簡易檢索 / 詳目顯示

研究生: 吳健銘
Wu, Chien-Ming
論文名稱: 多孔性吸附反應器之實驗研究與熱傳分析
An experimental study and heat transfer analysis of porous adsorption reactors
指導教授: 楊天祥
Yang, Tian-Shiang
共同指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 88
中文關鍵詞: 儲氫系統矽膠多孔性材料熱傳
外文關鍵詞: Hydrogen storage system, Silica gel, Heat transfer enhancement
相關次數: 點閱:114下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 儲氫合金粉末在儲氫過程中為放熱反應,當其溫度超出反應作用溫度時,則儲氫反應停滯。因此找尋儲氫系統內最佳熱管理方式,以縮短儲氫反應時間,進而提高儲氫效率是改善儲氫系統之首重課題。一般而言儲氫系統相關設備與耗材昂貴且高壓氫氣危險性高,但幸運的是儲氫粉末與矽膠之巨觀吸附反應相似,低成本、低危險性之矽膠相當適合作為多孔性材質吸附反應器熱管理實驗研究之替代介質。因此在本研究中我們利用矽膠顆粒,重現多孔性吸附反應器之熱傳表現,期待間接解決儲氫系統內多孔性熱傳問題,此外相關研究結果也可作為矽膠吸濕器之設計依據。
    具體而言,本研究將已知空氣流量與入口平均濕度之濕空氣通入填滿矽膠之反應器內,進行矽膠吸附反應。反應期間記錄反應器壓力、內部溫度、內外壁溫度與出入口空氣之溫度、濕度、流量。接著以熱傳角度解釋矽膠系統內特定一點之溫度曲線,並導入簡化數學模型解釋矽膠系統之升溫現象。之後比較矽膠系統內中心軸上三個不同位置之溫度大小,並輔以熱擴散方程式模擬中心軸上溫度分布,解釋最高溫度發生在中間段矽膠之原由。最後改變入口平均濕度、反應器平均壓力與空氣流量,觀察這三個變因對於溫度曲線、出口濕度、吸附水量與吸附熱功率等影響。結果顯示在矽膠系統內若反應器平均壓力越大,入口平均濕度越高,則吸附水量越多,吸附熱功率越高,其巨觀表現與儲氫系統相似。因此我們在後續研究中,若能在矽膠系統內找到一最佳熱管理方法以增進其吸濕與脫濕性能,期待能以相同方法應用在儲氫系統內,進而改善儲氫系統內部熱傳,縮短儲氫時間。

    The hydriding process in a hydrogen storage system involves a reversible exothermic chemical reaction. The heat released during the reaction process has a direct effect on the hydrogen supply characteristics and therefore must be carefully managed. However, in investigating and enhancing the performance of hydrogen systems, experimental cost and safety are major concerns. Therefore, metal hydride powder is substituted by silica gel in our experimental study of the thermal management of porous adsorption reactors. The temperature variation with time within reactors in both hydrogen system and silica system are similar. Thus, relatively safe silica gel system is a proper material to mimic the thermal behavior of hydrogen storage system.
    In the present study, air with a known humidity and flow rate flows into a reactor filled with silica gel and the temperature, pressure, flow rate and humidity are measured both within the reactor and at the reactor outlet as the exothermal chemical reaction proceeds. The heat transfer characteristics at a point in the reactor are explained by physical arguments, and then a simplified mathematic model is constructed to support the physical arguments. Temperature at three axial positions in silica system are shown and the heat diffusion equation is employed to interpret the temperature variation in axial positions. The temperature variation, adsorption heat power, adsorption mass and humidity of outlet air under different conditions are shown and interpreted on physical grounds. The obtained results show that the moisture adsorption rate and adsorption heat power increase as the average reactor pressure and inlet humidity increase. Since the heat transfer characteristics in silica gel system and hydrogen system are similar, by improving the heat transfer in a silica system, the heat transfer problem in a hydrogen system can also be solved indirectly.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 符號說明 XII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 氫氣儲存方式簡介 4 1.3 儲氫粉末之替代介質介紹與選擇 7 1.3.1 常見吸附劑介紹 8 1.3.2 生石灰 (CaO) 8 1.3.3 活性氧化鋁 (activated alumina) 9 1.3.4 分子篩 (molecular sieve) 9 1.3.5 矽膠 (silica gel) 10 1.4 儲氫系統與矽膠系統之比較 12 1.5 發泡金屬材料 15 1.5.1 發泡金屬種類與特性 15 1.5.2 發泡金屬在儲氫系統的角色 16 1.6 文獻回顧 17 1.6.1 儲氫機制 17 1.6.2 改善熱傳或其他條件對儲氫系統的影響 18 1.6.3 多孔性介質之熱傳 26 第2章 實驗系統 27 2.1 實驗系統設計 27 2.1.1 反應器系統設計 27 2.1.2 水套系統設計 35 2.1.3 造霧系統設計 38 2.2 量測儀器與設備 40 2.2.1 溫溼度計 40 2.2.2 壓力計與校正 41 2.2.3 流量計 43 2.2.4 資料擷取器 44 2.2.5 熱電偶與誤差分析 44 第3章 實驗流程與參數設定 46 3.1 實驗材料與設備 46 3.2 實驗參數設定 47 3.3 實驗流程 47 第4章 結果與討論 50 4.1 升溫機制 50 4.1.1 熱傳現象 50 4.1.2 數學模型 52 4.2 反應作用線 54 4.2.1 定義反應作用線 54 4.2.2 反應作用線移動速率 55 4.3 吸附熱功率與總吸附水量隨時間變化 57 4.4 中心軸上溫度趨勢 60 4.5 壓力對矽膠吸附過程之影響 64 4.5.1 壓力對出口濕度影響 64 4.5.2 壓力對反應作用線之影響 64 4.5.3 壓力對吸附熱功率之影響 66 4.5.4 壓力對總吸附水量之影響 68 4.6 入口濕度對矽膠吸附過程之影響 70 4.6.1 入口濕度對吸附水量之影響 70 4.6.2 入口濕度對吸附熱功率與溫度之影響 71 4.7 空氣流量對矽膠吸附過程之影響 74 4.7.1 空氣流量對反應作用線之影響 74 4.7.2 空氣流量對吸附熱功率之影響 76 4.7.3 空氣流量對溫度之影響 78 第5章 結論與未來工作 80 5.1 結論 80 5.2 未來工作 81 參考文獻 84

    [1] 柯賢文, "未來的氫能經濟," 科學發展, vol. 68-75, p. 389, 2006.
    [2] (2013.05.26). Hydrogen ship. Available: http://www.hydrogengas.biz/hydrogen_ships.html
    [3] L. E. Klebanoff and J. O. Keller, "5 Years of hydrogen storage research in the U.S. DOE Metal Hydride Center of Excellence (MHCoE)," International Journal of Hydrogen Energy, vol. 38, pp. 4533-4576, 2013.
    [4] 方立行, "氫能安全規範制定及應用之研究," 碩士論文, 元智大學機械工程學系, 元智大學, 2009.
    [5] (2013.05.26). 储氢合金. Available: http://baike.baidu.com/view/556066.htm
    [6] 國立中央大學機械工程學系, "氫經濟(II)."
    [7] L. Becker, "Hydrogen Storage," Discovery Guides 2001 June.
    [8] M.-L. Tsai, "Thermofluid analysis of metal-hydride hydrogen storage systems: Effects of exit pressure control and metal-foam volume fraction on system performance," International Journal of Hydrogen Energy, 2011.
    [9] 朱鼎舜, "釋氫壓力控制對金屬儲氫罐供氫性能的影響," 碩士論文, 機械所, 國立成功大學, 2008.
    [10] 崔瑋麟, "金屬氫化物顆粒儲氫性能之理論建模與數值模擬," 碩士論文, 機械所, 國立成功大學, 2010.
    [11] 李承恩, "金屬氫化物儲氫系統中導熱發泡金屬體積比分佈對系統性能之影響," 碩士論文, 機械所, 國立成功大學, 2011.
    [12] L. Schlapbach and A. Zuttel, "Hydrogen-storage materials for mobile application," Nature, vol. 414, pp. 354-358, 2001 November 15.
    [13] 徐麗瀅, 自製沸石玻纖濾網之特性分析及其甲醛吸附效能之研究: 國立雲林科技大學環境與安全衛生工程研究所碩士班, 2007.
    [14] 陳佑禎, "活化作用與表面奈米合金催化劑對碳材儲氫之影響," 碩士, 電機工程學系, 東海大學, 2010.
    [15] K. C. Ng, H. T. Chua, C. Y. Chung, C. H. Loke, T. Kashiwagi, and A.Akisawa, "Experimental investigation of silaca gel-water adsorption isothermal charactereistics," Applied Thermal Engineering, vol. 21, pp. 1631-1642, 2001.
    [16] (2013.3.22). 分子篩. Available: http://zh.wikipedia.org/wiki/%E5%88%86%E5%AD%90%E7%AD%9B
    [17] (2013.3.22). 氧化鈣. Available: http://zh.wikipedia.org/wiki/%E7%94%9F%E7%9F%B3%E7%81%B0
    [18] (2013.3.22). 活性氧化鋁. Available: http://zh.wikipedia.org/wiki/%E6%B4%BB%E6%80%A7%E6%B0%A7%E5%8C%96%E9%8B%81
    [19] (2013.3.22). 矽膠. Available: http://baike.baidu.com/view/2015039.htm
    [20] (2013.3.22). 生石灰. Available: http://baike.baidu.com/view/460260.htm
    [21] (2013.3.22). 活性氧化铝. Available: http://baike.baidu.com/view/454168.htm
    [22] 高頻企業股份有限公司, "活性氧化鋁應用於固定床式乾燥系統."
    [23] 蔣忠誠, 陳耀漢, 吳勝宏, and 徐啟銘, "工業常用吸附劑之熱分析研究," 修平學報, vol. 23, pp. 73-82, 2011.
    [24] J. M. Gurgel and R. P.Kluppel. (1996). Thermal conductivity of hydrated silica-gel.
    [25] K. C. Ng, H. T. Chua, C. Y. C. C. H. Loke, T. Kashiwagi, and A. A. B. B. Saha, "Experimental investigation of the silica gel-water adsorption isotherm characteristics," Applied Thermal Engineering, vol. 21, pp. 1631-1642, 2001.
    [26] G. Mazzolai, B. Coluzzi, A. Biscarini, F. M. Mazzolai, A. Tuissi, F. Agresti, et al., "Hydrogen-storage capacities and H diffusion in bcc TiVCr alloys," Journal of Alloys and Compounds, vol. 466, pp. 133-139, 2008.
    [27] M. A. Rady, A. S. Huzayyin, E. Arquis, P. Monneyron, and C. Lebot, "HEAT AND MASS TRANSFER IN A COMPOSITE BED OF SILICA GEL AND MACRO-ENCAPSULATED PCM FOR DEHUMIDIFICATION," 2008.
    [28] Y. Kaplan, "Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors," International Journal of Hydrogen Energy, vol. 34, pp. 2288-2294, 2009.
    [29] 劉文海, 鋁合金潛力產品與前景分析: 金屬工業研究發展中心出版, 2004.
    [30] Dewitt, Bergmann, and Lavine, Fundamentals of Heat and Mass Transfer: Wiley, 2007.
    [31] A. Jemni, S. B. Nasrallah, and J. Lamloumi, "Experimental and theoretical study of a metal–hydrogen reactor," International Journal of Hydrogen Energy, vol. 24, pp. 631-644, 1999.
    [32] A. Jemni and S. B. Nasrallah, "Heat and mass transfer models in metal-hydrogen reactor," International Journal of Hydrogen Energy, vol. 22, p. 10, 1997.
    [33] H. Dhaou, F. Askri, M. Bensalah, A. Jemni, S. Bennasrallah, and J. Lamloumi, "Measurement and modelling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds," International Journal of Hydrogen Energy, vol. 32, pp. 576-587, 2007.
    [34] F. Askri, "Study of two-dimensional and dynamic heat and mass transfer in a metal–hydrogen reactor," International Journal of Hydrogen Energy, vol. 28, pp. 537-557, 2003.
    [35] F. Askri, "Dynamic behavior of metal–hydrogen reactor during hydriding process," International Journal of Hydrogen Energy, vol. 29, pp. 635-647, 2004.
    [36] F. Askri, "Prediction of transient heat and mass transfer in a closed metal–hydrogen reactor," International Journal of Hydrogen Energy, vol. 29, pp. 195-208, 2004.
    [37] A. Jemni and S. B. Nasrallah, "Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor," International Journal of Hydrogen Energy, vol. 20, p. 10, 1995.
    [38] A. Jemni and S. B. Nasrallah, "Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor," International Journal of Hydrogen Energy, vol. 20, p. 11, 1995.
    [39] J. Nam, J. Ko, and H. Ju, "Three-dimensional modeling and simulation of hydrogen absorption in metal hydride hydrogen storage vessels," Applied Energy, vol. 89, pp. 164-175, 2012.
    [40] H. Choi and A. F. Mills, "Heat and mass transfer in metal hydride beds for heat pump applications," International Journal of Heat and Mass Transfer, vol. 33, pp. 1281-1288, 6// 1990.
    [41] F. Laurencelle and J. Goyette, "Simulation of heat transfer in a metal hydride reactor with aluminium foam," International Journal of Hydrogen Energy, vol. 32, pp. 2957-2964, 2007.
    [42] S. Mellouli, H. Dhaou, F. Askri, A. Jemni, and S. Ben Nasrallah, "Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger," International Journal of Hydrogen Energy, vol. 34, pp. 9393-9401, 2009.
    [43] (2013.05.26). Duocel Aluminum Foam. Available: http://www.ergaerospace.com/literature/erg_duocel.pdf
    [44] M. C. Georgiadis, E. S. Kikkinides, and A. K. Stubos, "On the Optimisation of Hydrogen Storage in Metal hydride beds," 2005.
    [45] S. Mellouli, F. Askri, H. Dhaou, A. Jemni, and S. Ben Nasrallah, "A novel design of a heat exchanger for a metal-hydrogen reactor," International Journal of Hydrogen Energy, vol. 32, pp. 3501-3507, 2007.
    [46] S. Mellouli, F. Askri, H. Dhaou, A. Jemni, and S. Ben Nasrallah, "Numerical study of heat exchanger effects on charge/discharge times of metal–hydrogen storage vessel," International Journal of Hydrogen Energy, vol. 34, pp. 3005-3017, 2009.
    [47] F. Askri, M. Bensalah, A. Jemni, and S. Bennasrallah, "Optimization of hydrogen storage in metal-hydride tanks," International Journal of Hydrogen Energy, vol. 34, pp. 897-905, 2009.
    [48] S. Mellouli, F. Askri, H. Dhaou, A. Jemni, and S. Ben Nasrallah, "Numerical simulation of heat and mass transfer in metal hydride hydrogen storage tanks for fuel cell vehicles," International Journal of Hydrogen Energy, vol. 35, pp. 1693-1705, 2010.
    [49] A. Souahlia, H. Dhaou, F. Askri, M. Sofiene, A. Jemni, and S. Ben Nasrallah, "Experimental and comparative study of metal hydride hydrogen tanks," International Journal of Hydrogen Energy, vol. 36, pp. 12918-12922, 2011.
    [50] S. N. Nyamsi, F. Yang, and Z. Zhang, "An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system – analytical method and numerical simulation," International Journal of Hydrogen Energy, vol. 37, pp. 16078-16092, 2012.
    [51] S. L. Garrison, B. J. Hardy, M. B. Gorbounov, D. A. Tamburello, C. Corgnale, and B. A. vanHassel, "Optimization of internal heat exchangers for hydrogen storage tanks utilizing metal hydrides," International Journal of Hydrogen Energy, vol. 37, pp. 2850-2861, 2012.
    [52] M. Raju and S. Kumar, "Optimization of heat exchanger designs in metal hydride based hydrogen storage systems," International Journal of Hydrogen Energy, vol. 37, pp. 2767-2778, 2012.
    [53] H. Wang, A. K. Prasad, and S. G. Advani, "Hydrogen storage system based on hydride materials incorporating a helical-coil heat exchanger," International Journal of Hydrogen Energy, vol. 37, pp. 14292-14299, 2012.
    [54] B. Satya Sekhar, P. Suresh, and P. Muthukumar, "Performance tests on metal hydride based hydrogen storage devices," International Journal of Hydrogen Energy, 2012.
    [55] C. Veerraju and M. R. Gopal, "Heat and mass transfer studies on elliptical metal hydride tubes and tube banks," International Journal of Hydrogen Energy, vol. 34, pp. 4340-4350, 2009.
    [56] M. Tange, T. Maeda, A. Nakano, H. Ito, Y. Kawakami, M. Masuda, et al., "Experimental study of hydrogen storage with reaction heat recovery using metal hydride in a totalized hydrogen energy utilization system," International Journal of Hydrogen Energy, vol. 36, pp. 11767-11776, 9// 2011.
    [57] A. A. Pesaran and A. F. Mills, "Moisture transfer in silica gel packed beds. II.Experimental Study," International Journal of Heat and Mass Transfer, 1986.
    [58] A. A. Pesaran and A. F. Mills, "Moisture transfer in silica gel packed beds. I. Theorectical Study," International Journal of Heat and Mass Transfer, 1986.
    [59] A. Akahira, K. C. A. Alam, Y. Hamamoto, A. Akisawa, and T. Kashiwagi, "Experimental investigation of mass recovery adsorption refrigeration cycle," International Journal of Refrigeration, vol. 28, pp. 565-572, 2005.
    [60] M. R. M. Mohseni, "CFD modeling of the effect of absorbent size on absorption performance of a packed bed column," Korean Journal of Chemical Engineering, vol. 25, pp. 395-401, 2008.
    [61] J. White, "A CFD Simulation on How the Different Sizes of Silica Gel Will Affect the Adsorption Performance of Silica Gel," Modelling and Simulation in Engineering, vol. 2012, pp. 1-12, 2012.
    [62] F. P. Incropera, Fundamentals of Heat and Mass Transfer, Sixth Edition: Prentice Hall, 2007.
    [63] 熱麗碳晶. (2013.05.26). 温暖的室内空气流动的速度不超过0.2米/秒. Available: http://www.relitj.com/news/detail-2-219.html
    [64] 東京計裝公司, "Thermal Mass Flowmeter TF-4000."
    [65] G. Corporation. (2013.05.26). gl820_manual. Available: http://www.dataq.com/products/hardware/gl820.htm
    [66] 美國OMEGA. (2013.05.26). Thermocouple Introduction and theory. Available: http://www.omega.com/temperature/z/pdf/z021-032.pdf
    [67] 美國OMEGA. (2013.05.26). Thermocouple Reference Tables Type T. Available: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CFUQFjAA&url=http%3A%2F%2Fwww.omega.com%2Ftemperature%2Fz%2Fpdf%2Fz207.pdf&ei=1ahKUe-JBY2ilQXzi4DoCQ&usg=AFQjCNGH_dZmtG4qUm-KbecDRjsr3Um7AA&sig2=vDbi_bXVJL6s_0AYset0ag
    [68] R. S. Figliola and D. E. Beasley, Theory and Design for Mechanical Measurements, fourth ed. Wiley Asia Student Edition, 2006.
    [69] J. Sun and R. W. Besant, "Heat and mass transfer during silica gel–moisture interactions," International Journal of Heat and Mass Transfer, vol. 48, pp. 4953-4962, 2005.
    [70] V. Celli. (2013.05.26). Solution of the diffusion equation. Available: http://galileo.phys.virginia.edu/classes/311/notes/dimension/node8.html

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE