| 研究生: |
謝宗穎 Shie, Tzung-Ying |
|---|---|
| 論文名稱: |
電紡絲技術製備二氧化鈦奈米纖維在紫外光分解水製氫之研究 Electrospun Titanium Dioxide Nanofibers for Hydrogen Production by UV-Induced Water Splitting |
| 指導教授: |
郭昌恕
Kuo, Changshu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 奈米絲 、光電流 、水分解 、溶膠-凝膠 、電紡絲 、二氧化鈦 |
| 外文關鍵詞: | Nanofibers, Sol-Gel, Titanium Dioxide, Electrospinning, Photocurrent, Water splitting |
| 相關次數: | 點閱:126 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用高分子輔助電紡絲的技術來製備二氧化鈦奈米絲,以運用於光誘發水分解之應用。藉由酒精溶液將四異丙烷氧化鈦 (TTIP) 與聚乙烯吡咯烷酮 (PVP) 混合配製成溶膠-凝膠溶液,並透過施加高電場噴射而出。伴隨著溶劑揮發與固化,帶大量電荷的高分子噴出物形成了高分子/金屬氧化物奈米絲,並且在接地電極上形成均勻的薄膜。隨後,利用鍛燒處理來促使二氧化鈦結晶與相變化,並且伴隨著高分子之熱裂解。利用溶膠-凝膠之配方以及電紡絲的參數可以簡易地控制不同粗細直徑之奈米絲。本研究中調查並討論二氧化鈦奈米絲之結構與其他特性。
接著,研究電紡二氧化鈦奈米材料於水分解測試的效能,並與Degussa P-25二氧化鈦做比較。同二氧化鈦樣本之光催化製氫的活性與其比表面積顯示出高度的相關性。同時,電紡二氧化鈦奈米絲之紫外/可見光光譜暗示著二氧化鈦奈米材料之結構造成顯著的光捕獲效應。均勻沉積在導電玻璃的電紡二氧化鈦奈米絲顯示出與其膜厚相依之光反應,另外亦顯示出其光反應與外加偏壓和激發光源成正比增加之相關性。更重要的是,光電流隨著薄膜厚度增加而穩定增加,顯示製氫應用之效能可藉電紡二氧化鈦材料之巨孔洞結構而提升。
Titanium dioxide nanofibers fabricated by the polymer-assisted electrospinning technique were utilized in the photo-induced water splitting applications. A sol-gel solution formulated by titanium-tetraisopropoxide (TTIP) and poly(vinylpyrrolidone) (PVP) in an ethanol medium was ejected under a strong electrical field. Accompanied by the solvent evaporation and the solidification, highly charged polymer jet induces the formation of nanofibers collected on the grounded electrode as s uniform thin film. Calcination process was carried out afterward to encourage the crystallization and the phase transformation of titania, along with the thermal decomposition of polymer domains. Different diameter of TiO2 nanofibers were easily collected by sol-gel recipes and electrospinning parameters. Structures and other characterizations of titania nanofibers were investigated and discussed in this research work.
Water splitting performance of electrospun TiO2 nanomaterials was studied and compared with Degussa P-25 TiO2. Activities of photocatalytic hydrogen production revealed the strong relationship with specific surface area of different titania samples. Meanwhile, UV-visible spectra of electrospun TiO2 nanofibers suggested the significant light harvesting effect caused by the nanostructured titania nanomaterials. Thickness-dependent photoresponses of these electrospun homogeneously deposited on FTO-coated glass slides also showed the proportional increases with the applied bias and the irradiation. More importantly, the steadily photocurrent increases as a function of titania film thicknesses indicated the efficiency enhancement by macroporous electrospun titania materials in the hydrogen production applications.
1. Ashokkumar, M., An overview on semiconductor particulate systems for photoproduction of hydrogen. International Journal of Hydrogen Energy 1998, 23, (6), 427.
2. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, (5358), 37.
3. Baltazar, V.; Piron, D. L.; Gul, T., Electrolysers for hydrogen production -- an international marketing study. International Journal of Hydrogen Energy 1988, 13, (2), 61-66.
4. Gavala, H. N.; Skiadas, I. V.; Ahring, B. K., Biological hydrogen production in suspended and attached growth anaerobic reactor systems. International Journal of Hydrogen Energy 2006, 31, (9), 1164-1175.
5. Yu, Z. G.; Pryor, C. E.; Lau, W. H.; Berding, M. A.; MacQueen, D. B., Core-Shell Nanorods for Efficient Photoelectrochemical Hydrogen Production. J. Phys. Chem. B 2005, 109, (48), 22913-22919.
6. Ikuma, Y.; Bessho, H., Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst. International Journal of Hydrogen Energy 2006, In Press, Corrected Proof.
7. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 2004, 32, (1-2), 33.
8. Shangguan, W.; Yoshida, A.; Chen, M., Physicochemical properties and photocatalytic hydrogen evolution of TiO2 films prepared by sol-gel processes. Solar Energy Materials and Solar Cells 2003, 80, (4), 433.
9. Ovenstone, J.; Yanagisawa, K., Effect of Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination Chemistry of Materials 1999, 11, (10), 2770.
10. Hashimoto, K.; Irie, H.; Fujishima, A., TiO<sub>2</sub> photocatalysis: A historical overview and future prospects. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 2005, 44, (12), 8269-8285.
11. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 2007, 11, (3), 401.
12. Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D. W.; Murugesan, V., Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research 2004, 38, (13), 3001-3008.
13. Jin, S.; Shiraishi, F., Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Chemical Engineering Journal 2004, 97, (2-3), 203-211.
14. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004, 126, (15), 4943-4950.
15. Tseng, I. H.; Chang, W.-C.; Wu, J. C. S., Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental 2002, 37, (1), 37-48.
16. Liu, S. X.; Qu, Z. P.; Han, X. W.; Sun, C. L., A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today 2004, 93-95, 877-884.
17. Kamat, P. V.; Flumiani, M.; Dawson, A., Metal-metal and metal-semiconductor composite nanoclusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 202, (2-3), 269-279.
18. Dvoranova, D.; Brezova, V.; Mazur, M.; Malati, M. A., Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental 2002, 37, (2), 91-105.
19. Hameed, A.; Gondal, M. A.; Yamani, Z. H., Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catalysis Communications 2004, 5, (11), 715-719.
20. Wang, R.; Xin, J. H.; Yang, Y.; Liu, H.; Xu, L.; Hu, J., The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Applied Surface Science 2004, 227, (1-4), 312-317.
21. Xu, J.-C.; Shi, Y.-L.; Huang, J.-E.; Wang, B.; Li, H.-L., Doping metal ions only onto the catalyst surface. Journal of Molecular Catalysis A: Chemical 2004, 219, (2), 351-355.
22. Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M., Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General 2004, 265, (1), 115-121.
23. Chen, S.-Z.; Zhang, P.-Y.; Zhuang, D.-M.; Zhu, W.-P., Investigation of nitrogen doped TiO2 photocatalytic films prepared by reactive magnetron sputtering. Catalysis Communications 2004, 5, (11), 677-680.
24. Torres, G. R.; Lindgren, T.; Lu, J.; Granqvist, C. G.; Lindquist, S. E., Photoelectrochemical Study of Nitrogen-Doped Titanium Dioxide for Water Oxidation. J. Phys. Chem. B 2004, 108, (19), 5995-6003.
25. Chen, X.; Burda, C., Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. J. Phys. Chem. B 2004, 108, (40), 15446-15449.
26. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, (5528), 269-271.
27. Jana, A. K., Solar cells based on dyes. Journal of Photochemistry and Photobiology A: Chemistry 2000, 132, (1-2), 1-17.
28. Gurunathan, K., Photobiocatalytic production of hydrogen using sensitized TiO2-MV2+ system coupled Rhodopseudomonas capsulata. Journal of Molecular Catalysis A: Chemical 2000, 156, (1-2), 59-67.
29. Argazzi, R.; Murakami Iha, N. Y.; Zabri, H.; Odobel, F.; Bignozzi, C. A., Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coordination Chemistry Reviews 2004, 248, (13-14), 1299-1316.
30. Polo, A. S.; Itokazu, M. K.; Murakami Iha, N. Y., Metal complex sensitizers in dye-sensitized solar cells. Coordination Chemistry Reviews 2004, 248, (13-14), 1343-1361.
31. Doong, R.-A.; Chen, C.-H.; Maithreepala, R. A.; Chang, S.-M., The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Research 2001, 35, (12), 2873-2880.
32. So, W.-W.; Kim, K.-J.; Moon, S.-J., Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4. International Journal of Hydrogen Energy 2004, 29, (3), 229-234.
33. Keller, V.; Garin, F., Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase. Catalysis Communications 2003, 4, (8), 377-383.
34. Nguyen, T.-V.; Kim, S.; Yang, O. B., Water decomposition on TiO2-SiO2 and RuS2/TiO2-SiO2 photocatalysts: the effect of electronic characteristics. Catalysis Communications 2004, 5, (2), 59-62.
35. Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Ikeue, K.; Anpo, M., Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 2002, 148, (1-3), 257-261.
36. Anpo, M.; Takeuchi, M.; Ikeue, K.; Dohshi, S., Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation.: The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts. Current Opinion in Solid State and Materials Science 2002, 6, (5), 381-388.
37. Yamashita, H.; Harada, M.; Misaka, J.; Nakao, H.; Takeuchi, M.; Anpo, M., Application of ion beams for preparation of TiO2 thin film photocatalysts operatable under visible light irradiation: Ion-assisted deposition and metal ion-implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2003, 206, 889-892.
38. Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Neppolian, B.; Anpo, M., Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catalysis Today 2003, 84, (3-4), 191-196.
39. Li, Y.; Lu, G.; Li, S., Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere 2003, 52, (5), 843-850.
40. Kida, T.; Guan, G.; Yamada, N.; Ma, T.; Kimura, K.; Yoshida, A., Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation. International Journal of Hydrogen Energy 2004, 29, (3), 269-274.
41. Wu, N.-L.; Lee, M.-S., Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy 2004, 29, (15), 1601-1605.
42. Peng, S.; Li, Y.; Jiang, F.; Lu, G.; Li, S., Effect of Be2+ doping TiO2 on its photocatalytic activity. Chemical Physics Letters 2004, 398, (1-3), 235-239.
43. Yoko, T.; Hu, L.; Kozuka, H.; Sakka, S., Photoelectrochemical properties of TiO2 coating films prepared using different solvents by the sol-gel method. Thin Solid Films 1996, 283, (1-2), 188.
44. Adam, D., A fine set of threads. Nature 2001, 411, (6835), 236-236.
45. Dzenis, Y., MATERIAL SCIENCE: Spinning Continuous Fibers for Nanotechnology. Science 2004, 304, (5679), 1917-1919.
46. Huang, Z.-M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003, 63, (15), 2223.
47. Formhals, A., Process and Apparatus for Preparing Artificial Threads. US patent 1934, 1, 975,504.
48. MacIas, M.; Chacko, A.; Ferraris, J. P.; Balkus Jr, K. J., Electrospun mesoporous metal oxide fibers. Microporous and Mesoporous Materials 2005, 86, (1-3), 1-13.
49. Li, D.; Wang, Y.; Xia, Y., Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2003, 3, (8), 1167-1171.
50. Li, D.; Xia, Y., Fabrication of Titania Nanofibers by Electrospinning. Nano Lett. 2003, 3, (4), 555-560.
51. Larsen, G.; Velarde-Ortiz, R.; Minchow, K.; Barrero, A.; Loscertales, I. G., A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range via Sol-Gel Chemistry and Electrically Forced Liquid Jets. J. Am. Chem. Soc. 2003, 125, (5), 1154-1155.
52. Kataphinan, W.; Teye-Mensah, R.; Evans, E. A.; Ramsier, R. D.; Reneker, D. H.; Smith, D. J. In High-temperature fiber matrices: Electrospinning and rare-earth modification, 2003; AVS: 2003; pp 1574-1578.
53. Choi, S.-S.; Lee, S. G.; Im, S. S.; Kim, S. H.; Joo, Y. L., Silica nanofibers from electrospinning/sol-gel process. Journal of Materials Science Letters 2003, 22, (12), 891-893.
54. Wang, Y.; Furlan, R.; Ramos, I.; Santiago-Aviles, J. J., Synthesis and characterization of micro/nanoscopic Pb(Zr 0.52Ti 0.48)O 3 fibers by electrospinning. Applied Physics A: Materials Science & Processing 2004, 78, (7), 1043-1047.
55. Wang, Y.; Santiago, A.; s, J. J., Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo-organic decomposition process. Nanotechnology 2004, 15, (1), 32-36.
56. Zhang, G.; Kataphinan, W.; Teye-Mensah, R.; Katta, P.; Khatri, L.; Evans, E. A.; Chase, G. G.; Ramsier, R. D.; Reneker, D. H., Electrospun nanofibers for potential space-based applications. Materials Science and Engineering B 2005, 116, (3), 353-358.
57. Taylor, G., Electrically Driven Jets. Proceedings of Royal Society of London A:
Mathematical and Physical Sciences 1969, 313, 453.
58. Chen, J.-Y., Polymer-assisted Electrospinning of Mesoporous Titanium Dioxide Nanofibers. 2006.
59. Zheng, M.-p.; Gu, M.-y.; Jin, Y.-p.; Wang, H.-h.; Zu, P.-f.; Tao, P.; He, J.-b., Effects of PVP on structure of TiO2 prepared by the sol-gel process. Materials Science and Engineering B 2001, 87, (2), 197-201.
60. Grosso, D.; Balkenende, A. R.; Albouy, P. A.; Ayral, A.; Amenitsch, H.; Babonneau, F., Two-Dimensional Hexagonal Mesoporous Silica Thin Films Prepared from Block Copolymers: Detailed Characterization and Formation Mechanism Chemistry of Materials 2001, 13, (5), 1848.
61. Lettmann, C.; Hildenbrand, K.; Kisch, H.; Macyk, W.; Maier, W. F., Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Applied Catalysis B: Environmental 2001, 32, (4), 215.
62. Sreethawong, T.; Yoshikawa, S., Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. International Journal of Hydrogen Energy 2006, 31, (6), 786.