| 研究生: |
朱奕靜 Chu, Yi-Ching |
|---|---|
| 論文名稱: |
水熱法合成具壓電性質之p-BiFeO3—n-ZnSnO3為基礎的異質結薄膜及其應用 Hydrothermal Synthesis of Piezoelectric p-BiFeO3—n-ZnSnO3-based Heterojunction Films and Their Applications |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 水熱合成法 、光還原 、p-BiFeO3/n-ZnSnO3/Ag 複合膜 、表面等離子體共振 、壓電光降解 |
| 外文關鍵詞: | hydrothermal synthesis, photoreduction, p-BiFeO3/n-ZnSnO3/Ag composite film, surface plasma resonance, piezophotodegradation |
| 相關次數: | 點閱:35 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究了在 FTO 基板上以水熱和光還原法製備 p-BiFeO3 (BFO)/n-ZnSnO3 (ZTO)/Ag 複合薄膜及其對 RhB 溶液的壓電光降解應用。為了研究形貌的影響,製備了各種形貌的 ZTO 薄膜 [納米顆粒 (NP)、短納米柱 (s-NR) 和長納米柱 (l-NR)],並與 BFO 微孔板耦合以形成各種異質結薄膜(即ZTONP/BFO 微孔板、ZTOs-NR/BFO 微孔板和 ZTOl-NR/BFO 微孔板)。使用了各種量測來測定單一材料和復合材料的性質,包括相、形態、結晶度、導電性型、價態、能隙、功函數、壓電性以及壓電和壓電光電效應。雖然 p-BFO/n-ZTOl-NR 的壓電光降解效率良好(k = 7.4 × 10-3 min-1),但仍略低於 BFO(k = 7.9 × 10-3 min) -1)。然而,當 Ag 納米顆粒 (0.01 M) 進一步與 p-BFO/n-ZTOl-NR 偶合時,壓電光降解顯著增強 (k = 9.5 × 10-3 min-1),並構建能帶圖以闡述其機制。由於 Ag 納米粒子的表面等離子共振產生了大量的熱電子,這些熱電子注入到 n-ZTO 的導帶 (CB) 中,使的電荷載流子的復合減少,壓電光降解效率的顯著提高。此外,光降解的循環研究和XRD結構分析證明 p-BFO/n-ZTO/Ag 具有穩定性和可重複使用性。
This study reports the hydrothermal and photoreduction fabrication of p-BiFeO3 (BFO)/n-ZnSnO3 (ZTO)/Ag composite films on FTO substrates and their application in piezo-photodegradation of RhB solutions. To study the morphology effect, various shape ZTO films [nano particle (NP), short nanorod (s-NR), and long nanorod (l-NR)] were fabricated and coupled with the BFO microplates to form various heterojunction films (i.e., ZTONP/BFO microplate, ZTOs-NR/BFO microplate, and ZTOl-NR/BFO microplate). Various characterizations were used to determine the properties of the individual components and composites, including phases, morphology, crystallinity, conductivity types, valence states, band gaps, work functions, piezoelectricity, and piezotronic and piezophototronic effect. Although the piezo-photodegradation of the p-BFO/n-ZTOl-NR was promising (k = 7.4 × 10-3 min-1), the performance was slightly worse than that of the BFO (k = 7.9 × 10-3 min-1). However, when Ag nanoparticles (0.01 M) were further coupled with the p-BFO/n-ZTOl-NR, the piezo-photodegradation were substantially enhanced (k 9.5 × 10-3 min-1). An energy band diagram was constructed to elucidate the performance. Because of surface plasmon resonance of the Ag nanoparticles induced substantial amounts of hot electrons, which injected to the conduction band (CB) of the n-ZTO, leading to the reduction in the charge carrier recombination and dramatic increase in piezo-photodegradation efficiency. Furthermore, a cycling study and a structure analysis indicated the satisfactory stability and reusability of the p-BFO/n-ZTO/Ag.
[1] B. Kafle, Introduction to nanomaterials and application of UV–Visible spectroscopy for their characterization, Chemical analysis and material characterization by spectrophotometry, 6, (2020), 147-198.
[2] A. Li, W. Liu, Optical properties of ferroelectric nanocrystal/polymer composites, Physical Properties and Applications of Polymer Nanocomposites, Elsevier, (2010), 108-158.
[3] R. Ameta, M.S. Solanki, S. Benjamin, S.C. Ameta, Photocatalysis, Advanced oxidation processes for waste water treatment, Elsevier, (2018), 135-175.
[4] A. Iwase, S. Yoshino, T. Takayama, Y.H. Ng, R. Amal, A. Kudo, Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator, American Chemical Society, 138, (2016), 10260-10264.
[5] P. Kanhere, Z. Chen, A review on visible light active perovskite-based photocatalysts, Molecules, 19, (2014), 19995-20022.
[6] S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations, Chemical Society Reviews, 44, (2015), 2893-2939.
[7] K. Wei, B. Wang, J. Hu, F. Chen, Q. Hao, G. He, Y. Wang, W. Li, J. Liu, Q. He, Photocatalytic properties of a new Z-scheme system BaTiO3/In2S3 with a core–shell structure, RSC advances, 9, (2019), 11377-11384.
[8] J. Yang, J. Hao, S. Xu, Q. Wang, J. Dai, A. Zhang, X. Pang, InVO4/β-AgVO3 nanocomposite as a direct Z-Scheme photocatalyst toward efficient and selective visible-light-driven CO2 reduction, ACS applied materials & interfaces, 11, (2019), 32025-32037.
[9] X. Wang, G. Zhang, L. Yang, E. Sharman, J. Jiang, Material descriptors for photocatalyst/catalyst design, Wiley Interdisciplinary Reviews: Computational Molecular Science, 8, (2018), 1-22.
[10] C. Liu, F. Meng, L. Zhang, D. Zhang, S. Wei, K. Qi, J. Fan, H. Zhang, X. Cui, CuO/ZnO heterojunction nanoarrays for enhanced photoelectrochemical water oxidation, Applied Surface Science, 469, (2019), 276-282.
[11] T.L. Thompson, J.T. Yates, Surface science studies of the photoactivation of TiO2 new photochemical processes, Chemical reviews, 106, (2006), 4428-4453.
[12] B.J. Rani, M.P. Kumar, S. Ravichandran, G. Ravi, V. Ganesh, R.K. Guduru, R. Yuvakkumar, S. Hong, WO3 nanocubes for photoelectrochemical water-splitting applications, Physics and Chemistry of Solids, 134, (2019), 149-156.
[13] X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template‐free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Advanced Materials, 18, (2006), 2325-2329.
[14] C.H. Kuo, M.H. Huang, Morphologically controlled synthesis of Cu2O nanocrystals and their properties, Nano Today, 5, (2010), 106-116.
[15] P.R. Sajanlal, T.S. Sreeprasad, A.K. Samal, T. Pradeep, Anisotropic nanomaterials: structure, growth, assembly, and functions, Nano reviews, 2, (2011), 5883-5944.
[16] K.P. Ghoderao, S.N. Jamble, R.B. Kale, PEG—assisted morphological transformation of 3D flower-like ZnO to 1D micro-/nanorods and nanoparticles for enhanced photocatalytic activity, Materials Research Express, 4, (2017), 105009-105048.
[17] J. Shao, W. Sheng, M. Wang, S. Li, J. Chen, Y. Zhang, S. Cao, In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency, Applied Catalysis B: Environmental, 209, (2017), 311-319.
[18] O. Monfort, G. Plesch, Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants, Environmental Science and Pollution Research, 25, (2018), 19362-19379.
[19] Z.F. Huang, L. Pan, J.J. Zou, X. Zhang, L. Wang, Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress, Nanoscale, 6, (2014), 14044-14063.
[20] X.C. Ma, Y. Dai, L. Yu, B.B. Huang, Energy transfer in plasmonic photocatalytic composites, Light: Science & Applications, 5, (2016), e16017-e16017.
[21] M. Long, J. Jiang, Y. Li, R. Cao, L. Zhang, W. Cai, Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of Au modified BiVO4, Nano-Micro Letters, 3, (2011), 171-177.
[22] L. Zhu, J. Luo, G. Shao, W. Milne, On optical reflection at heterojunction interface of thin film solar cells, Solar energy materials and solar cells, 111, (2013), 141-145.
[23] H. Li, Y. Zhou, W. Tu, J. Ye, Z. Zou, State‐of‐the‐art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance, Advanced Functional Materials, 25, (2015), 998-1013.
[24] Y. Yan, Z. Zeng, M. Huang, P. Chen, Van der waals heterojunctions for catalysis, Materials Today Advances, 6, (2020), 100059-100069.
[25] L. Li, Determination of electrostatic potential and charge distribution of semiconductor nanostructures using off-axis electron holography, Arizona State University, (2011), 1-130.
[26] M. Wang, Y. Hu, J. Han, R. Guo, H. Xiong, Y. Yin, TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light, Materials Chemistry A, 3, (2015), 20727-20735.
[27] Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts, Catalysts, 9, (2019), 430-461.
[28] I. Raya, A. Ahmad, A.F. Alkaim, D. Bokov, E.R. Alwaily, R. Luque, M. Alsaiari, M. Jalalah, Synthesis, Characterization and Photodegradation Studies of Copper Oxide–Graphene Nanocomposites, Coatings, 11, (2021), 1452-1467.
[29] F.A. Chowdhury, Recent advances and demonstrated potentials for clean hydrogen via overall solar water splitting, MRS Advances, 4, (2019), 2771-2785.
[30] F. Niu, D. Wang, F. Li, Y. Liu, S. Shen, T.J. Meyer, Hybrid photoelectrochemical water splitting systems: from interface design to system assembly, Advanced Energy Materials, 10, (2020), 1900399-1900422.
[31] A.W. Bott, Electrochemistry of semiconductors, Current Separations, 17, (1998), 87-92.
[32] C.H. Bak, K. Kim, K. Jung, J.B. Kim, J.H. Jang, Efficient photoelectrochemical water splitting of nanostructured hematite on a three-dimensional nanoporous metal electrode, Journal of Materials Chemistry A, 2, (2014), 17249-17252.
[33] Z. Chen, H.N. Dinh, E. Miller, Photoelectrochemical water splitting, Springer, (2013), 1-126.
[34] K. Juodkazis, J. Juodkazytė, B. Šebeka, I. Savickaja, S. Juodkazis, Photoelectrochemistry of silicon in HF solution, Journal of Solid State Electrochemistry, 17, (2013), 2269-2276.
[35] P. Connor, J. Schuch, B. Kaiser, W. Jaegermann, The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst, Zeitschrift für Physikalische Chemie, 234, (2020), 979-994.
[36] T. Kim, W. Choi, H.C. Shin, J.Y. Choi, J.M. Kim, M.S. Park, W.S. Yoon, Applications of voltammetry in lithium ion battery research, Journal of Electrochemical Science and Technology, 11, (2020), 14-25.
[37] A. Mayeen, N. Kalarikkal, Development of ceramic-controlled piezoelectric devices for biomedical, Fundamental Biomaterials: Ceramics, (2018), 47-62.
[38] S.M. Kargar, G. Hao, An Atlas of Piezoelectric Energy Harvesters in Oceanic Applications, Sensors, 22, (2022), 1949-1978.
[39] D. Vatansever, E. Siores, T. Shah, Alternative resources for renewable energy: piezoelectric and photovoltaic smart structures, Global Warming-Impacts and Future Perspective, (2012), 263-290.
[40] T.N.N. Nguyen, K.S. Chang, Piezoelectricity-enhanced multifunctional applications of hydrothermally-grown p-BiFeO3–n-ZnO heterojunction films, Renewable Energy, 197, (2022), 89-100.
[41] S. Mishra, P. Supraja, P.R. Sankar, R.R. Kumar, K. Prakash, D. Haranath, Controlled synthesis of luminescent ZnS nanosheets with high piezoelectric performance for designing mechanical energy harvesting device, Materials Chemistry and Physics, 277, (2022), 125264-125274.
[42] M.M. Jolandan, R.A. Bernal, I. Kuljanishvili, V. Parpoil, H.D. Espinosa, Individual GaN nanowires exhibit strong piezoelectricity in 3D, Nano letters, 12, (2012), 970-976.
[43] Y. Zhao, X. Huang, F. Gao, L. Zhang, Q. Tian, Z.B. Fang, P. Liu, Study on water splitting characteristics of CdS nanosheets driven by the coupling effect between photocatalysis and piezoelectricity, Nanoscale, 11, (2019), 9085-9090.
[44] Z.L. Wang, W. Wu, Piezotronics and piezo-phototronics: fundamentals and applications, National Science Review, 1, (2014), 62-90.
[45] Z.L. Wang, W. Wu, C. Falconi, Piezotronics and piezo-phototronics with third-generation semiconductors, MRS Bulletin, 43, (2018), 922-927.
[46] X. Wang, H. Zhang, R. Yu, L. Dong, D. Peng, A. Zhang, Y. Zhang, H. Liu, C. Pan, Z.L. Wang, Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process, Advanced Materials, 27, (2015), 2324-2331.
[47] L. Zhu, Z.L. Wang, Recent progress in piezo‐phototronic effect enhanced solar cells, Advanced Functional Materials, 29, (2019), 1808214-1808231.
[48] K.A. McDonnell, N. Wadnerkar, N.J. English, M. Rahman, D. Dowling, Photo-active and optical properties of bismuth ferrite (BiFeO3): An experimental and theoretical study, Chemical Physics Letters, 572, (2013), 78-84.
[49] J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. Schlom, U. Waghmare, Epitaxial BiFeO3 multiferroic thin film heterostructures, science, 299, (2003), 1719-1722.
[50] K.C. Verma, Synthesis and Characterization of Multiferroic BiFeO3 for Data Storage, Bismuth-Fundamentals and Optoelectronic Applications, IntechOpen, (2020), 1-29.
[51] N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang, H. Olin, Y. Yang, Structure, performance, and application of BiFeO3 nanomaterials, Nano-Micro Letters, 12, (2020), 1-23.
[52] G. Gomez-Iriarte, C. Labre, L. de Oliveira, J. Sinnecker, Pure phase BiFeO3 thin films sputtered over Si: A new route towards high magnetization, Magnetism and Magnetic Materials, 460, (2018), 83-88.
[53] S. Anil, J. Venkatesan, M. Shim, E. Chalisserry, S.K. Kim, Bone response to calcium phosphate coatings for dental implants, Bone Response to Dental Implant Materials, Elsevier, (2017), 65-88.
[54] R. Rivera, M. Hejazi, A. Safari, Ferroelectric and dielectric properties of bismuth ferrite based thin films by Pulsed Laser Deposition, Proceedings of ISAF-ECAPD-PFM 2012, IEEE, (2012), 1-4.
[55] D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by sol-gel method: synthesis and application, Advances in Materials Science and Engineering, 2021, (2021), 1-21.
[56] Q. Zhang, D. Sando, V. Nagarajan, Chemical route derived bismuth ferrite thin films and nanomaterials, Materials Chemistry C, 4, (2016), 4092-4124.
[57] M.M. Lencka, R.E. Riman, Thermodynamic modeling of hydrothermal synthesis of ceramic powders, Chemistry of Materials, 5, (1993), 61-70.
[58] F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer, J. Sort, C. Gattinoni, B.J. Nelson, S. Pané, Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation, Iscience, 4, (2018), 236-246.
[59] Z. Li, Y. Wang, G. Tian, P. Li, L. Zhao, F. Zhang, J. Yao, H. Fan, X. Song, D. Chen, High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states, Science Advances, 3, (2017), e1700919-e1700926.
[60] X. Zhang, H. Liu, B. Zheng, Y. Lin, D. Liu, C.W. Nan, Photocatalytic and magnetic behaviors observed in BiFeO3 nanofibers by electrospinning, Nanomaterials, 2013, (2013), 1-7.
[61] Y. Huo, M. Miao, Y. Zhang, J. Zhu, H. Li, Aerosol-spraying preparation of a mesoporous hollow spherical BiFeO3 visible photocatalyst with enhanced activity and durability, Chemical Communications, 47, (2011), 2089-2091.
[62] J.P. Zhou, R.L. Yang, R.J. Xiao, X.M. Chen, C.Y. Deng, Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method, Materials Research Bulletin, 47, (2012), 3630-3636.
[63] J. Qi, N. Ma, X. Ma, R. Adelung, Y. Yang, Enhanced photocurrent in BiFeO3 materials by coupling temperature and thermo-phototronic effects for self-powered ultraviolet photodetector system, ACS applied materials & interfaces, 10, (2018), 13712-13719.
[64] H. You, Z. Wu, L. Zhang, Y. Ying, Y. Liu, L. Fei, X. Chen, Y. Jia, Y. Wang, F. Wang, Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution, Angewandte Chemie, 131, (2019), 11905-11910.
[65] A.M. Kumar, E. Praveen, J. Mayandi, D. Sastikumar, K. Ramachandran, K. Jayakumar, Ethanol sensing characteristics of bismuth ferrite clad-modified fiber optic gas sensor, AIP Conference Proceedings, AIP Publishing LLC, 2265, (2020), 030214-030218.
[66] T. Bora, M.H. Al‐Hinai, A.T. Al‐Hinai, J. Dutta, Phase transformation of metastable ZnSnO3 upon thermal decomposition by in‐situ temperature‐dependent raman spectroscopy, American Ceramic Society, 98, (2015), 4044-4049.
[67] S. Cai, Y. Li, X. Chen, Y. Ma, X. Liu, Y. He, Optical and electrical properties of Ta-doped ZnSnO3 transparent conducting films by sol–gel, Materials Science: Materials in Electronics, 27, (2016), 6166-6174.
[68] J. Xu, X. Jia, X. Lou, J. Shen, One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles, Solid-State Electronics, 50, (2006), 504-507.
[69] D. Kovacheva, K. Petrov, Preparation of crystalline ZnSnO3 from Li2SnO3 by low-temperature ion exchange, Solid State Ionics, 109, (1998), 327-332.
[70] J.M. Wu, C. Xu, Y. Zhang, Z.L. Wang, Lead-free nanogenerator made from single ZnSnO3 microbelt, ACS nano, 6, (2012), 4335-4340.
[71] H. Mizoguchi, H.W. Eng, P.M. Woodward, Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5+, Inorganic chemistry, 43, (2004), 1667-1680.
[72] M. Yoshida, T. Katsumata, Y. Inaguma, High-pressure synthesis, crystal and electronic structures, and transport properties of a novel perovskite HgSnO3, Inorganic chemistry, 47, (2008), 6296-6302.
[73] Y. Inaguma, K.I. Hasumi, M. Yoshida, T. Ohba, T. Katsumata, High-pressure synthesis, structure, and characterization of a post-perovskite CaPtO3 with CaIrO3-type structure, Inorganic Chemistry, 47, (2008), 1868-1870.
[74] J.M. Wu, C.Y. Chen, Y. Zhang, K.H. Chen, Y. Yang, Y. Hu, J.H. He, Z.L. Wang, Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire, ACS nano, 6, (2012), 4369-4374.
[75] R.J. Martín-Palma, A. Lakhtakia, Vapor-deposition techniques, Engineered Biomimicry, Elsevier Inc., (2013), 383-398.
[76] S. An, C. Jin, H. Kim, S. Lee, B. Jeong, C. Lee, Synthesis, structure, and luminescence properties of ZnSnO3 nanowires, Nano, 7, (2012), 1250013-1250019.
[77] M.A. Islam, M.K.S.B. Rafiq, H. Misran, M.A. Uzzaman, K. Techato, G. Muhammad, N. Amin, Tailoring of the structural and optoelectronic properties of zinc-tin-oxide thin films via oxygenation process for solar cell application, IEEE Access, 8, (2020), 193560-193568.
[78] A. Placke, A. Kumar, S. Priya, Synthesis and behavior of cetyltrimethyl ammonium bromide stabilized Zn1+xSnO3+x (0≤ x≤ 1) nano-crystallites, Plos one, 11, (2016), e0156246-e156261.
[79] Y. Chen, B. Qu, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, Synthesis of ZnSnO3 mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries, Materials Chemistry, 22, (2012), 25373-25379.
[80] Y. Chen, L. Yu, Q. Li, Y. Wu, Q. Li, T. Wang, An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance, Nanotechnology, 23, (2012), 415501-415510.
[81] Y.T. Chang, Y.C. Wang, S.N. Lai, C.W. Su, C.M. Leu, J.M. Wu, Performance of hydrogen evolution reaction of R3C ferroelectric ZnSnO3 nanowires, Nanotechnology, 30, (2019), 455401-455409.
[82] J.M. Wu, C. Xu, Y. Zhang, Y. Yang, Y. Zhou, Z.L. Wang, Flexible and transparent nanogenerators based on a composite of lead‐free ZnSnO3 triangular‐belts, Advanced Materials, 24, (2012), 6094-6099.
[83] M. Miyauchi, Z. Liu, Z.G. Zhao, S. Anandan, K. Hara, Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices, Chemical communications, 46, (2010), 1529-1531.
[84] Q. Wang, N. Yao, C. Liu, D. An, Y. Li, Y. Zou, X. Tong, Synthesis of hollow ZnSnO3 nanospheres with high ethanol sensing properties, Nanomaterials, 2016, (2016), 1-5.
[85] H. Men, P. Gao, B. Zhou, Y. Chen, C. Zhu, G. Xiao, L. Wang, M. Zhang, Fast synthesis of ultra-thin ZnSnO3 nanorods with high ethanol sensing properties, Chemical Communications, 46, (2010), 7581-7583.
[86] K. Saraswathi, M.S.B. Reddy, K.V. Rao, K. Deshmukh, D. Ponnamma, S. Waseem, M.F.I.A. Rakha, S.K. Pasha, K.K. Sadasivuni, MXenes and their composites for energy harvesting applications, Mxenes and their Composites, Elsevier, (2022), 687-723.
[87] S. Ali, S. Khan, A. Bermak, All-printed human activity monitoring and energy harvesting device for internet of thing applications, Sensors, 19, (2019), 1197-1205.
[88] M.K. Lo, S.Y. Lee, K.S. Chang, Study of ZnSnO3-nanowire piezophotocatalyst using two-step hydrothermal synthesis, Physical Chemistry C, 119, (2015), 5218-5224.
[89] P. Rauwel, E. Rauwel, S. Ferdov, M.P. Singh, Silver nanoparticles: Synthesis, properties, and applications, Hindawi, 2015, (2015), 1-2.
[90] G. Schider, J.R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, F. Aussenegg, Optical properties of Ag and Au nanowire gratings, Applied Physics, 90, (2001), 3825-3830.
[91] E. Pipelzadeh, A. Babaluo, M. Haghighi, A. Tavakoli, M.V. Derakhshan, A.K. Behnami, Silver doping on TiO2 nanoparticles using a sacrificial acid and its photocatalytic performance under medium pressure mercury UV lamp, Chemical Engineering Journal, 155, (2009), 660-665.
[92] D.C. Tien, L.C. Chen, N. Van Thai, S. Ashraf, Study of Ag and au nanoparticles synthesized by arc discharge in deionized water, nanomaterials, 2010, (2010), 1-9.
[93] O.A. Yeshchenko, V.Y. Kudrya, A.V. Tomchuk, I.M. Dmitruk, N.I. Berezovska, P.O. Teselko, S. Golovynskyi, B. Xue, J. Qu, Plasmonic nanocavity metasurface based on laser-structured silver surface and silver nanoprisms for the enhancement of adenosine nucleotide photoluminescence, ACS Applied Nano Materials, 2, (2019), 7152-7161.
[94] S.H. Park, J.G. Son, T.G. Lee, H.M. Park, One-step large-scale synthesis of micrometer-sized silver nanosheets by a template-free electrochemical method, Nanoscale Research Letters, 8, (2013), 1-6.
[95] J. Jiu, K. Murai, D. Kim, K. Kim, K. Suganuma, Preparation of Ag nanorods with high yield by polyol process, Materials Chemistry and Physics, 114, (2009), 333-338.
[96] L. Mei, S. Li, Y. Shao, C. Zhang, J. Wang, Single-step synthesis of hierarchical flower-like silver structures with assistance of gallic acid, Materials Research Express, 8, (2021), 015010-015014.
[97] J. Liu, J. Li, F. Wei, X. Zhao, Y. Su, X. Han, Ag–ZnO submicrometer rod arrays for high-efficiency photocatalytic degradation of Congo red and disinfection, ACS Sustainable Chemistry & Engineering, 7, (2019), 11258-11266.
[98] Z. Yang, C. Ma, W. Wang, M. Zhang, X. Hao, S. Chen, Fabrication of Cu2O-Ag nanocomposites with enhanced durability and bactericidal activity, Colloid and interface science, 557, (2019), 156-167.
[99] O. Gharbi, In-situ investigation of elemental corrosion reactions during the surface treatment of Al-Cu and Al-Cu-Li alloys, Paris, 6, (2016), 1-181.
[100] A. Mohammed, A. Abdullah, Scanning electron microscopy (SEM): A review, HERVEX, (2018), 77-85.
[101] H. Li, Z. Ding, Monte Carlo simulation of secondary electron and backscattered electron images in scanning electron microscopy for specimen with complex geometric structure, Scanning, 27, (2005), 254-267.
[102] F.A. Stevie, C.L. Donley, Introduction to x-ray photoelectron spectroscopy, Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 38, (2020), 063204-063223.
[103] A. M. Hussein, E.M. Dannoun, S.B. Aziz, M.A. Brza, R.T. Abdulwahid, S.A. Hussen, S. Rostam, D.M. Mustafa, D.S. Muhammad, Steps toward the band gap identification in polystyrene based solid polymer nanocomposites integrated with tin titanate nanoparticles, Polymers, 12, (2020), 2320-2340.
[104] J.H.D. Eland, Photoelectron spectroscopy: an introduction to ultraviolet photoelectron spectroscopy in the gas phase, Elsevier, (2013), 1-270.
[105] W. Wang, Y. Geng, W. Wu, Background-free piezoresponse force microscopy for quantitative measurements, Applied Physics Letters, 104, (2014), 072905-072907.
[106] L. Di, H. Yang, T. Xian, X. Chen, Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization, Materials, 10, (2017), 1118-1128.
[107] C. Murugesan, K. Ugendar, L. Okrasa, J. Shen, G. Chandrasekaran, Zinc substitution effect on the structural, spectroscopic and electrical properties of nanocrystalline MnFe2O4 spinel ferrite, Ceramics International, 47, (2021), 1672-1685.
[108] T. Yang, J. Wei, Y. Guo, Z. Lv, Z. Xu, Z. Cheng, Manipulation of oxygen vacancy for high photovoltaic output in bismuth ferrite films, ACS applied materials & interfaces, 11, (2019), 23372-23381.
[109] Z. Li, H. Chen, W. Liu, Full-spectrum photocatalytic activity of ZnO/CuO/ZnFe2O4 nanocomposite as a photofenton-like catalyst, Catalysts, 8, (2018), 557-568.
[110] W. Xu, X. Wang, B. Leng, J. Ma, Z. Qi, T. Tao, M. Wang, Enhanced gas sensing properties for ethanol of Ag@ ZnSnO3 nano-composites, Materials Science: Materials in Electronics, 31, (2020), 18649-18663.
[111] A. Savintsev, Y.O. Gavasheli, Z.K. Kalazhokov, K.K. Kalazhokov, X-ray photoelectron spectroscopy studies of the sodium chloride surface after laser exposure, Physics: Conference Series, IOP Publishing, 774, (2016), 012118-012123.
[112] M. Sharmila, R.J. Mani, C. Parvathiraja, S.A. Kader, M.R. Siddiqui, S.M. Wabaidur, M.A. Islam, W.C. Lai, Visible Light Photocatalyst and Antibacterial Activity of BFO (Bismuth Ferrite) Nanoparticles from Honey, Water, 14, (2022), 1545-1559.
[113] D. Chen, F. Niu, L. Qin, S. Wang, N. Zhang, Y. Huang, Defective BiFeO3 with surface oxygen vacancies: Facile synthesis and mechanism insight into photocatalytic performance, Solar Energy Materials and Solar Cells, 171, (2017), 24-32.
[114] X. Yang, Y. Li, G.Y. Chen, H.R. Liu, L.L. Yuan, L. Yang, D. Liu, ZnSnO3 Quantum Dot/Perylene Diimide Supramolecular Nanorod Heterojunction Photocatalyst for Efficient Phenol Degradation, ACS Applied Nano Materials, (2022), 9829-9839.
[115] H. Sim, J. Lee, S. Cho, E.S. Cho, S.J. Kwon, A study on the band structure of ZnO/CdS heterojunction for CIGS solar-cell application, JSTS: Journal of Semiconductor Technology and Science, 15, (2015), 267-275.
[116] A. Meng, B. Zhu, B. Zhong, L. Zhang, B. Cheng, Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity, Applied Surface Science, 422, (2017), 518-527.
[117] C. Jiang, S.J. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting–materials and challenges, Chemical Society Reviews, 46, (2017), 4645-4660.
[118] E. Sugata, K. Takeda, Adsorption and nucleation of silver on tungsten, physica status solidi (b), 38, (1970), 549-557.
[119] M.G. Helander, M. Greiner, Z. Wang, W.M. Tang, Z. Lu, Work function of fluorine doped tin oxide, Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29, (2011), 011019-011022.
[120] P. Uznanski, J. Zakrzewska, F. Favier, S. Kazmierski, E. Bryszewska, Synthesis and characterization of silver nanoparticles from (bis) alkylamine silver carboxylate precursors, Nanoparticle Research, 19, (2017), 1-20.