied Surface Science 2017, 423, 451.
[143] Y.-F. Huang, H.-P. Zhu, G.-K. Liu, D.-Y. Wu, B. Ren, Z.-Q. Tian, Journal of the American Chemical Society 2010, 132, 9244.
[144] P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, H.-L. Wang, Scientific reports 2013, 3, 2997.
[145] A. Webster, M. D. Halling, D. M. Grant, Carbohydrate Research 2007, 342, 1189.
[146] Z. Zhang, W. Yu, J. Wang, D. Luo, X. Qiao, X. Qin, T. Wang, analytical chemistry 2017, 89, 1416.
[147] R. K. Sinha, Plasmonics 2023, 18, 241.
[148] W. Ahmad, J. Wang, L. Wu, J. Zhu, P. He, Q. Ouyang, Q. Chen, The Journal of Physical Chemistry C 2020, 124, 7768.
[149] N. Yamazoe, K. Shimanoe, Journal of Sensors 2009, 2009, 875704.
[150] X. Meng, M. Bi, Q. Xiao, W. Gao, International Journal of Hydrogen Energy 2022, 47, 3157.
[151] Y. Ma, B. Nie, Analytical and bioanalytical chemistry 2019, 411, 8081.
[152] N. Mhlanga, T. A. Ntho, Materials Today Communications 2021, 26, 101698.
[153] S. Menachekanian, C. Mora Perez, A. K. Pennathur, M. J. Voegtle, D. Blauth, O. V. Prezhdo, J. M. Dawlaty, The Journal of Physical Chemistry Letters 2023, 14, 8353.