| 研究生: |
楊英賢 Yang, Ying-Hsien |
|---|---|
| 論文名稱: |
生命週期評估與不確定性分析應用於火力電廠與燃料選擇 Life Cycle Assessment and Uncertainty Analysis for Fossil-Fired Power Plants and Fuel Selection |
| 指導教授: |
林素貞
Lin, Sue -Jane |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 210 |
| 中文關鍵詞: | 蒙地卡羅 、溫室氣體 、酸雨效應 、生命週期評估 、不確定性分析 、燃料選擇 、生態效益 、Eco-indicator 95 |
| 外文關鍵詞: | greenhouse gases, acidification, eco-efficiency, life cycle assessment, Monte Carlo simulation, uncertainty analysis, Eco-indicator 95, fossil fuel selection |
| 相關次數: | 點閱:119 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生命週期評估的應用,可以考量不同階段的範疇、資料品質、生命週期評估數值方法、環境衝擊評估及最佳化方法應用於產品生產之改善參考。本研究目的以生命週期評估與不確定性分析方法,探討火力發電廠個案在溫室效應、酸雨效應及其他環境問題之改善及不確定分析,期能提供電廠生命週期評估在應用方法上的技術改善,以提高生命週期評估與不確定性分析結果的價值。
本研究以生命週期評估結合蒙地卡羅不確定性分析、數值分析及生態效益等方法應用於火力電廠評估與燃料選擇,研究內容包括:第一部份,以生命週期評估Eco-indicator 95方法及一千度(MWh)為功能單位,探討不同發電機組,不同系統範疇之生命週期評估比較;第二部份,以生命週期擾動分析,探討不同發電機組在環境及經濟效益之差異;第三部份,以蒙地卡羅統計方法進行火力電廠不確定性分析,並以蒙地卡羅分析模擬探討火力電廠燃料選擇之最佳方案,分析不同情境之環境效益。
研究結果包括:
1.在資料品質方面,以傳統汽力發電廠可提供較好的資料品質,尤其是能源投入及二氧化碳排放;而複循環發電之操作時程較短,氣渦輪發電與柴油發電規模較小,二者在資料品質之不確定性較大,且排放係數與功能單位之一致性較弱。
2.生命週期評估以Eco-indicator 95方法分析結果,顯示以燃煤汽力在發電階段之溫室效應最高(894 kgCO2-eq.),其次是氣渦輪發電,再其次為燃油汽力發電;而燃氣複循環發電之溫室效應最小,為492 kgCO2-eq.。在酸雨議題方面,以柴油機發電之酸雨效應最高,其效應值為3.2 kgSO2-eq.,其次燃油複循發電;若以發電總量觀點,燃煤汽力發電仍為溫室效應與酸雨效應之貢獻度最大者。
3.在火力電廠燃料替代方案之情境分析中,主要考量為溫室效應與酸雨效應之環境衝擊,研究結果顯示,以燃氣複循環發電取代燃煤汽力發電方案,明顯優於燃氣複循環發電取代燃油汽力發電。
4.考量環境與經濟影響,燃氣複循環發電取代燃油汽力發電之經濟與環境效益最大,其次是燃氣複循環取代燃煤汽力發電。若以燃煤汽力取代燃油汽力發電,雖成本較低與夏季煙霧獲得改善外,其餘的環境衝擊皆較為惡化。
5.考量發電階段的酸雨效應,以蒙地卡羅分析與最佳化模擬,結果顯示當燃料成本提升約15%時,可獲得最大的酸雨效應減量,其減量效應約為9.4~10.5%,減量的驅動力主要來自燃煤汽力發電配比的減少。
6.在考量不同火力電廠與燃料選擇之方案中,以二氧化碳減量作最佳化模擬,顯示當降低燃煤汽力發電6~7%的發電比例,發電之燃料價格提昇約12.5~12.8%時,則二氧化碳之下降幅度約為2.85~3.89%,若略提升燃油複循環及燃氣汽力發電之比例,則結果更好。
7. 若同時考量酸雨效應與二氧化碳減量目的,以減少燃煤汽力之發電配比(下降幅度為6~7%),燃料價格將提高12.5%~12.8%,減量結果在酸雨效應及二氧化碳上可獲得最大的效果。
Life cycle assessment (LCA) can be applied as a methodology to analyze and to improve the life cycle of products under various boundaries, data qualities, and impact assessment. However, uncertain problems related to data quality, assessment methods and LCA procedures are frequently occurred. The aims of this study are focused on LCA by applying Eco-indicator 95 and using Monte Carlo (MC) simulations to compare the uncertainties of various power plants and to simulate options for fuel selection.
Numerical methods applied in this study include contribution analysis, perturbation analysis, MC uncertainty analysis and optimization. The first part of LCA study was conducted to compare results of various fossil power plants with a functional unit (MWh) and different boundaries. Then, the perturbation analysis was applied to evaluate alternative fuel mixes regarding environmental and economic aspects. The third part was based on the results of LCA and MC simulations to explore better fuel mixes for fossil power plant operations. Significant results include the followings:
1.In general, the traditional steam turbine powers have more stable quality regarding energy intensity and carbon dioxide emission factors. The combined cycle, the gas turbine and diesel generation have higher degrees of uncertainties due to shorter period operations and smaller generation scales.
2.Resulted from Eco-indicator 95 analysis indicate that coal-fired steam turbine power plants has the highest global warming potential (GWP=894 kgCO2-eq.), followed by gas turbine(850 kgCO2-eq.) and oil-fired steam turbine (725 kgCO2-eq.); In terms of acidification, diesel generation has the highest at 3.2 kgSO2-eq. followed by oiled fired combined cycle.
3.Results of fuel selection analysis indicated that by substituting gas-fired combined cycle for coal-fired steam turbine can improve the most in the environment aspect when considering different conditions of LCA boundaries. Regarding economic and environmental aspects, the best selection is the gas-fired combined cycle substituted for oil-fired steam turbine.
4.Regarding the acidification reduction, results of simulations have shown that by increasing 15 % of fuel cost would reduce the acidification effect from 1.39 to 1.24 kg SO2-eq./MWh. The reduction benefit is around 9.4-10.5% more than the reference year.
5.Considering the environmental and economical impacts, results indicated that the ratio of coal-fired steam turbine should be reduced.
6.The MC simulations and optimization model were constructed for carbon dioxide minimization; results suggest that if the fuel price were increased by 12.5-12.8%, and CO2 reduction effect would be around 16-20 kg/MWh, and CO2 reduction would be achieved by 2.85-3.89 %.
7.Results of simulations for both carbon dioxide and acidification improvement indicated that by lowering 6-7% of coal-fired steam turbine, the fuel price would be increased by 12.5-12.8%, which would generate most significant reductions for both carbon dioxide and acidification.
Adisa article, (1999) Life cycle assessment and its application to process selection, design and optimisation. Chemical Engineering Jounal, 1-21.
Agency for Natural Resources and Energy, (2004) Energy in Japan, , http://www.enecho.meti.go.jp , 20050715.
Alting L., Hauschild M. and Wenzel H., (1998) Elements in a new sustainable industrial culture Environmental Assessment in product development, Robotics and Computer-integrated Manufacturing, 14, 429-439.
Alvi, J.S., (1997) A availability analysis of integrated gasification combined cycle power plants with backup fuel and NOx reduction, Reliability Engineering and System Safety, 55, 85-94.
Andra, Anders S.G., Zou, G. and Liu J., (2004) LCA of Electronic Products, International Journal of Life Cycle Assessment, 9(1), 45-52.
Asgarpoor, S. and Benson, S.J., (1996) Production costing strategy for optimal SO2 compliance using Monte Carlo simulation, Electric Power Systems Research, 37, 159-164.
Asgarpoor, S., Benson, S. J. and Mathine, M.J., (1997) Transmission constrained production costing strategy for optimal SO2 compliance, Electric Power Systems Research, 38, 239-244.
Au, S.K. and Beck, J.L., (2001) First excursion probabilities for linear systems by very efficient importance sampling, Probabilistic Engineering Mechanics, 16, 193-207.
Azapagic, A. and Clift, R., (1995) Life cycle assessment and linear programming environmental optimisation of product system, Computers and chemical Engineering., 19, s229-s234.
Azapagic, A. and Clift, R., (1998) Allocation of Environmental burdens in multiple-function systems, Journal of Cleaner Production, 7, 101-119.
Azapagic, A. and Clift, R., (1998) Life cycle assessment and multiobjective optimisation, Journal of Cleaner Production, 7, 135-143.
Azapagic, A. and Clift, R., (1999) The application of life cycle assessment to process optiminisation, Computers and Chemical Engineering, 23, 1509-1526.
Barton, J.R., Dalley, D. and Patel, V.S., (1996) Life cycle assessment for waste management, Waste Management, 16, Nos1-3, 35-50.
Beer, J.M., (2000) Combustion technology developments in power generation in response to environmental challenges, Progress in Energy and Combustion Science, 26, 301-327.
Benetto, E., Rousseaux, P. and Blondin, J., (2004) Life cycle assessment of coal by-products based electric power production scenarios, Fuel, 83, Issues 7-8, 957-970.
Boha, T. and Blottnitz, H. von, (2006) A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis, Energy Policy, 34, 2654-2661.
Bovea, M.D. and Vidal, R., (2004) Increasing produce value by integrating environmental impact, costs and customer valuation, Resources Conservation & Recycling, 41, 133-145.
Bp, (2004) Statistical Review of World Energy 2004.
Cardwell, H. and Ellis, H., (1996) Model uncertainty and model aggregation in environmental management, Appliled Mathematical Modelling, 20(2), 121-134.
Carpentieri, M., Corti, A. and Lombardi, L., (2005) Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal, Energy Conversion and Management, 46, 1790-1808.
Centre for Environmental Assessment of Products and Material Systems, (1999) A systematic approach to environmental priority strategies in product development (EPS), (1999) Version 2000-Models and data of the default method, CPM report.
Chen, C.H., Donohue, K., Yucesan, E. and Lin, J., (2003) Optimal computing budget allocation for Monte Carlo simulation with application to product design, Simulation Modelling Practice and Theory, 11, 57-74.
Chestnut, L.G. and Mills, D.M., (2005) A fresh look at the benefits and costs of the US acid rain program, Journal of Environmental Management, 77, 252-266.
Christopher, C., (2001) Sustainable Development of Refrigerator Systems Using Replacement: Environmentally Acceptable Refrigerants, International Journal of Life Cycle Assessment, 6, 185.
Chwalowski, M., (1996) Electric Technologies and CO2: Problem or Solution, Energy Conversion & Management, 37, No.6-8, 967-971.
CML Guide, Report part2a, http://www.leidenuniv.nl/interfac/cml/ssp/index.html (2001/12/20).
CML Scientific back ground, Report part3, CMLGuide, Report part2b, http://www.leidenuniv.nl/interfac/cml/ssp/index.html (2001/12/20)
Cobas, E., (1996) Life Cycle Assessment Using Input-Output Analysis, Doctoral Dissertation, Carnegie Mellon University Department of Civil and Environmental Engineering Pittsburgh, PA.
Corbiere, N.T., Gfeller, L.B., Lundquist, L., Leterrier, Y., Manson, J.A.E., and Jolliet, O., (2001) Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics, Resources, Conservation and Recycling, 33, 267-287.
Da Silva Cesar, R.S., (2003) Optimizing Metropolis Monte Carlo simulations of semiconductors, Computer Physics Communications, 153, 392-396.
Dahlbo, H., Ollikainen, M., Peltola, S., Myllymaa, T. and Melanen, M., (2007) Combining ecological and economic assessment of options for newspaper waste management, Resources, Conservation and Recycling, 51, 42-63.
Dennison, F.J., Azapagic, A., Clift, R. and Colbourne, J.S., (1998) Assessing management options for wastewater treatment works in the context of life cycle assessment, Water Science and Technology, 38, 11, 23-30.
Eagan, P. and Weinberg, L., (1999) Applcation of analytic hierarchy process techniques to streamlined life-cycle analysis of anodizing process, Environmental Science and. Technology , 33 (9), 1495-1500.
Energy Commission, Ministry of economic Affairs, Taiwan, (2002) Energy Balances in Taiwan republic of China.
Energy Using Products, (2005) EuP, European Parliament and of the Council, DIRECTIVE 2005/32/EC, 6 July 2005, http://www.dti.gov.uk/sustainability/EUP_Directive_July_2004.pdf
Environmental statistics, (2003), Environmental protection administration, Taiwan, http://cemnt.epa.gov.tw/eng/
EPA, Taiwan, Environmental Statistic: 2003, Available at http://cemnt.epa.gov.tw/eng/.
EPA, Taiwan, (2003) The operation of reuse incineration plants, http://cemnt.epa.gov.tw/eng/
European Parliament and of the Council, (2005) DIRECTIVE 2005/32/EC, 6 July, 2005.
Feng, C. and Ma, X.Q., (2008) The energy consumption and environmental impacts of a color TV set in China, Journal of Cleaner Production, XX, 1-13, Available online 2 May 2008.
Finnveden, G., Hofstetter, P., Bare, J., Basson, L., Ciroth, A. and Mettier, T., (2002) Normalization, grouping and weighting in life cycle impact assessment. In: Udo de Haes et al.
Finnveden, G. and Lindfors, L.G., (1998) Data quality of life cycle inventory data-rules of thumb, International Journal of Life Cycle Assessment, 3(2), 65-6.
Finnveden, G. and Ekvall, T., (1998) Life-cycle assessment as a decision-support tool-the case recycling versus incineration of paper, Resources, Conservation and Recycling, 24, 235-256.
Francesco, D.M., Stefano, S. and Daniela, L., (2003) Life cycle assessment of a PPV (plasma pyrolysis vetrification) plant applied to an existing SUW management system, International Journal of Energy research, 27,481-494.
Furuholt, E., (1995) Life cycle assessment of gasoline and diesel. Resources Conservation and Recycling, 14, 251-263.
Gagnon, L., Belanger, C. and Uchiyama, Y., (2002) Life-cycle assessment of electricity generation options: The status of research in year 2001, Energy Policy, 30, 1267-1278.
Geldermann, J., Spengler, T. and Rentz, O., (2000) Fuzzy Outranking for Environmental Assessment Case Study: Iron and Steel Making Industry, Fuzzy set and Systems, 115, 45-65.
Glonka, K. and Brenna, D.J., (1997) Costa and environmental impacts in pollutant treatment: A case study of sulphur dioxide emissions from metallurgical smellers. Transactions of the Institution of Chemical Engineers, Part B, 75, 232-244.
Glover, F., (1989) Tabu Search, Part I, ORSA journal on Computing, 1,190-209.
Glover, F., (1990) Tabu Search, Part II, ORSA journal on Computing, 2, 4-32.
Glover, F., Kelly, J.P. and Laguna, M., (1998) The Optquest approaches to crystal ball simulation optimization, Graduate school of Business, University of Colorado, Boulder, Colorado 80309-0419, U.S.A.
Gonzalez, B., Adenso-Diaz, B. and Gonzalez-Torre, P.L., (2002) A fuzzy logic approach for the impact assessment in LCA, Resources Conservation& Recycling, 37, 61-79.
Goralczyk, M., (2003) Life-cycle assessment in the renewable energy sector, Applied Energy, 75, 205-211.
Guinee, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., van Oers, L., Wegener, S. A., Suh. S., Udo de Haes, H. A., de Bruijn, H., van Duin, R. and Huijbregts, M. A.J., (2002) Life Cycle Assessment: An operational guide to the ISO Standards. Kluwer Academeic Publishers, Dordrecht (NL).
Gwak, J.M., Kim, M.R. and Hur, T., (2003) Analysis of internally recurring unit processes in life cycle assessment, Journal of Cleaner Production, 11, 787-795.
Hamer, K., Arevalo, E., Deibel, I. and Hakstege, A.L., (2007) Assessment of Treatment and Disposal Options, Sustainable Management of Sediment Resources, 2, 133-159.
Hammersley, J.M.and Handscomb, D.C., (1992) Monte Carlo Methods, Chapman & Hall, London.
Hanssen, O.J. and Asbjornsen, O.A., (1996) Statistical properties of emission data in life cycle assessments, Journal of Cleaner Production, 4 (3-4), 149-157.
Heijumgs, R. and Kleijn, R., (2001) Numerical approaches towards life cycle interpretation: five examples, International Journal of Life Cycle Assessment, 6(3), 141-148.
Heijumgs, R. and Suh, S., (2002) The Computational structure of life cycle assessemnt, Kluwer Academic publishers, Netherlands.
Heijungs, R., (1994) A generic method for the identification of options for cleaner products, Ecological Economics, 10(1), 69-91.
Heijungs, R., (1996) Identification of key issues for further investigation in improving the reliability of life cycle assessment, Journal of Cleaner Production, 4 (3-4), 159-166.
Heijungs, R., Suh, S. and Kleiin, R., (2005) Numerical approaches to life cycle interpretation, International Journal of Life Cycle Assessment, 10(2), 103-112.
Heijungs, R., Guinee, J.B., Huppes, G., Lankreijer, R.M., Udo de Haes, H.A., Wegener Sleeswijk, A., Ansems, A.M.M., Eggels, P.G., van Duin, R. and de Goede, H.P., (1992) Environmental life cycle assessment of products, Backgrounds - October, CML, Leiden.
Helton, J.C. and Davis, F.J., (2003) Latin hypercube sampling and propagation of uncertainty in analyses of complex systems, Reliability Engineering & System Safety, 81, 23-69.
Hendrickson, C. and Arpad, H., (1998) Economic input-output models for environmental life-cycle assessment, Environmental Science & Technology/News, April 1, 184-191.
Hertwich, E.G., Mateles, S.F., Pease, W.S. and McKone, T.E., (2001) Human toxicity potentials for life cycle assessment and toxics release inventory risk screening, Environmental Toxicology and Chemist, 20, 928-939.
Hondo, H., (2005) Life cycle GHG emission analysis of power generation systems: Japanese case, Energy, 30, 2042-2056.
Huang, C.C. and Ma, H.W., (2004) A multidimensional environmental evaluation of packing material, Science of the Total Environment, 324, 161-172.
Huijbregts, M.A.J., Thissen, U., Guinee, J.B., Jager, T., Kalf, D., van de Meent, D., Ragas, A.M.J., Sleeswijk, A. and Wegener, R.L., (2000) Priority assessment of toxic substances in life cycle assessment. Part I: Calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA, Chemosphere 41, 541-573.
Huijbregts, M.A.J., Thissen, U., Jager, T., Meent, D. van de and Ragas, A.M.J., (2003) Priority assessment of toxic substances in life cycle assessment Part II: assessing parameter uncertainty and human variability in the calculation of toxicity potentials, Chemosphere 51, 501-508.
Huijbregts, M.A.J., (1998) Application of uncertainty and variability in LCA (part I)- a general framework for the analysis of uncertainty and variability in life cycle assessment, International Journal of Life Cycle Assessment, 3(5) 273-80.
Humbert, S., Margni, M. and Jolliet, O., (2005) IMPACT 2002+: User Guide, version 2.1, Industrial Ecology & Life Cycle Systems Group, GECOS, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Huppes, G., Davidson, M.D., Kuyper, J., van Oers, L., Udo de Haes, H.A. and Warringa, G., (2007) Eco-efficient environmental policy in oil and gas production in the Netherlands, Ecological Economics, 61( 1), 43-51.
International Energy Agency, (2003) Energy Policies of IEA Countries Germany 2002 Review.
International Standard ISO 14001, (1996) Environmental Management Systems-requirements with guidance for use.
International Standard ISO 14040, (1997) A Standard on Principles and Framework.
International Standard ISO 14041, (1998) A Standard on Goal and Scope Definition and Inventory Analysis.
International Standard ISO 14042, (2000) A Standard on Life-Cycle-Impact-Assessment.
International Standard ISO 14043, (2000) A standard on Life-Cycle-Interpretation.
International Standard ISO 14048, (2001) Environmental management- life cycle assessment- data documentation format.
International Standard ISO 14062, (2002) Environmental management- integrating environmental aspects into product design.
International Standard ISO 14040, (2006) Environmental management - Life cycle assessment Principles and framework.
International Standard ISO 14044, (2006) Environmental management - Life cycle assessment Requirements and guidelines.
Introduction to LCA with SimaPro 7, (2007) The user manual of Simpro 7.0 software, PRe Consultants.
Ito, S., Yokoyama, T. and Asakura, K., (2006) Emissions of mercury and other trace elements from coal-fired power plants in Japan, Science of Total Environment, 386, 397-402.
Jager-Waldau, A. and Ossenbrink, H., (2004) Progress of electricity from biomass, wind and photovoltaics in the European Union, Renewable and Sustainable Energy Reviews, 8, 157-182.
Johns, W.R., Kokossis, A. and Thompson, F., (2008) A flowsheeting approach to integrated life cycle analysis, Chemical Engineering and Processing, 47, 557-564.
Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G. and Rosenbaum, R.h, (2003) IMPACT 2002+: A New Life Cycle Impact Assessment Methodology, International Journal of Life Cycle Assessment, 8 (6), 324-330.
Joshi, S., (1997) Comprehensive product life cycle assessment using input-output techniques, Doctoral Dissertation, Carnegie Mellon University, Heinz School of Public Policy and Management, Pittsburgh, PA.
Kaminaris, S.D., Tsoutsos, T.D., Agoris, D. and Machias, A.V., (2006) A assessing renewables-to-electricity systems a fuzzy expert system model, Energy Policy, 34, 12, 1357-1366.
Kannan, R., Tso, C.P., Osman, R. and Ho, H.K., (2004) LCA-LCCA of oil fired steam turbine power plant in Singapore, Energy Conversion and Management, 45, 3093-3107.
Kirpatrick, S., Gelatt, C.D. and Vecchi, M.P., (1983) Optimization by simulated annealing, Science, 220, 671-680.
Kniel, G.E., Delmarco, K. and Petrie, J.G., (1996) Life cycle assessment applied to process design: Environmental and economic analysis and optimisation of a nitric acid plant. Environmental Progress, 15(4), 221-228.
Laguna, M., (1997) Metaheuristic optimization with Evolver, Genocop and QptQuest, Graduate School of Business Administration, University of Colorado, Boulder, CO 80309-0419.
Laguna, M., (1997) Optimization of complex systems with OptQuest, Graduate School of Business Administration, University of Colorado, Boulder, CO 80309-0419.
Lee, Y.M. and Ding, C.Y., (2000) Life-cycle assessment and production policy: An application to corrugated paperboard manufacture. Journal of Environmental Management, 59, 157-165.
Lee, Y.M. and Zhang, Y.Y., (2002) Life cycle inventories of electric power supply in Taiwan, Energy Quarterly, 32, 2, 29-44. (in Chinese)
Lenzen, M., (2001) Errors in conventional and input-output-based life-cycle inventories, Journal of Industrial Ecology, 4, 127-141.
Life cycle assessment an operational guide to the ISO standards, CML Report part1, http://www.leidenuniv.nl/interfac/cml/ssp/index.html (2001/12/20)
Lin, L.F., Lee, W.J., Li, H.W., Wang, M.S. and Chang-Chien, G.P., (2007) Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan, Chemosphere, 68(9), 1642-1649.
Lo, S.C., Ma, H.W. and Lo, S.L., (2005) Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method, Science of the Total Environment, 340, Issue: 1-3, 23-33.
Lombardi, L., (2001) Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of semi-closed gas turbine cycle with CO2 chemical adsorption, Energy Conversion and Management, 42, 101-114.
Lombardi, L., (2003) Life cycle assessment comparison of technical solutions for CO2 emission reduction in power generation, Energy Conversion and Management, 44, 93-108.
Lopez, J.L. and Mandujano, C., (2005) Estimation of the impact in the air quality by the use of clean fuels (fuel oil versus natural gas), Catalysis Today, 106:176-179.
Lu, Z. and Zhang, D., (2003) On importance sampling Monte Carlo approach to uncertainty analysis for flow and transport on porous media, Advances in Water Resources, 26, 1177-1188.
Lund, H., Hvelplund, F. and Nunthavorakarn, S., (2003) Feasibility of a 1400 MW coal-fired power-plant in Thailand, Applied Energy, 76, Issues 1-3, 55-64.
Lunghi, P. and Bove, R., (2003) Life cycle assessment of a molten carbonate fuel cell stack, Fuel Cells, 3, 4, 224-230.
Manfred, Z. and Inge, R., (2000) Environmental Impact of telecommunication services, Global Mapping International.
Mark, G., Suzanne, E. and Marcel, C., (2000) The Eco-indicator 99, A damage oriented method for life cycle impact assessment, Manual for Designers, Pre'Consultants B. V., April, 2000.
Maurice, B., Frischnecht, R., Coelho-Schwirtz, V. and Hungerbuhler, K., (2000) Uncertain analysis in life cycle inventory - Application to the production of electricity with French coal power plants, Journal of Cleaner Production, 8, pp.95-108.
Mazumdar, M. and Chrzan, L., (1995) Monte Carlo stochastic simulation of electric power generation system production costs under time-dependent constraints, Electric Power Systems Research, 25,101-108.
Meier, P.J., Wilson, P.J., Kulcinski, G.L. and Denholm, P.L., (2005) US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives, Energy Policy, 33, 1099-1108.
Meij, R. and Winkel, H., (2007)The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations, Atmospheric Environment, 41-40, 9262-9272.
Nassen, J., Holmberg, J., Wadeskog, A. and Nyman, M., (2007)Direct and indirect energy use and carbon emissions in the production phase of buildings: An input–output analysis, Energy, 32, 1593-1602.
Nguyen, T.L.T., Gheewala, S.H. and Garivait, S., (2008) Full chain energy analysis of fuel ethanol from cane molasses in Thailand, Applied Energy, 85, 722–734.
Ong, S.K., Koh, T.H. and Nee, A.Y.C., (1999) Development of semi-quantitative pre-LCA tool, Journal of Materials Processing Technology, 89-90, 574-582.
Ong, S.K., Koh, T.H. and Nee, A.Y.C., (2001) Assessing the environmental impact of materials processing techniques using an analytical hierarchy process method, Journal of Materials Processing Technology, 113, 424-431.
Papadrakakis, M., Lagaros, N.D. and Plevris, V., (2005) Design optimization of steel structures considering uncertainties, Engineering Structures, 27, 1408-1418.
Payraudeau, S., van der Werf, H.M.G. and Verte, F., (2006) Analysis of the uncertainty associated with the estimation of nitrogen losses from farming systems, Agricutural Systems, 94, 416-430.
Pennington, D.W., Potting, J., Finnveden, G., Lindeijer, E., Jolliet, O., Rydberg, T. and Rebitzer, G., (2004) Life cycle assessment Part 2: Current impact assessment practice, Environment International, 30, 721- 739.
Peter, G.P. and Hertwich, E.G., (2006) A comment on “functions, commodities and environmental impacts in an ecological-economics model”, Ecological Economics, 59, 1-6.
Pre Cousultants and DUIJF Consultancy BV, (1996) The Eco-indicator 95, Report 9523, National Reuse of Waste Research Programme (NOH), Netherlands.
Pre'Consultants, (1996) The Eco-indicator 95 Final Report, NOH report 9523.
Pre'Consultants,(1996) The Eco-indicator 95 Final Report, NOH report 9524.
Rafaschieri, A.R.M. and Manfrida, G., (1999) Life Cycle Assessment of electricity production from poplar energy crops compared with conventional fossil fuels, Energy Conversion & Management, 40, 1477-1493.
Renewable Energy Law, (2004) http://www.react.novem.org/Renewable%20Energy%20Law.pdf 20050715.
Renewable Energy Policy Review in Germany, (2004) European Renewable Energy Council 26, rue du Trone, B-1000 Brussels, http://www.erec-renewables.org/documents/RES_in_EUandCC/Policy_reviews/EU_15/Germany_policy_final.pdf, 20050715.
Riva, A., D'Angelosante, S. and Trebeschi, C., (2006) Natural gas and the environmental results of life cycle assessment, Energy, 31(1), 138-148.
Robert, C.P. and Casella, G., (1999) Monte Carlo statistical methods, Springer-Verlag, New York.
Sandgren, E. and Cameron, T.M., (2002) Robust design optimization of structures through consideration of variation, Computers and Structures, 80, 1605-1613.
SETAC, (1993) Guidelines for life-cycle assessment: Code of practice, proceeding from the SETAC workshop held in Sesimbra, Portugal.
Sims, R.E.H., Rogner, H.H., and Gregory, K., (2003) Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation, Energy Policy, 31, 1315-1326.
Society of Environmental Toxicology and Chemistry and STEAC Foundation for Environmental Education, A Conceptual Framework for Life-Cycle Assessment, (1993).
Society of Environmental Toxicology and Chemistry and STEAC Foundation for Environmental Education, A Technical Framework for Life-Cycle Assessment, (1991).
Sonnemann, G.W., Schuhmacher M. and Castells F., (2003) Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator, Journal of Cleaner Production, 11, 279-292.
Stander, C.M., (1996) Superalloy design- a Monte Carlo constrained optimization method, Materials & Design, 17, 1, 23-26.
Steen, B., (1997) On uncertainty and sensitivity of LCA-Based priority setting, Journal of Cleaner Production, 5, 4, 255-262.
Tan Raymond, R., Culaba Alvin, B. and Purvis Michael, R.I., (2002) Application of possibility theory in the life-cycle inventory assessment of bio fuels, International Journal of Energy Research, 26, 737-745.
Tan Raymond, R., Culaba Alvin, B. and Aviso Kathleen, B., (2008) A fuzzy linear programming extension of the general matrix-based life cycle model, Journal of Cleaner Production, 16, 13, 1358-1367.
Tanrioven, M., (2005) Reliability and cost-benefits of adding alternate power sources to an independent micro-grid community, Jounal of Power Sources,150, pp.136-149.
Termuehlen, H. and Werner, E., (2003) Clean and efficient coal-fired power plants, The American Society of Mechanical Engineers Three Park Avenue, New York, NY 10016.
The Eco-indicator 99, (2000) A damage oriented method for life cycle impact assessment methodology, Report17, April 2000, Second edition.
Tomano, D., Bernetti, A. and Lauretis, R.D., (2004) Different methodologies to quantify uncertainties of air emissions, Environment International, 30, 1099-1107.
Tupper, K. and Kreider, J.F., (2006) A life cycle analysis of hydrogen production for buildings and vehicles, Materials Research Society, 0895-G02-04.1.
Vogtlander, J.G., Bijma, A. and Brezet, H.C., (2002) Communicating the eco-efficiency of products and services by means of the eco-costs/value model, Journal of Cleaner Production, 10, 1, 57-67.
Weidema, B. and Wesnaes, M.S., (1996) Data quality management for life cycle inventories - an example of using data quality indicators. Journal of Cleaner Production, 4 (3-4), 167-174.
Weidema, B., (1998) Multi-user test of the data quality matrix for product life cycle inventory data, International Journal of Life Cycle Assessment, 3(5), 259-65.
Weiss, M., Patel, M., Heilmeier, H. and Bringezu, S., (2007) Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials, Resources, Conservation and Recycling, 50, 260-281.
Wen, F. and David, A.K., (2001) Optimal bidding strategies for competitive generators and large consumers, Electrical Power and Energy Systems, 23, 37- 43.
Winkler, J. and Bilitewski, B.,(2007)Comparative evaluation of life cycle assessment models for solid, Waste Management, 27, 1021-1031.
Woldt, W.E., Dvorak, B.I. and Dahab, M.F., (2003) Application of fuzzy set theory to industrial pollution prevention production system modeling and life cycle assessment, Soft Computing-A fusion of Foundations, Methodologies and Application, 7, 419-433.
Yang, N. and Wen, F., (2005) A change constrained programming approach to transmission system expansion planning, Electric Power systems Research, 75, 71-177.
Yang, N., Yu, C.W., Wen, F. and Chung, C.Y., (2007) An investigation of reactive power planning based on chance constrained programming, Electrical Power & Energy Systems, 29, 650-656.
Zafiropoulos, E.P. and Dialynas, E.N., (2004) Reliability and cost optimization of electronic devices considering the component failure rate uncertainty, Reliability Engineering & System Safety, 84, 271-284.
Zhu, H., Cheng, H. and Zhang, Y., (2000) A novel method of electric power network flexible planning considering the selected probability of transmission line, Autom. Electric Power Syst., 24(17) 20-24.
Zurkirch, M. and Reichart, I., (2000) Environmental Impacts of telecommunication services, GMI Winter, 70-88.
丁執宇,(1998) 「生命週期衝擊評估方法介紹及應用」,工業污染防治,第66期,pp96-111。
中央銀行統計資料,(2004) http://www.cbc.gov.tw/。
中技社環境技術發展中心及中鼎工程股份有限公司,(2001)台灣地區空氣污染排放量推估手冊,TEDS 4.2。
王景玟,(2005)「結合生命週期評估及生態效益之分析研究-以鋼鐵廠產品為例」,碩士論文,國立成功大學環境工程系,台南市。
台灣電力公司,(2002~2007) 91~96年統計年報,台灣電力公司企畫處。
台灣電力公司,(2001) 「火力發電廠空氣污染改善之績效指標」,台灣電力公司環境保護處。
申永順,梁洲輔,(2005)「瀝青混凝土業生產程序之生命週期評估研究」,第十八屆環境管規劃與管理研討會論文集,中壢。
江玄政,黃國恭,黃雪娟,張啟達,(2001) ISO 140000系列-生命週期評估技術與應用手冊,經濟部工業局。
台灣電力公司,(2008) 歷史與發展,http://www.taipower.org.tw , updated 2008.0。
行政院環境保護署,(2006) 台灣地區空氣污染物排放資料庫Taiwan Emission Data System,TEDS 6.0, 6.1。
行政院放射資料管理局,(2003) 統計資料庫,http://www.aec.gov.tw/。
行政院環境保護署,(2003) 環境資料庫,http://edb.epa.gov.tw/envdb2/ 。
行政院環境保護署,(2004) 固定污染源空氣污染防制費收費費率。
李育明、張毓盈,(2002)「台灣地區電力供應之生命週期盤查分析」,能源季刊,第三十二卷,第二期,29-44。
李佳禾,(2004)「生命週期評估與環境績效分析研究-以人造纖維產品為例」,碩士論文,國立成功大學環境工程系,台南市。
林素貞,胡秋蘭,(1999) 「生命週期評估方法探討-以石化原料為例」,工業污染防治,第71期,103-122。
施信民,(2005)「能源政策與能源結構發展方向」,全國能源會議。
胡秋蘭,(1998)「生命週期評估方法探討-以石化原料業為例」,碩士論文,國立成功大學環境工程系,台南市。
唐惠欽,黃敏聖,(2004)「二階及縮減三階質數乘餘法亂數產生器之啟發式解法」,工程科技與教育學刊 第一卷 第二期 民國九十三年十一月,242-256。
徐恆文,(2004)「煤炭氣化發電之能源優勢,工業技術研究院,能源資訊網http://emis.erl.itri.org.tw , 20080505.
張進發,(2007)「火力發電與環境污染防治」,物理雙月刊,二十九卷三期。
梁啟源,郭博堯,(2002)「核電廠提前除役的經濟性評估」,國政研究報告,財團法人國家政策研究基金會,永續(研)091-022號。
許志義,陳澤義,(2003) 電力經濟學理論與應用,華泰文化事業。
許志義,劉彩雲,(1989)「台灣地區能源消費與經濟成長之投入產出分析」,能源季刊,第十九卷第四期,1-34。
陳世峰,紀子文,孟孟德,(1998) 「建立生命週期之成本評估模式-以二案例為例(比較豬肉與雞肉及二次纖維造紙方案)」第一屆環境系統分析研討會,281-292。
陳家榮,吳榮華,(1993)「台灣地區電力需求變動影響因素分析」,能源季刊,第二十三卷第二期,22-31。
黃盈庭,(2000)「投入產出分析應用於生命週期評估-台灣地區水泥範例研究」,國立成功大學資源工程學系碩士論文。
黃瓊儀,(2003)「人造纖維產品之生命週期評估研究」,碩士論文,國立成功大學環境工程系,台南市。
楊豐碩,李漢申,王京明,梁啟源,張四立,黃國鐘,朱文成,朱雲鵬,林祖嘉,(2001) 「電力業自由化座談會實錄」,財團法人國家政策研究基金會。
經濟部工業局,(2001)ISO 14000系列- 生命週期評估技術與應用手冊。
經濟部能源局,(2002, 2006) 能源政策白皮書, http://www.moeaboe.gov.tw/。
經濟部能源局,(2005) 能源政策白皮書。
經濟部能源局,(2005) 第二次全國能源會議結論。
經濟部能源局,(2006) 長期負載預測與電源開發規劃摘要報告。
經濟部能源局,(2006, 2007) 台灣能源統計手冊。
經濟部工業局,(2001) ISO14000系列-生命週期評估技術與應用手冊。
經濟部能源局統計96年,(2007) 。http://www.moeaboe.gov.tw/opengovinfo/Plan/electronic/PElecStatMain.aspx?PageId=p_elec_02, 20080505.
趙佩琪,吳美惠,鄭清宗,翁志聖,鄭祖壽,(1999) 「運用SimaPro Model於廢電子電器物品(四機)-洗衣機之生命週期評析探討」,第十二屆環境規劃與管理研討會論文集,395-400。
盧象時,孫常漢,邱遠揚,(1986) 火力發電,中國工程師協會出版。
簡允堅,(1987) 發電工程,金華科技圖書。
羅時麒,馬鴻文,駱尚廉,(2001)「生命週期衝擊評估之不確定性分析- 以廢棄物管理系統紙類回收為例」,第十四屆環境規劃與管理研討會,論文集光碟片
羅時麒,(2005) 「以系統性機率模式鑑定、量化與整合生命週期評估之不確定性」,國立台灣大學環境工程學研究所博士論文。