簡易檢索 / 詳目顯示

研究生: 楊文賓
Yang, Wen-Bin
論文名稱: 大腦損傷時Sp1堆積的功能及機轉之探討
Characterization of Mechanism and Function in Sp1 Accumulation under Brain Damage
指導教授: 洪建中
Hung, Jan-Jong
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊研究所
Institute of Bioinformatics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 中腦動脈阻塞H2O2IRESSp1缺血再灌流缺糖缺氧
外文關鍵詞: Ischemia-reperfusion, MCAO, IRES, H2O2, Sp1, OGD
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去的文獻指出很多種疾病與缺氧/缺血有關,如:癌症、中風等。最近的研究也證明了在缺血再灌流的情況下,會引發許多短暫性的基因調控,Sp1也在報導中指出可能參與在這樣的過程中。Sp1是重要的轉錄因子,它可以辨認GC-rich序列的啟動子,進而透過其轉錄活性調控下游基因的表現。在本篇研究中,我們發現在缺糖缺氧/中腦動脈阻塞之後,大腦皮質神經細胞的Sp1有堆積的情形,但是在神經膠質細胞則沒有堆積的現象。為了更進一步找出Sp1的堆積是透過哪些因素所導致,我們分別確認了Sp1 mRNA和蛋白質的穩定性,發現並沒有太大的變化,所以我們懷疑Sp1的堆積是透過轉譯效率提高所導致。在Polysome distribution assay的結果顯示,Sp1在缺糖缺氧之後轉譯效率有提高的情形,接著分析Sp1 5'-UTR,發現可能存在一個典型的IRES結構,利用bicistronic assay也證實了Sp1的堆積是透過IRES所導致。更進一步的,我們發現H2O2是引發Sp1堆積的重要因子。接著我們處理Sp1轉錄活性抑制劑mithramycin和Sp1 shRNA,在缺糖缺氧之後,神經細胞的存活率皆有顯著的下降,這也說明了,在缺血再灌流時Sp1的堆積對於神經細胞,扮演著保護性的角色。我們是第一個發現Sp1可以透過IRES-pathway造成Sp1的堆積,而對於中風之後的腦損傷,在治療上可能有所貢獻。

    Hypoxia/ischemia is related to several diseases processing such as tumor and stroke. Recent studies demonstrate that ischemia-reperfusion induces a multitude of temporally regulated responses in gene expression, and some evidences suggested that Sp1 might be involved in these processes. Sp1 is one of the transcription factors which can specifically bind to GC-rich element in order to regulate the transcription activity of its target genes. In this study, we found that Sp1 was accumulated in cortical neurons of rats, but not in gilal cells under Oxygen Glucose Deprivation ( OGD ) condition and Middle Cerebral Artery Occlusion ( MCAO ) model. To more address this finding, the related experiments were carried out in vivo and in vitro. Data indicated that there is no significant difference in mRNA level of Sp1 and Sp1 stability under OGD condition. After analyzing the Sp1 DNA sequence within 5'-UTR and promoter region, we found one typical IRES-conserved sequence localizing within 5'-UTR of Sp1 genomic sequence. The reporter assay and polysome distribution assay revealed that Sp1 could be accumulated strongly and rapidly under hypoxia/ischemia neuron cells. Furthermore, H2O2 induced by OGD was the key factor to lead the Sp1 accumulation. Inhibition of Sp1 by mithramycin and knockdown of Sp1 by shRNA revealed that the Sp1 accumulation under ischemia-reperfusion leads to neuron cells survival. This is the first time to figure out that Sp1 could be induced through IRES-pathway, this finding might contribute the recovery of neurons after stroke.

    摘要......I Abstract......II 誌謝......III 縮寫檢索表......1 第一章 序論......3 第二章 實驗材料......10 第三章 實驗方法......15 第四章 實驗結果......38 第一節、探討Sp1在缺血再灌流時的表現情形......38 第二節、探討Sp1的累積是透過哪個因子所導致......40 第三節、探討Sp1的累積是透過分子生物層面上的哪個因素所導致......42 第四節、探討提高Sp1轉譯效率之機制......45 第五節、探討Sp1的累積在缺血再灌流時所扮演的角色......48 第五章 討論......50 第六章 參考文獻......55 附圖......61 附表......75 附錄......76 自述......84

    1. Hossmann, K. A. (1993). Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res 96, 161-77.
    2. Abramov, A. Y., Scorziello, A. & Duchen, M. R. (2007). Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27, 1129-38.
    3. Saeed, S. A., Shad, K. F., Saleem, T., Javed, F. & Khan, M. U. (2007). Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res 182, 1-10.
    4. Pignataro, G., Scorziello, A., Di Renzo, G. & Annunziato, L. (2009). Post-ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS J 276, 46-57.
    5. Dynan, W. S. & Tjian, R. (1983). The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35, 79-87.
    6. Kadonaga, J. T., Carner, K. R., Masiarz, F. R. & Tjian, R. (1987). Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51, 1079-90.
    7. Kaczynski, J., Cook, T. & Urrutia, R. (2003). Sp1- and Kruppel-like transcription factors. Genome Biol 4, 206.
    8. Santiago, F. S., Ishii, H., Shafi, S., Khurana, R., Kanellakis, P., Bhindi, R., Ramirez, M. J., Bobik, A., Martin, J. F., Chesterman, C. N., Zachary, I. C. & Khachigian, L. M. (2007). Yin Yang-1 inhibits vascular smooth muscle cell growth and intimal thickening by repressing p21WAF1/Cip1 transcription and p21WAF1/Cip1-Cdk4-cyclin D1 assembly. Circ Res 101, 146-55.
    9. Opitz, O. G. & Rustgi, A. K. (2000). Interaction between Sp1 and cell cycle regulatory proteins is important in transactivation of a differentiation-related gene. Cancer Res 60, 2825-30.
    10. Mazure, N. M., Brahimi-Horn, M. C. & Pouyssegur, J. (2003). Protein kinases and the hypoxia-inducible factor-1, two switches in angiogenesis. Curr Pharm Des 9, 531-41.
    11. Briggs, M. R., Kadonaga, J. T., Bell, S. P. & Tjian, R. (1986). Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science 234, 47-52.
    12. Emili, A., Greenblatt, J. & Ingles, C. J. (1994). Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein. Mol Cell Biol 14, 1582-93.
    13. Torigoe, T., Izumi, H., Yoshida, Y., Ishiguchi, H., Okamoto, T., Itoh, H. & Kohno, K. (2003). Low pH enhances Sp1 DNA binding activity and interaction with TBP. Nucleic Acids Res 31, 4523-30.
    14. Wierstra, I. (2008). Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 372, 1-13.
    15. Chu, S. & Ferro, T. J. (2005). Sp1: regulation of gene expression by phosphorylation. Gene 348, 1-11.
    16. Tan, N. Y. & Khachigian, L. M. (2009). Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol 29, 2483-8.
    17. Abdelrahim, M. & Safe, S. (2005). Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol 68, 317-29.
    18. Wang, Y. T., Chuang, J. Y., Shen, M. R., Yang, W. B., Chang, W. C. & Hung, J. J. (2008). Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process. J Mol Biol 380, 869-85.
    19. Hung, J. J., Wang, Y. T. & Chang, W. C. (2006). Sp1 deacetylation induced by phorbol ester recruits p300 to activate 12(S)-lipoxygenase gene transcription. Mol Cell Biol 26, 1770-85.
    20. Han, I. & Kudlow, J. E. (1997). Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol 17, 2550-8.
    21. Fojas de Borja, P., Collins, N. K., Du, P., Azizkhan-Clifford, J. & Mudryj, M. (2001). Cyclin A-CDK phosphorylates Sp1 and enhances Sp1-mediated transcription. EMBO J 20, 5737-47.
    22. Milanini-Mongiat, J., Pouyssegur, J. & Pages, G. (2002). Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem 277, 20631-9.
    23. Bonello, M. R. & Khachigian, L. M. (2004). Fibroblast growth factor-2 represses platelet-derived growth factor receptor-alpha (PDGFR-alpha) transcription via ERK1/2-dependent Sp1 phosphorylation and an atypical cis-acting element in the proximal PDGFR-alpha promoter. J Biol Chem 279, 2377-82.
    24. Zheng, X. L., Matsubara, S., Diao, C., Hollenberg, M. D. & Wong, N. C. (2000). Activation of apolipoprotein AI gene expression by protein kinase A and kinase C through transcription factor, Sp1. J Biol Chem 275, 31747-54.
    25. Armstrong, S. A., Barry, D. A., Leggett, R. W. & Mueller, C. R. (1997). Casein kinase II-mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity. J Biol Chem 272, 13489-95.
    26. Tan, N. Y., Midgley, V. C., Kavurma, M. M., Santiago, F. S., Luo, X., Peden, R., Fahmy, R. G., Berndt, M. C., Molloy, M. P. & Khachigian, L. M. (2008). Angiotensin II-inducible platelet-derived growth factor-D transcription requires specific Ser/Thr residues in the second zinc finger region of Sp1. Circ Res 102, e38-51.
    27. Chuang, J. Y., Wang, Y. T., Yeh, S. H., Liu, Y. W., Chang, W. C. & Hung, J. J. (2008). Phosphorylation by c-Jun NH2-terminal kinase 1 regulates the stability of transcription factor Sp1 during mitosis. Mol Biol Cell 19, 1139-51.
    28. Iwahori, S., Yasui, Y., Kudoh, A., Sato, Y., Nakayama, S., Murata, T., Isomura, H. & Tsurumi, T. (2008). Identification of phosphorylation sites on transcription factor Sp1 in response to DNA damage and its accumulation at damaged sites. Cell Signal 20, 1795-803.
    29. Zhang, Y., Liao, M. & Dufau, M. L. (2006). Phosphatidylinositol 3-kinase/protein kinase Czeta-induced phosphorylation of Sp1 and p107 repressor release have a critical role in histone deacetylase inhibitor-mediated derepression [corrected] of transcription of the luteinizing hormone receptor gene. Mol Cell Biol 26, 6748-61.
    30. Abdelrahim, M., Smith, R., 3rd, Burghardt, R. & Safe, S. (2004). Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer Res 64, 6740-9.
    31. Chiefari, E., Brunetti, A., Arturi, F., Bidart, J. M., Russo, D., Schlumberger, M. & Filetti, S. (2002). Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? BMC Cancer 2, 35.
    32. Hosoi, Y., Watanabe, T., Nakagawa, K., Matsumoto, Y., Enomoto, A., Morita, A., Nagawa, H. & Suzuki, N. (2004). Up-regulation of DNA-dependent protein kinase activity and Sp1 in colorectal cancer. Int J Oncol 25, 461-8.
    33. Wang, L., Wei, D., Huang, S., Peng, Z., Le, X., Wu, T. T., Yao, J., Ajani, J. & Xie, K. (2003). Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 9, 6371-80.
    34. Lietard, J., Musso, O., Theret, N., L'Helgoualc'h, A., Campion, J. P., Yamada, Y. & Clement, B. (1997). Sp1-mediated transactivation of LamC1 promoter and coordinated expression of laminin-gamma1 and Sp1 in human hepatocellular carcinomas. Am J Pathol 151, 1663-72.
    35. Mertens-Talcott, S. U., Chintharlapalli, S., Li, X. & Safe, S. (2007). The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67, 11001-11.
    36. Chuang, J.-Y., Wu, C.-H., Lai, M.-D., Chang, W.-C. & Hung, J.-J. (2009). Overexpression of Sp1 leads to p53-dependent apoptosis in cancer cells. Int J Cancer in press.
    37.Pyronnet, S., Dostie, J. & Sonenberg, N. (2001). Suppression of cap-dependent translation in mitosis. Genes Dev 15, 2083-93.
    38. Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., Bumgarner, R., Goodlett, D. R., Aebersold, R. & Hood, L. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929-34.
    39. Nishizuka, S., Charboneau, L., Young, L., Major, S., Reinhold, W. C., Waltham, M., Kouros-Mehr, H., Bussey, K. J., Lee, J. K., Espina, V., Munson, P. J., Petricoin, E., 3rd, Liotta, L. A. & Weinstein, J. N. (2003). Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci U S A 100, 14229-34.
    40. Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C. & Wimmer, E. (1988). A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62, 2636-43.
    41. Baird, S. D., Turcotte, M., Korneluk, R. G. & Holcik, M. (2006). Searching for IRES. RNA 12, 1755-85.
    42. Bonnal, S., Pileur, F., Orsini, C., Parker, F., Pujol, F., Prats, A. C. & Vagner, S. (2005). Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 280, 4144-53.
    43. Millard, S. S., Vidal, A., Markus, M. & Koff, A. (2000). A U-rich element in the 5' untranslated region is necessary for the translation of p27 mRNA. Mol Cell Biol 20, 5947-59.
    44. Pickering, B. M., Mitchell, S. A., Evans, J. R. & Willis, A. E. (2003). Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic Acids Res 31, 639-46.
    45. Le, S. Y. & Maizel, J. V., Jr. (1997). A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs. Nucleic Acids Res 25, 362-69.
    46. Holcik, M. (2004). Targeting translation for treatment of cancer--a novel role for IRES? Curr Cancer Drug Targets 4, 299-311.
    47. Stoneley, M. & Willis, A. E. (2004). Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23, 3200-7.
    48. Simard, J. M., Chen, M., Tarasov, K. V., Bhatta, S., Ivanova, S., Melnitchenko, L., Tsymbalyuk, N., West, G. A. & Gerzanich, V. (2006). Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 12, 433-40.
    49. Hata, J., Matsuda, K., Ninomiya, T., Yonemoto, K., Matsushita, T., Ohnishi, Y., Saito, S., Kitazono, T., Ibayashi, S., Iida, M., Kiyohara, Y., Nakamura, Y. & Kubo, M. (2007). Functional SNP in an Sp1-binding site of AGTRL1 gene is associated with susceptibility to brain infarction. Hum Mol Genet 16, 630-9.
    50. 鄭嘉文. (2007). Sp1 increases its stability in neuronal cells under oxygen and glucose deprivation stress. 國立成功大學藥理學研究所碩士論文.
    51. Inta, I., Paxian, S., Maegele, I., Zhang, W., Pizzi, M., Spano, P., Sarnico, I., Muhammad, S., Herrmann, O., Inta, D., Baumann, B., Liou, H. C., Schmid, R. M. & Schwaninger, M. (2006). Bim and Noxa are candidates to mediate the deleterious effect of the NF-kappa B subunit RelA in cerebral ischemia. J Neurosci 26, 12896-903.
    52. Bogaert, L., Scheller, D., Moonen, J., Sarre, S., Smolders, I., Ebinger, G. & Michotte, Y. (2000). Neurochemical changes and laser Doppler flowmetry in the endothelin-1 rat model for focal cerebral ischemia. Brain Res 887, 266-75.
    53. Yanagisawa, M., Kurihara, H., Kimura, S., Goto, K. & Masaki, T. (1988). A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J Hypertens Suppl 6, S188-91.
    54. Hui, A. S., Bauer, A. L., Striet, J. B., Schnell, P. O. & Czyzyk-Krzeska, M. F. (2006). Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J 20, 466-75.
    55. Mathews, K. S., McLaughlin, D. P., Ziabari, L. H., Toner, C. C., Street, P. C., Hisgrove, E., Bezzina, E. L. & Stamford, J. A. (2000). Rapid quantification of ischaemic injury and cerebroprotection in brain slices using densitometric assessment of 2,3,5-triphenyltetrazolium chloride staining. J Neurosci Methods 102, 43-51.
    56. Hancock, J. T., Desikan, R. & Neill, S. J. (2001). Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29, 345-50.
    57. van den Beucken, T., Koritzinsky, M. & Wouters, B. G. (2006). Translational control of gene expression during hypoxia. Cancer Biol Ther 5, 749-55.
    58. Lang, K. J., Kappel, A. & Goodall, G. J. (2002). Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13, 1792-801.
    59. 陳偉銘. (2009). IRES Omnibus:An integrated web server for predicting the IRES element and searching for the gene bearing the IRES in human genome. 國立成功大學生物資訊研究所碩士論文.
    60. Snyder, R. C., Ray, R., Blume, S. & Miller, D. M. (1991). Mithramycin blocks transcriptional initiation of the c-myc P1 and P2 promoters. Biochemistry 30, 4290-7.
    61. Dewhirst, M. W., Cao, Y. & Moeller, B. (2008). Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8, 425-37.
    62. Nicolas, M., Noe, V., Jensen, K. B. & Ciudad, C. J. (2001). Cloning and characterization of the 5'-flanking region of the human transcription factor Sp1 gene. J Biol Chem 276, 22126-32.
    63. Coffey, M. J., Serezani, C. H., Phare, S. M., Flamand, N. & Peters-Golden, M. (2007). NADPH oxidase deficiency results in reduced alveolar macrophage 5-lipoxygenase expression and decreased leukotriene synthesis. J Leukoc Biol 82, 1585-91.
    64. Kondo, T., Reaume, A. G., Huang, T. T., Carlson, E., Murakami, K., Chen, S. F., Hoffman, E. K., Scott, R. W., Epstein, C. J. & Chan, P. H. (1997). Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17, 4180-9.

    下載圖示 校內:2011-07-02公開
    校外:2012-07-02公開
    QR CODE