| 研究生: |
廖振凱 Liao, Zhen-Kai |
|---|---|
| 論文名稱: |
評估ChatGPT對產品開發創意生成之效應 Measuring the Impact of ChatGPT in Innovative Product Development |
| 指導教授: |
呂執中
Lyu, Jr-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 構想生成 、生成式人工智慧 (Generative AI) 、ChatGPT 、提示模板工程 (Prompt Engineering) 、產品設計輔助系統 |
| 外文關鍵詞: | ChatGPT, Large Language Models, Product Design, Prompt Engineering, Innovation |
| 相關次數: | 點閱:66 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著生成式人工智慧的快速發展,產品設計領域迎來了結合大型語言模型 (Large Language Models, LLMs)輔助構想生成的新契機 (Gordijn & Have, 2023)。其中,由OpenAI開發的ChatGPT在自然語言理解與生成方面展現出卓越能力,特別適合作為創意觸發與構想擴展的工具 (Füller et al., 2022)。然而,目前針對ChatGPT於產品設計早期構想階段之應用仍缺乏系統性實證研究。
本研究旨在探討結合傳統創意思考方法與 ChatGPT 輔助之構想生成流程,並引入提示模板工程 (Prompt Engineering)以優化生成品質。研究設計任務聚焦於實務導向的產品創新議題,藉由不同創意發想策略進行比較。參與者依構想生成方式分為三組:傳統方法組 (Group1)、傳統方法結合ChatGPT 組 (Group2)、以及傳統方法結合 ChatGPT 並搭配優化提示詞組 (Group3),透過標準化任務及問卷,收集各組構想數量與品質 (有用性、新穎性、多樣性)進行評估。
實驗結果顯示,結合ChatGPT的組別在構想數量與多樣性上明顯優於僅使用傳統方法的組別;且在適當Prompt引導下,構想的有用性與新穎性亦有顯著提升。其中Group3於多數指標表現最佳,展現出經優化提示引導後,能兼顧數量與品質的優勢。相對地,僅單純使用ChatGPT者雖能提升構想數量,但對有用性及新穎性的促進作用有限。此外,過度聚焦提示引導亦可能略微降低構想的自然多樣性。
綜合而言,本研究驗證了生成式AI於產品構想階段的輔助價值,特別是透過提示工程優化後,對加速產品開發與強化創新能量具實質助益。未來建議進一步探索不同提示策略、跨領域應用情境及個人特質對AI輔助構想成效的影響,以深化人機協作設計模式的應用潛力。
With the rapid advancement of generative artificial intelligence and large language models, the field of product development is experiencing new opportunities for AI-assisted ideation (Füller et al., 2022). This study evaluates the impact of ChatGPT on innovative product development through an experimental design. Participants were divided into three groups: Group 1 employed only traditional ideation methods; Group 2 combined traditional methods with ChatGPT; and Group 3 integrated ChatGPT with optimized prompt engineering. All participants were tasked with completing a standardized ideation assignment, and their outputs were evaluated across four dimensions: quantity, usefulness, novelty, and variety.
The results revealed that groups incorporating ChatGPT significantly outperformed the traditional-only group in idea quantity. Among them, the group using optimized prompts (Group 3) achieved the best performance across most indicators, showing that prompt engineering effectively enhances quantity, usefulness, and novelty, while maintaining a high level of variety. However, without proper prompt guidance, using ChatGPT alone—though increasing idea quantity—had limited effects on usefulness, novelty, and diversity.
This study confirms the value of generative AI, particularly when supported by prompt engineering, in the conceptual phase of product development. Such integration accelerates the development process and enhances creative performance within design workflows. Future research could explore alternative prompting strategies, cross-disciplinary applications, and individual differences influencing the effectiveness of human–AI collaborative ideation, thereby expanding the potential of co-design between humans and AI.
Al'tšuller, G. S., Shulyak, L., & Rodman, S. (2007). The innovation algorithm: TRIZ, systematic innovation and technical creativity (2nd ed.). Technical Innovation Center.
Ahmed, S., Wallace, K. M., & Blessing, L. T. (2003). Understanding the differences between how novice and experienced designers approach design tasks. Research in Engineering Design, 14, 1-11.
Bansal, P. (2024). Prompt Engineering Importance and Applicability with Generative AI. Journal of Computer and Communications, 12(10), 14-23.
Bartz, D., & Bartz, D. (2023). As ChatGPT’s popularity explodes, US lawmakers take an interest. Reuters. Reuters. Available online: https://www. reuters. com/technology/chatgpts-popularity-explodes-us-lawmakers-take-an-interest-2023-02-13/(accessed on 13 February 2023).
Besant, H. (2016). The journey of brainstorming. Journal of Transformational Innovation, 2(1), 1-7.
Bozkurt, A. (2024). Tell Me Your Prompts and I Will Make Them True: The Alchemy of Prompt Engineering and Generative AI. Open Praxis, 16(2), 111–118.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.
Cao, Y., Zhang, H., & Liu, Q. (2023). Multilingual Prompt Engineering: Adapting AI Systems for Cultural and Linguistic Diversity. Journal of Artificial Intelligence Research, 67(2), 145-163.
Caruccio, L., Cirillo, S., Polese, G., Solimando, G., Sundaramurthy, S., & Tortora, G. (2024). Can ChatGPT provide intelligent diagnoses? A comparative study between predictive models and ChatGPT to define a new medical diagnostic bot. Expert Systems with Applications, 235, 121186.
Casakin, H. P. (2006). Assessing the use of metaphors in the design process. Environment and Planning B: Planning and Design, 33, 253-268.
Chulvi, V., González-Cruz, M. C., Mulet, E., & Aguilar-Zambrano, J. (2013). Influence of the type of idea-generation method on the creativity of solutions. Research in Engineering Design, 24, 33-41.
Clark, K., & Fujimoto, T. (1991). Product Development Performance: Strategy, Organisation, and Management in the World Auto Industry. Boston, MA: Harvard Business School Press.
Cooper, R. G. (2008). Perspective: The stage‐gate® idea‐to‐launch process—update, what's new, and nexgen systems. Journal of product innovation management, 25(3), 213-232.
Cooper, R. G. (2016). Agile–Stage-Gate Hybrids: The Next Stage for Product Development Blending Agile and Stage-Gate methods can provide flexibility, speed, and improved communication in new-product development. Research-Technology Management, 59(1), 21-29.
Cooper, R. G. (2017). Winning at new products: Creating value through innovation (5th ed). New York, NY: Basic Books.
Dehouche, N. (2021). Plagiarism in the age of massive Generative Pre-trained Transformers (GPT-3). Ethics in Science and Environmental Politics, 21, 17-23.
Design Council. (2007). Eleven Lessons: Managing Design in Eleven Global Companies. London: Design Council.
Edward, C., Labadin, J., & Kulathuramaiyer, N. (2022). Mathematical modelling and formalization of TRIZ: Trimming for product design. In R. Nowak, J. Chrz ˛a ˛szcz, & S. Brad (Eds.), Systematic innovation partnerships with artificial intelligence and information technology (pp. 3–16). Springer.
Frishammar, J., & Florén, H. (2010). The fuzzy front end in innovation: A review of the literature. Creativity and Innovation Management, 19(2), 89–101.
Filippini, R., Salmaso, L., & Tessarolo, P. (2004). Product development time performance: Investigating the effect of interactions between drivers. Journal of Product Innovation Management, 21(3), 199–214.
Filippi, S., & Barattin, D. (2019). Influence of representations on shape-based design activities. International Journal on Interactive Design and Manufacturing, 13(1), 277-285.
Filippi, S. (2023). Measuring the impact of ChatGPT on fostering concept generation in innovative product design. Electronics, 12(16), 3535.
Füller, J., Hutter, K., Wahl, J., Bilgram, V., & Tekic, Z. (2022). How AI revolutionizes innovation management–Perceptions and implementation preferences of AI-based innovators. Technological Forecasting and Social Change, 178, 121598.
Gao, H., Lu, S., & Kou, X. (2022). Research on the identification of medical service quality factors: based on a data-driven method. Internet Research, 32(5), 1617-1645.
Ghane, M., Ang, M. C., Cavallucci, D., Kadir, R. A., Ng, K. W., & Sorooshian, S. (2022). TRIZ trend of engineering system evolution: A review on applications, benefits, challenges and enhancement with computer-aided aspects. Computers & Industrial Engineering, 174, 108833.
Griffin, A. (1997). PDMA research on new product development practices: Updating trends and benchmarking best practices. Journal of Product Innovation Management, 14(6), 429–458.
Gordijn, B., & Have, H. T. (2023). ChatGPT: evolution or revolution?. Medicine, health care and philosophy, 26(1), 1-2.
Gustafsson, D. (2019). Analysing the double diamond design process through research & implementation [Master’s thesis, Aalto University]. Aalto University.
Hey, J., Linsey, J., Agogino, A. M., & Wood, K. L. (2008). Analogies and metaphors in creative design. International Journal of Engineering Education, 24(2), 283-294.
Hyder, Z., Siau, K., & Nah, F. (2019). Artificial intelligence, machine learning, and autonomous technologies in mining industry. Journal of Database Management, 30(2), 67-79.
Joglekar, N. R., & Ford, D. N. (2005). Product development resource allocation with foresight. European Journal of Operational Research, 160(1), 72–87.
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25.
Krishnan, V., & Ulrich, K. T. (2001). Product development decisions: A review of the literature. Management Science, 47(1), 1–2.
Kwon, J., Jung, E. C., & Kim, J. (2024). Designer-Generative AI Ideation Process: Generating Images Aligned with Designer Intent in Early-Stage Concept Exploration in Product Design. Archives of Design Research, 37(3), 7-23.
Lee, B. C., & Chung, J. (2024). An empirical investigation of the impact of ChatGPT on creativity. Nature Human Behaviour, 8(10), 1906-1914.
Lee, P., Bubeck, S., & Petro, J. (2023). Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. New England Journal of Medicine, 388(13), 1233-1239.
Li, X., Su, J., Zhang, Z., & Bai, R. (2021). Product innovation concept generation based on deep learning and Kansei engineering. Journal of Engineering Design, 32(10), 559-589.
Liu, Y. C., Chakrabarti, A., & Bligh, T. (2003). Towards an ‘ideal’approach for concept generation. Design studies, 24(4), 341-355.
Liu, Y., Xu, J., Zhang, L. L., Chen, Q., Feng, X., Chen, Y., ... & Cheng, P. (2025). Beyond Prompt Content: Enhancing LLM Performance via Content-Format Integrated Prompt Optimization. arXiv preprint arXiv:2502.04295.
Liu, Z., Feng, J., & Wang, J. (2020). Resource-constrained innovation method for sustainability: Application of morphological analysis and TRIZ inventive principles. Sustainability, 12(3), 917.
Lu, S., Guo, Y., Huang, W., & Shen, M. (2022). Product form evolutionary design integrated with TRIZ contradiction matrix. Mathematical Problems in Engineering, 2022, Article 3844324.
Malik, M. A., Amjad, A. I., Aslam, S., & Fakhrou, A. (2024). Global insights: ChatGPT's influence on academic and research writing, creativity, and plagiarism policies. Frontiers in Research Metrics and Analytics, 9, 1486832.
Meincke, L., Girotra, K., Nave, G., Terwiesch, C., & Ulrich, K. T. (2024). Using large language models for idea generation in innovation. The Wharton School Research Paper Forthcoming, 9, 2024.
Meincke, L., Mollick, E. R., & Terwiesch, C. (2024). Prompting diverse ideas: Increasing AI idea variance. arXiv preprint arXiv:2402.01727.
Merriam-Webster. (2015). Merriam-Webster's dictionary. https://www.merriam-webster.com/
Meyer, M. H., & Utterback, J. M. (1995). Product development cycle time and commercial success. IEEE Transactions on Engineering Management, 42(4), 297–304.
Paulus, P. B., Dzindolet, M. T., Poletes, G., & Camacho, L. M. (1993). Perception of performance in group brainstorming: The illusion of group productivity. Personality and Social Psychology Bulletin, 19(1), 78-89.
Ram, B., & Verma, P. (2023). Artificial intelligence AI-based chatbot study of ChatGPT, Google AI Bard and Baidu AI. World Journal of Advanced Engineering Technology and Sciences, 8(01), 258-261.
Reynolds, L., & McDonell, K. (2021, May). Prompt programming for large language models: Beyond the few-shot paradigm. In Extended abstracts of the 2021 CHI conference on human factors in computing systems (pp. 1-7).
Ryynänen, L., & Riitahuhta, A. (2010). Developing engineering creativity in the early design stages of product development process. In DS 66-2: Proceedings of the 1st International Conference on Design Creativity (ICDC 2010).
Salaam, A., & Mehmood, S. (2021). Integration of Digital tools in Product Realization Process (Dissertation). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-54027
Sarkar, P., & Chakrabarti, A. (2011). Assessing design creativity. Design Studies, 32(4), 348-383.
Sheu, D. D., Chiu, M. C., & Cayard, D. (2020). The 7 pillars of TRIZ philosophies. Computers & Industrial Engineering, 146, 106572.
Stewart, I., Barnes-Holmes, D., Hayes, S. C., & Lipkens, R. (2001). Relations among relations: Analogies, metaphors, and stories. In Relational frame theory: A post-Skinnerian account of human language and cognition (pp.73-86). Springer US.
Shi, Y., Shang, M., & Qi, Z. (2023). Intelligent layout generation based on deep generative models: A comprehensive survey. Information Fusion, 100, 101940.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., ... & Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382.
Yoon, J., & Kim, K. (2011). An automated method for identifying TRIZ evolution trends from patents. Expert Systems with Applications, 38(12), 15540-15548.
Zamfirescu-Pereira, J. D., Wong, R. Y., Hartmann, B., & Yang, Q. (2023, April). Why Johnny can’t prompt: how non-AI experts try (and fail) to design LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1-21).
Zhou, X., Li, Y., & Wang, Z. (2022). The Impact of Prompt Design on Large Language Models: A Comprehensive Study. arXiv preprint arXiv:2203.09755.
蔣維理. (2001). 成功的新產品開發模式研究 (Doctoral dissertation).