| 研究生: |
杜國印 Tu, Kuo-Yin |
|---|---|
| 論文名稱: |
硬銲型板式熱交換器疲勞實驗與分析 Fatigue Experiment and Analysis of Braze Plate Heat Exchanger |
| 指導教授: |
李超飛
Lee, Chau-Fei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 熱交換器 、初始裂紋壽命 、多軸疲勞 |
| 外文關鍵詞: | crack initiation life, heat exchanger, multiaxial fatigue |
| 相關次數: | 點閱:99 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對硬銲型板式熱交換器進行加壓-洩載循環的疲勞實驗及壽命評估並測量接頭中心處底層蓋板的變位及尋找疲勞破裂位置。定義疲勞壽命之循環數,利用ANSYS Code配合多軸疲勞準則,進行二維及三維有限元素疲勞壽命分析,低週期疲勞壽命準則採用ASME Code N-47的最大等效應變範圍準則,高週期疲勞壽命準則採用Fuchs的最大剪應力範圍準則。
分析結果顯示疲勞初始裂紋產生於兩山形紋板片間的銅銲點處及其裂紋成長方向皆與實驗結果吻合。剪應變振幅對低週期疲勞壽命準則貢獻最大,同時壽命預估值比實驗值保守,差異多數在一倍分散因子內,具實際應用之參考價值。剪應力振幅對高週期疲勞壽命貢獻最大,目前實驗進行至 105 循環尚未達壽命估算值,故無法比對。
爲提高低週期疲勞壽命,本文在底層蓋板刪除低應力區之材料,以降低銅銲點的剪應變振幅,分析結果銅銲點應力應變大小皆有改變,破裂點及裂紋成長方向與改良之前比較不受影響,但疲勞壽命提高。
In this paper, constant pressure amplitude cyclic fatigue experiments and life estimation the Braze Plate Heat Exchanger were studied, with a measurement of under-plate the displacement beneath the center of part and a searching method of finding the position of fatigue crack.By define the number of cycles to fatigue failure and employ the ANSYS Code with multiaxial fatigue criteria 2D and 3D Finite Element life analysis were performed. For the low cycle fatigue (LCF) life the ASME Code Case N-47 was used, however, for high cycle fatigue (HCF) life the Fuchs’ maximum shear stress range criterion was employed.
Both the analytic results showed that the crack initiations locater at the braze copper between the two inner plates. The shear strain amplitude had the greatest effect on LCF life and the predicted life was conservative and had a longer life than the experimental life with scattering factor of one. Also the shear stress amplitude had the greatest effect on HCF life. Comparison of predicted HCF life with experimental data was not completed, since the experiment is still running beyond 105 cycles.
This paper also showed that through an elimination the material under low compress stress within the under-plate could reduce the shear strain amplitude of the braze copper and hence increase the life without changing the location of crack initiation and its growth direction.®
本參考文獻依文章中出現順序排列
[1] Schwartz, M. M., “Brazing,” ASM International, Metals Park, Ohio, 1987.
[2] 王啟川, “熱交換器設計(I),” 五南圖書出版有限公司, 2003.
[3] Sines, G., “Failure of Materials under Combined Repeated Stresses Superimposed with Static Stresses,” Tech. Note 3495, National Advisory Council for Aeronautics, Washington, D.C., 1955.
[4] American Society of Mechanical Engineers, “Cases of the ASME Boiler and Pressure Vessel Code,” Case N-47-12 (1592-2), ASME, New York, 1977.
[5] Fuchs, H. O., “Fatigue Research with Discriminating Specimens,” Fatigue of Engineering Materials and Structures, Vol. 2, No. 2, pp. 207-215, 1979.
[6] Itoh, T. and Toshiki, M., “A Damage Model for Estimating Low Cycle Fatigue Lives Under Nonproportional Multiaxial Loading,” Proceedings of the 6th International Conference on Biaxial/ Multiaxial Fatigue & Fracture, Lisbon, Portugal, pp. 503-510, 2001.
[7] Wang, Y. Y. and Yao, W. X., “Evaluation and Comparison of Several Multiaxial Fatigue Criteria,” International Journal of Fatigue, Vol. 26, No. 1, pp. 17-25, 2004.
[8] Gough, H. J. and Pollard, H. V., “The Strength of Metals under Combined Alternating Stress,” Proc Inst Mech Engrs, Vol. 131, pp. 3-18, 1935.
[9] Gough, H. J. and Pollard, H. V., “Properties of Some Materials for Cast Crankshafts, with Special Reference to Combined Alternating Stresses,” Proc Inst Automobile Engrs, Vol. 31, pp. 821-893, 1937.
[10] Lee, S. B., “Criterion for Fully Reversed Out-of-Phase Torsion and Bending,” Multiaxial Fatigue, ASTM STP 853, Philadelphia, pp. 553–568, 1985.
[11] Findley, W. N., “A Theory for the Effect of Mean Stress on Fatigue of Metals under Combined Torsion and Axial Load or Bending,” Transactions of the ASME, Journal of Engineering for Industry, Vol. 81, No. 1, pp. 301-306, 1959.
[12] Matake, T., “Explanation on Fatigue Limit under Combined Stress,” Bulletin of the Japan Society of Mechanical Engineers, Vol. 20, No. 141, pp. 257-263, 1977.
[13] McDiarmid, D. L., “General Criterion for High Cycle Multiaxial Fatigue Failure,” Fatigue and Fracture of Engineering Materials & Structures, Vol. 14, No. 4, pp. 429-453, 1991.
[14] Kandil, F. A., Brown, M. W. and Miller, K. J., “Biaxial Low Cycle Fatigue Fracture of 316 Stainless Steel at Elevated Temperatures,” The Metals Society, London , Vol. 280, pp. 203-210, 1982.
[15] Sidhom, N., “Fatigue Strength Improvement of 5083 H11 Al-alloy T-Welded Joints by Shot Peening: Experimental Characterization and Predictive Approach,” International Journal of Fatigue, Vol. 27, No. 7, pp. 729-745, 2005.
[16] 板式熱交換器事業部, “硬銲型板式熱交換器,” 高力熱處理工業股份有限公司, 西元2005年4月20日取自http://www.kaori-taiwan.com/compa31.htm.
[17] ANSYS Menu, “Structures with Material Nonlinearities,” ANSYS Theory Reference 8.0, Ch. 4, 2003.
[18] Bannantine, J. A., Comer, J. J. and Handrock, J. L., “Fundamentals of Metal Fatigue Analysis,” Simon and Schuster, New Jersey, 1990.
[19] Shames, I. H. and Cozzarelli, F. A., “Elastic and Inslastic Stress Analysis,” Taylor and Francis, Washington DC, 1997.
[20] 王俊仁, “金/錫或Au/ACF結合影像感測器有限元素力學分析法之研究,” 國立成功大學工程科學研究所碩士論文, 2004.
[21] Baumel, A., Boller, C. and Seeger, T., “Materials Data for Cyclic Loading. Supplement 1,” Elsevier, New York, pp. c.187-c.189, 1987.
[22] ANSYS Menu, “Element Library,” ANSYS Element Reference 8.0, Ch. 14, 2003.
[23] Beer, F. P. and Johnston, E. R., “Mechanics of Materials,” McGraw-Hill, New York, 1981.
[24] Sines, G., Dolan, T. J. and Waisman, J. L., “Matel Fatigue,” McGraw-Hill, New York, 1959.