簡易檢索 / 詳目顯示

研究生: 何宗翰
He, Zong-Han
論文名稱: 針對具不確定性的移動物體去處理連續k個最近鄰居天際線之查詢
Continuous kNN-Skyline Queries over Moving Objects with Uncertainty
指導教授: 李強
Lee, Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 44
中文關鍵詞: 時間-空間查詢移動查詢物體k 個最近鄰居天際線點不確定維度值的移動物體道路網路
外文關鍵詞: skyline query, continuous k nearest neighbor-skyline query, continuous possible-kNN-skyline queries
相關次數: 點閱:152下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Continuous k nearest neighbor-skyline query (CkNN-SQ) 為一類重要的時間-空間查詢。
    給定一段查詢時間區段 [ts, te] 和一個移動查詢物體 q,CkNN-SQ 可取得時間區段 [ts, te] 內每個時間點,查詢物體 q 的 k 個最近鄰居天際線點 (k-nearest neighbor skyline points, kNN-SP)。
    不同於先前的研究,我們的研究致力於克服過去研究提出的假設,即每個物體為靜止不動且具有確定的維度值,並位在道路網路 (road networks) 上。
    本篇論文中,我們是針對在歐幾里得空間 (Euclidean space) 上具有不確定維度值的移動物體,且每個物體 (包含查詢物體) 的速度皆在已知範圍內變動,去處理 CkNN-SQ。
    我們稱此種查詢為 continuous possible-kNN-skyline query (CPkNN-SQ)。
    我們首先會討論物體具有不確定性所引發的困難,接著提出 CPkNN-SQ 演算法。
    CPkNN-SQ 演算法結合了名為 uncertain TPR-tree (UTPR-tree) 的資料分割索引,用來有效率地回答 CPkNN-SQ。
    大量的實驗被用來驗證所提出的方法之有效性與效能。

    Continuous k nearest neighbor-skyline query (CkNN-SQ) is an important type of spatio-temporal queries. Given a query time interval [ts, te] and a moving query object q, a CkNN-SQ is to retrieve the k-nearest neighbor skyline points (kNN-SP) of q at each time instant within [ts, te]. Different from the previous works, our work devotes to overcoming the past assumption that each object is static with certain dimensional values and located in road networks. In this paper, we focus on processing the CkNN-SQ over moving objects with uncertain dimensional values in Euclidean space and the velocity of each object (including the query object) varies within a known range. Such a query is called the continuous possible-kNN-skyline query (CPkNN-SQ). We first discuss the difficulties raised by the uncertainty of object and then propose the CPkNN-SQ algorithm operated with a data-partitioning index, called the uncertain TPR-tree (UTPR-tree), to efficiently answer the CPkNN-SQ. Comprehensive experiments are performed to demonstrate the effectiveness and the efficiency of the proposed approach.

    Contents Table of Contents iv Table of Tables vi Table of Figures vii 1 Introduction 1 2 Related Work 8 2.1 Traditional skyline queries . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 kNN-skyline queries in road networks . . . . . . . . . . . . . . . . . . . . 9 2.3 Query techniques for data objects with uncertainty . . . . . . . . . . . . 10 2.3.1 Objects with uncertain static attributes . . . . . . . . . . . . . . . 10 2.3.2 Objects with uncertain dynamic attributes . . . . . . . . . . . . . 10 3 Uncertain Distance Model 12 4 UTPR-tree 15 5 CPkNN-SQ Algorithm 18 5.1 Pruning phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1.1 Tier-1 pruning phase . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1.2 Tier-2 pruning phase . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 PkNN-SP determining phase . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 Probability-calculation phase . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 Performance Evaluation 32 6.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2 Performance of the CPkNN-SQ algorithm . . . . . . . . . . . . . . . . . 33 6.3 Precision of the CPkNN-SQ algorithm . . . . . . . . . . . . . . . . . . . 37 6.4 Number of candidates in the pruning phase . . . . . . . . . . . . . . . . . 40 7 Conclusions 41 Bibliography 42

    [1] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in 17th International Conference on Data Engineering, pp. 421–430, 2001.
    [2] K. Deng, X. Zhou, and H. T. Shen, “Multi-source skyline query processing in road networks,” in 23rd International Conference on Data Engineering, pp. 796–805, 2007.
    [3] S. M. Jang and J. S. Yoo, “Processing continuous skyline queries in road networks,” in International Symposium on Computer Science and Its Applications, pp. 353–356, 2008.
    [4] K. Mouratidis, Y. Lin, and M. L. Yiu, “Preference queries in large multi-cost transportation networks,” in International Conference on Data Engineering, pp. 533–544, 2010.
    [5] H.-P. Kriegel, M. Renz, and M. Schubert, “Route skyline queries: a multi-preference path planning approach,” in 26th IEEE International Conference on Data Engineering, pp. 261–272, 2010.
    [6] L. Zou, L. Chen, M. T. Ozsu, and D. Zhao, “Dynamic skyline queries in large graphs,” in Database Systems for Advanced Applications, pp. 62–78, 2010.
    [7] Y.-K. Huang, C.-H. Chang, and C. Lee, “Continuous distance-based skyline queries in road networks,” in Information Systems, 2012.
    [8] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, “Skyline query processing for incomplete data,” in International Conference on Data Engineering, pp. 556–565, 2008.
    [9] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” in Nineteenth International Conference on Data Ingineering, pp. 717–719, 2003.
    [10] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based skyline evaluation,” ACM Transactions on Database Systems, vol. 33, no. 4, pp. 1–45, November 2008.
    [11] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline computation,” in International Conference on Very Large Data Bases, pp. 301–310, 2001.
    [12] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: an online algorithm for skyline queries,” in Proceedings of the VLDB Conference, 2002.
    [13] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive algorithm for skyline queries,” in ACM SIGMOD, pp. 467–478, 2003.
    [14] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain data,” in Proceedings of the VLDB Conference, 2007.
    [15] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, “Skyline query processing for uncertain data,” in 19th International Conference on Information and Knowledge
    Management and Co-located Workshops, pp. 1293–1296, 2010.
    [16] Y.-K. Huang, C.-C. Chen, and C. Lee, “Continuous k-nearest neighbor query for moving objects with uncertain velocity,” in Geoinformatica, pp. 1–25, 2009.
    [17] Y.-K. Huang and C. Lee, “Efficient evaluation of continuous spatio-temporal queries on moving objects with uncertain velocity,” in Geoinformatica, pp. 163–200, 2010.
    [18] P. Fan, G. Li, L. Yuan, and Y. Li, “Vague continuous k-nearest neighbor queries over moving objects with uncertain velocity in road networks,” in Information Systems, vol. 37, pp. 13–32, 2012.
    [19] Z. Huang, H. Lu, B. C. Ooi, and A. K. Tung, “Continuous skyline queries for moving objects,” in IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 12, pp. 1645–1658, December 2006.
    [20] B. Zheng, K. C. K. Lee, and W.-C. Lee, “Location-dependent skyline query,” in IEEE International Conference on Mobile Data Management, pp. 148–155, 2008.
    [21] M.-W. Lee and S. won Hwang, “Continuous skylining on volatile moving data,” in 25th IEEE International Conference on Data Engineering, pp. 1568–1575, 2009.
    [22] S. Simonas, J. C. S, L. S. T, and L. M. A, “Indexing the positions of continuously moving objects,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 331–342, 2000.

    無法下載圖示 校內:2017-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE