| 研究生: |
胡倬綸 Hu, Tso-Lun |
|---|---|
| 論文名稱: |
金奈米粒子綴飾之還原氧化石墨烯的綠色合成及其在電化學生物感測上的應用 Green synthesis of Au nanoparticles–decorated reduced graphene oxide and its application in electrochemical biosensor |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 石墨烯 、葡萄糖 、半胱胺酸 、電化學生物感測器 、綠色合成 |
| 外文關鍵詞: | green synthesis, glucose, cysteine, biosensor, graphene |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以微波輔助綠色合成法製備金奈米粒子綴飾之還原氧化石 墨烯(Au/rGO)奈米複合物,並進一步沈積於網版印刷碳電極(SPCE)上製 得 Au/rGO/SPCE,用於葡萄糖與半胱胺酸的電化學感測。使用左旋精胺 酸作為還原劑,可在微波照射下將四氯金酸與氧化石墨烯同時還原形成 精胺酸被覆之 Au/rGO 奈米複合物。藉由穿透式電子顯微鏡,可觀察到 平均粒徑約 16.2±2.4 nm 的金奈米粒子均勻地綴飾在 rGO 的表面。利用 Au/rGO/SPCE 在 0.1 M 氫氧化鈉溶液中電化學偵測葡萄糖,計時安培法 顯示葡萄糖濃度有兩段線性範圍:0.1 ~ 0.9 mM 及 0.9 ~ 9 mM,其偵測 極限為 0.01 mM。而利用 Au/rGO/SPCE 在 0.1 M、pH 7.4 的磷酸鹽溶液 中偵測半胱胺酸,發現抗壞血酸及尿酸所引起的干擾率小於 18%,顯示 Au/rGO/SPCE 對半胱胺酸的偵測具有良好的選擇性。計時安培法顯示半 胱胺酸濃度有兩段線性範圍:0.5 ~ 4 μM 及 4 ~ 38 μM,其偵測極限為 0.05 μM。更者,藉由恆電位法所進行的動力學探討可得其速率常數(kcat) 及擴散係數(D)分別為 2.34×104 L/mol‧s 與 2.9×10-6 cm2/s。
In this study, Au nanoparticles-decorated reduced graphene oxide (Au/rGO) nanocomposite was prepared via a microwave-assisted green synthesis method, and further deposited on the screen printed carbon electrode (SPCE) to obtain the Au/rGO/SPCE for the electrochemical detection of glucose and L-cysteine. By using L-arginine as the reducing agent, chloroauric acid and graphene oxide were simultaneously reduced to form the arginine-capped Au/rGO nanocomposite under microwave irradiation. By transmission electron microscopy (TEM), it was observed that Au nanoparticles with a mean diameter of 16.2±2.4 nm were uniformly decorated on the surface of rGO. For the electrochemical detection of glucose in 0.1 M NaOH by the Au/rGO/SPCE, the amperometry result presented two linear ranges: 0.1 ~ 0.9 mM and 0.9 ~ 9 mM. The limit of detection (LOD) was 0.01 mM. For the L-cysteine detection in 0.1 M phosphate solution at pH 7.4, it was found that the interference response owing to the presence of ascorbic acid (AA) and uric acid (UA) was less than 18%, revealing the good selectivity of Au/rGO/SPCE for the detection of L-cysteine. The amperometry result indicated two linear ranges: 0.5 ~ 4 μM and 4 ~ 38 μM. The LOD was 0.05 μM. Furthermore, from the kinetic study by chronoamperometry, the rate constant (kobs) and diffusion coefficient (D) were obtained as 2.34×10-4 L/mol‧s and 2.9×10-6 cm2/s, respectively.
1. B. R. Eggins, Electrochemical sensors and biosensors, John Wiley & Sons, 2002.
2. K. E. Toghill and R. G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation, Int. J. Electrochem. Sci. 5, 1246-1301, 2010.
3. A. M. O. Brett and C. M. A. Brett, Electrochemistry: principles, methods, and applications, Oxford Science, 1993.
4. Z. Q. Zhu, J. Z. Zhu, Z. S. Lai, X. M. Guo, X. Q. Wu, G. X. Zhang, Z. R. Zhang, Y. T. Wang and Z. Y. Chen, Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on prussian blue layer, Sensors, 2, 127-136, 2002.
5. M. A. Cooper, Optical biosensors in drug discovery, Nat. Rev. Drug Discov. 1, 515-528, 2002.
6. M. Hartmann, M. H. Meyer, H. J. Krause, G. Blankenstein, B. Mueller-Chorus, J. Oster, P. Miethe and M. Keusgen, CRP determination based on a novel magnetic biosensor, Biosens. Bioelectron. 22, 973-979, 2007.
7. P. Pivarnik, S. Babacan, S. Letcher and A. G. Rand, Evaluation of antibody immobilization methods for piezoelectric biosensor application, Biosens. Bioelectron. 15, 615-621, 2000.
8. H. F. Yang, C. S. Shan, J. F. Song, D. X. Han, A. Ivaska and L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene, Anal. Chem. 81, 2378-2382, 2009.
9. M. E. Warchal, M. J. Sherwood and S. T. Chen, A new reagent strip (VisidexTM) for determination of glucose in whole blood, Clin. Chem. 3, 438-446, 1983.
10. V.K. Ginsberg, R.F. Zuk, T.Houts, J.Rabbie, H.Merrick, E.F.Ullman, M.M.Fischer, C.C.Sizto, S.N.Stiso and D.J.Litman, Enzyme immunochromatography-a quantitative immunoassayrequinng no instrumentation, Clin. Chem. 7, 1144-1150, 1985.
11. A. P. Magdalena, Glucose determination by biosensors, Biochem. Anal. Biochem. 1, 1-2, 2012.
12. J. Y. Lucisano, J. C. Armour, B. D. McKean and D. A. Gough, Application of chronic intravascular blood glucose sensor in dogs, Diabetes, 39, 1519-1526, 1990.
13. F. Lu and J. Wang, Oxygen-rich oxidase nnzyme electrodes for operation in oxygen-Free solutions, J. Am. Chem. Soc. 120, 1048-1050, 1998.
14. 陳詩喆, 電流式葡萄糖生物感測器之製備及測試, 國立台灣科技大學化學工程研究所碩士論文, 2008.
15. 呂慧菁, 電化學葡萄糖感測試片之研發, 國立中興大學化學研究所碩士論文, 2003.
16. X. P. He, G. F. Wang, L. L. Wang, A. X. Gu, Y. Huang, B. Fang, B. Y. Geng and X. J. Zhang, Non-enzymatic electrochemical sensing of glucose, Microchim. Acta, 180, 161-186, 2012.
17. X. W. Meng, F. Q. Tang, D. Chen, J. G. Ran and C. Q. Zheng, Glucose biosensor enhanced by nanoparticles, Science in China Series B: Chemistry, 43, 268-274, 2000.
18. J. Wang and J. Liu, A novel improved design for the first-generation glucose biosensor, Food Technol. Biotechnol. 39, 55-58, 2001.
19. B. D. Malhotra and A. Chaubey, Mediated biosensors, Biosens. Bioelectron. 17, 441-456, 2002.
20. S. Kojima, S. Tsujimura, K. Kano, T. Ikeda, M. Sato, H. Sanada and H. Omura, Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor, Biosci. Biotechnol. Biochem. 70, 654-659, 2006.
21. A. Heller and Y. Degani, Electrical communication between redox centers of glucose oxidase and electrodes via electrostati- cally and covalently bound redox polymers, J. Am. Chem. Soc. 6, 2357-2358, 1989.
22. Y. Qu and J. Wu, Mediator-free amperometric determination of glucose based on direct electron transfer between glucose oxidase and an oxidized boron-doped diamond electrode, Anal. Bioanal. Chem. 385, 1330-1335, 2006.
23. C. M. Li, S. J. Bao, J. F. Zang, X. Q. Cui, Y. Qiao and J. Guo,, New nanostructured TiO2 for direct electrochemistry and glucose sensor applications, Adv. Funct. Mater. 18, 591-599, 2008.
24. L. C. Chen, J. Y. Wang and K. C. Ho, Synthesis of redox polymer nanobeads and nanocomposites for glucose biosensors, ACS Appl. Mater. Interfaces, 5, 7852-7861, 2013.
25. S. Liu, Y. W. Zhang, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang and X. P. Sun, One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing, RSC Adv. 2, 538-545, 2012.
26. Y. Li, Y. Chen, D. Sun, D. B. Tian, J. R. Zhang and J. J. Zhu, Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing, J. Mater. Chem. 21, 7604-7612, 2011.
27. Y. J. Huang, S. Peng, T. H. Wang and J. M. Ma, Nanomaterials for electrochemical non-enzymatic glucose biosensors, RSC Adv. 3, 3487-3502, 2013.
28. H. Y. Zhang, J. Luo, S. S. Jiang, J. Q. Jiang and X. Y. Liu, Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene, Microchim. Acta, 177, 485-490, 2012.
29. C. Y. He, J. H. Lin, Y. Zhao and S. S. Zhang, One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor, Sens. Actuator B-Chem. 137, 768-773, 2009.
30. B. R. Liu, D. Y. Zhai, Y. Shi, L. J. Pan, Y. Q. Wang, W. B. Li, R. Zhang and G. H. Yu, Highly sensitive glucose sensor based on Pt nanoparticle: polyaniline hydrogel heterostructures, ACS Nano, 7, 3540-3546, 2013.
31. R. M. Abdel Hameed, Amperometric glucose sensor based on nickel nanoparticles/carbon Vulcan XC-72R, Biosens. Bioelectron. 47, 248-257, 2013.
32. F. Y. Huang, Y. C. Li, J. Chen, T. Mo, S. X. Li, F. Wang, S. Q. Feng and Y. J. Li, A high performance enzyme-free glucose sensor based on the graphene-CuO nanocomposites, Int. J. Electrochem. Sci. 8, 6332-6342, 2013.
33. T. Jewison, A. C. Guo, M. Wilson, Y. Liu, C. Knox, Y. Djoumbou, P. Lo, R. Mandal, R. Krishnamurthy and D. S. Wishart, ECMDB: The E. coli Metabolome Database, Nucleic Acids Res. 41, 625-630, 2013.
34. H. Teymourian, S. M. Majd and A. Salimi, Fabrication of an electrochemical L-cysteine sensor based on graphene nanosheets decorated manganese oxide nanocomposite modified glassy carbon electrode, Electroanal. 25, 2201-2210, 2013.
35. N. S. Lawrence, P. C. White, J. Davis and R. G. Compton, Electrochemical Determination of Thiols: A Perspective, Electroanal. 14, 89-98, 2002.
36. M. L. Hitchman, T. R. Ralph, J. P. Millington and F. C. Walsh, The electrochemistry of L-cystine and L-cysteine Part 1: Thermodynamic and kinetic studies, J. Electroanal. Chem. 375, 1-15, 1994.
37. H. Karimi-Maleh, S. Kazemi, R. Hosseinzadeh and F. Faraji, Selective and sensitive voltammetric sensor based on modified multiwall carbon nanotubes paste electrode for simultaneous determination of l-cysteine and folic acid, Ionics, 19, 933-940, 2012.
38. L. Y. Niu, Y. S. Guan, Y. Z. Chen, L. Z. Wu, C. H. Tung and Q. Z. Yang, A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging, RSC Adv. 4, 8360-64, 2014.
39. X. Song, J. Zhu, L. Gao, Z. Li, Z. Liu, S. Ding, S. Zou and Y. He, A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters, Biosens. Bioelectron. 53, 71-75, 2014.
40. S. A. V. Jannuzzi, C. C. Corrêa, M. Santhiago, R. A. Timm, A. L. B. Formiga and L. T. Kubota, Modified electrode using multi-walled carbon nanotubes and a metallopolymer for amperometric detection of l-cysteine, Electrochim. Acta, 113, 332-339, 2013.
41. M.G.A da Silva, F. de A. dos S. Silva, P. R. Lima, M. R. Meneghetti, L. T. Kubota and M. O. Goulart, A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods, Biosens. Bioelectron. 50, 202-209, 2013.
42. Q. He, S. Wu, C. Tan, Y. Wang and H. Zhang, Graphene-based electrochemical sensors, Small, 9, 1160-1172, 2013.
43. A. K. Geim, Graphene: status and prospects, Science, 324, 1530-1534, 2009.
44. 蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊, 33, 163-167, 2011.
45. H. Huang, M. Lin, Y. Liu, C. Liang, S. Fei, X. Chen and C. Ni, High loading of uniformly dispersed Pt nanoparticles on polydopamine coated carbon nanotubes and its application in simultaneous determination of dopamine and uric acid, Nanotechnology, 24, 1-10, 2013.
46. F. Sharif and M. M. Gudarzi, Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide, Express Polym. Lett. 6, 1017-1031, 2012.
47. G. Lu, K. Chen, J. Chang, S. Mao, K. Yu, S. Cui and J. Chen, Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles, Anal. Chem. 84, 4057-4062, 2012.
48. S. Y. Jin, P. Yang, Q. Z. Xu and S. H. Yu, Decorating PtCo bimetallic alloy nanoparticles on graphene as sensors for glucose detection by catalyzing luminol chemiluminescence, Small, 9, 199-204, 2013.
49. A. P. Periasamy, V. Mani and S. M. Chen, Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode, Electrochem. Commun. 17, 75-78, 2012.
50. L. Wang, S. Liu, J. Tian, Y. Luo, X. Zhang and X. Sun, Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection, J. Colloid Interface Sci. 363, 615-619, 2011.
51. H. B. Zhang, H. L. Ma, Q. H. Hu, W. J. Li, Z. G. Jiang, Z. Z. Yu and A. Dasari, Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites, ACS Appl. Mater. 4, 1948-1953, 2012.
52. W. A. Yee, L. P. Yang, S. L. Phua, J. H. Kong, H. Ding, J. W. Cheah and X. H. Lu, A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites, RSC Adv. 2, 2208-2210, 2012.
53. L. J. Cote, J. X. Huang, J. Y. Kim, V. C. Tung, J. Y. Luo and F. Kim, 舊材料的新見解-氧化石墨烯之界面活性, 工業材料雜誌, 291, 123-134, 2011.
54. O. V. Shagalina and A. V. Melnik, History of nanotechnology, Siberian Federal University. (http://elib.sfu-kras.ru/bitstream/2311/5037/1/s22_024.pdf)
55. D. Astruc and M. C. Daniel, Nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104, 293-346, 2004.
56. 賴怡穎, 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用, 國立中央大學化學工程與材料工程研究所碩士論文, 2008.
57. P. Mulvaney and M. Giersig, Preparation of ordered colloid monolayers by electrophoretic deposition, Langmuir, 9, 3408-3413, 1993.
58. S. Kumar and S. R. Perala, On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method, Langmuir, 29, 9863-9873, 2013.
59. L. Gearheart, N. R. Jana and C. J. Murphy, Evidence for seed-mediated nucleation in the chemical reduction of gold Salts to gold nanoparticles, Chem. Mater. 13, 2313-2322, 2001.
60. S. Kumar, S. K. Sivaraman and V. Santhanam, Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid, J. Colloid Interface Sci. 361, 543-547, 2011.
61. D. G. Walter, K. R. Brown and M. J. Natan, Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape, Chem. Mater. 12, 306, 2000.
62. G. Garg and A. Tomar, Short review on application of gold nanoparticles, Global J. Pharm. 7, 34-38, 2013.
63. T. Pal and S. K. Ghosh, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications, Chem. Rev. 107, 4797-4862, 2007.
64. L. Cornu, S. Hebié, T. W. Napporn, J. Rousseau and B. K. Kokoh, Insight on the surface structure effect of free gold nanorods on glucose electrooxidation, J. Phys. Chem. C. 117, 9872-9880, 2013.
65. M. A. El-Sayed and X. H. Huang, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res. 1, 13-28, 2010.
66. S. S. Agasti, K. Saha, C. Kim, X. Li and V. M. Rotello, Gold nanoparticles in chemical and biological sensing, Chem. Rev. 112, 2739-2779, 2012.
67. D. H. Deng, S. J. Li, Q. Shi and S. R. Liu, Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine, Microchim. Acta, 177, 325-331, 2012.
68. X. L. Zhang and F. Cui, Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites, J. Electroanal. Chem. 669, 35-41, 2012.
69. R. Yuan, Y. Wang, Y. Chai, Y. Yuan and L. Bai, In situ enzymatic silver enhancement based on functionalized graphene oxide and layer-by-layer assembled gold nanoparticles for ultrasensitive detection of thrombin, Biosens. Bioelectron. 38, 50-54, 2012.
70. Y. Liu, P. Luo, Y. Xia, H. Xu and G. Xie, Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus, Biosens. Bioelectron. 54, 217-221, 2014.
71. C. C. Li, D. P. Xie, S. G. Li, H. L. Qi, D. Xue, Q. Gao and C. X. Zhang, Click chemistry-assisted self-assembly of DNA aptamer on gold nanoparticles-modified screen-printed carbon electrodes for label-free electrochemical aptasensor, Sens. Actuator B-Chem. 192, 558-564, 2014.
72. SensiQ Technology Inc., SPR Principles, SensiQ Technology Inc. 2014. (http://www.sensiqtech.com/technology/spr-principles/)
73. M. Righini, M. L. Juan and R. Quidant, Plasmon nano-optical tweezers, Nature Photon. 5, 349-356, 2011.
74. I. Osório, P. Quaresma, G. Dória, P. A. Carvalho, A. Pereira, J. Langer, J. P. Araújo, I . Pastoriza-Santos, L. M. Liz-Marzán, R. Franco, P. V. Baptista and E. Pereira, Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection, RSC Adv. 4, 3659-3667, 2014.
75. D. Q. Song, H. Zhang, S. Gao, H. Q. Zhang, J. Zhang and Y. Sun, Enhanced wavelength modulation SPR biosensor based on gold nanorods for immunoglobulin detection, Talanta, 115, 857-862, 2013.
76. D. L. Granger, J. B. Weinberg, D. S. Pisetsky, M. F. Seldin, M. A. Misukonis, N. Mason, A. M. Pippen, P. Ruiz, E. R. Wood and G. S. Gilkeson, The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lprMice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine, J. Exp. Med. 179, 651-660, 1994.
77. G. J. Blanchard and J. D. S. Newman, Formation of gold nanoparticles using amine reducing agents, Langmuir, 22, 5882-5887, 2006.
78. D. D. Rees, R. M. J. Palmer, D. S. Ashton and S. Moncada, L-arginine is the physiological precursor for the formation of nitric oxide in endorthelium-dependent relaxation, Biochem. Biophys. Res. Commun. 153, 1251-1256, 1988.
79. L. T. Wang, Y. Zhang, D. B. Lu, X. Z. Shi, C. M. Wang and X. J. Duan, Sensitive determination of bisphenol A base on arginine functionalized nanocomposite graphene film, Electrochim. Acta, 80, 77-83, 2012.
80. S. Mandal, P. R. Selvakannan, S. Phadtare, A. Gole, R. Pasricha, S. D. Adyanthaya and M. Sastry, Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid, J. Colloid Interface Sci. 269, 97-102, 2004.
81. P. L.Feldman, H. M. Abu-Soud, P. Clark and D. J. Stuehr, Electron transfer in the nitric-oxide synthases, J. Biol. Chem. 269, 32318-32326, 1994.
82. J. M. Booth, S. K. Bhargava, S. Agrawal, P. Coloe and G. Kar, Gold nanoparticle formation during bromoaurate reduction by amino acids, Langmuir, 21, 5949-5956, 2005.
83. T. K. Huang, T. M. Cheng, H. K. Lin, S. P. Tung, Y. L. Chen, C. Y. Lee and H. T. Chiu, (110)-exposed gold nanocoral electrode as low onset potential selective glucose sensor, ACS Appl. Mater. Interfaces, 2, 2773-2780, 2010.
84. C. H. Chung and S. Cherevko, Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection, Sens. Actuator B-Chem. 142, 216-223, 2009.
85. J. F. Xia, Z. H. Wang, X. L. Qiang, Y. Z. Xia, G. Y. Shi, F. F. Zhang, G. T. Han, L. H. Xia and J. Tang, Polymer-assisted in situ growth of copper nanoparticles on graphene surface for non-enzymatic electrochemical sensing of glucose, Int. J. Electrochem. Sci. 8, 6941-6950, 2013.
86. F. Y. Huang, Y. C. Li, J. Chen, T. Mo, S. X. Li, F. Wang, S. Q. Feng and Y. J. Li, A high performance enzyme-free Glucose sensor based on the graphene-CuO nanocomposites, Int. J. Electrochem. Sci. 8, 6332-6342, 2013.
87. J. Y. Park and M. F. Hossain, Palladium nanoparticles on electrochemically reduced chemically modified graphene oxide for non-enzymatic bimolecular sensing, RSC Adv. 3, 16109, 2013.
88. R. Liu, M. Liu and W. Chen, Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability, Biosens. Bioelectron. 45, 206-212, 2013.
89. C. H. Wang, J. W. Wu, Y. C. Wang and J. K. Chang, Ionic-liquid-enhanced glucose sensing ability of non-enzymatic Au/graphene electrodes fabricated using supercritical CO(2) fluid, Biosens, Bioelectron. 46, 30-36, 2013.
90. L. R. Faulkner and A. J. Bard, Electrochemical Methods: Fundamental and Applications, John Wiley & Sons, 2001.
91. D. K. Gosser Jr., Cyclic Voltammetry Simulation and Analysis of Reaction Mechanisms, Wiley-VCH, 1993.
92. P. R. Lima, M. Santhiago, W. de J. R. Santos and L. T. Kubota, An amperometric sensor for l-cysteine based on nanostructured platform modified with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB), Sens. Actuator B-Chem. 146, 213-220, 2010.
93. J. B. Song, F. Xiao, H. C. Gao, X. L. Zan, R. Xu and H. W. Duan, Coating graphene paper with 2D-assembly of electrocatalytic nanoparticles: a modular approach toward high-performance flexible electrodes, ACS Nano, 6, 100-110, 2012.
94. A. P. Zhao, Y. M. Liu, M. Zhao, W. J. Dong, T. Y. Zhao, J. J. Wang and W. H. Tang, Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor, Sens. Actuator B-Chem. 190, 707-714, 2014.
95. Y. H. Zhou, G. H. Yang, J. J. Wu, J. T. Cao, L. L. Li, H. Y. Liu and J. J. Zhu, Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide, RSC Adv. 3, 22597-22604, 2013.
96. N. Nunes, P. Parpot and A. P. Bettencourt, Electrocatalytic oxidation of monosaccharides on gold electrode in alkaline medium: Structure–reactivity relationship, J. Electroanal. Chem. 596, 65-73, 2006.
97. S. G. Pires, P. Parpot and A. P. Bettencourt, Electrocatalytic oxidation of d-galactose in alkaline medium, J. Electroanal. Chem. 566, 401-408, 2004.
98. L. H. Huang, Z. N. Liu, L. L. Zhang, H. Y. Ma and Y. Ding, Electrocatalytic oxidation of d-glucose at nanoporous Au and Au–Ag alloy electrodes in alkaline aqueous solutions, Electrochim. Acta, 54, 7286-7293, 2009.
99. K. Farhadi, M. Ahmadi, M. Forough, A. Niko, K .A. Dilmaghani and L. Afrasiabi, Non-enzymatic electrochemical glucose biosensor based on Ag-nanoparticles and 3-amino,5-mercapto, 1-2-4 triazole modified carbon paste electrode, 4th International Conference on Nanostructures (ICNS4), 962-964, 2012.
100. Y. Q. Guo, Y. F. Liu, C. X. Cui, Z. M. Zheng, L. X. Li and M. Chang, Protein-directed In situ synthesis of gold nanoparticles on reduced graphene oxide modified electrode for nonenzymatic glucose sensing, Electroanal. 24, 2348-2353, 2012.
101. H. Y. Fu, X. Y. Lang, C. Hou, G. F. Han, P. Yang, Y. B. Liu and Q. Jiang, Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors, Nat. Commun. 4, 2169-2176, 2013.
102. M. Yan, S. Ge, J. Lu, M. Zhang, F. Yu, J. Yu, X. Song and S. Yu, Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis, Biosens. Bioelectron. 31, 49-54, 2012.
103. R. Ahmadi, A. Safavi and F. A. Mahyari, Simultaneous electrochemical determination of L-cysteine and L-cysteine disulfide at carbon ionic liquid electrode, Amino Acids, 46, 1079-1085, 2014.
104. X. Lan, S. Wu, F. Huang, Z. Luo, H. Ju, C. Meng and C. Duan, Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon, Biosens. Bioelectron. 32, 293-296, 2012.
105. R. Ojani, J. B. Raoof and H. Beitollahi, L-cysteine voltammetry at a carbon paste electrode bulk-modified with ferrocenedicarboxylic acid, Electroanal. 19, 1822-1830, 2007.
106. P. Rahimi, M. M. Ardakani, P. E. Karami, H. R. Zare and H. Naeimi, Electrocatalytic oxidation of cysteine by quinizarine at glassy carbon electrode, Sens. Actuator B-Chem. 123, 763-768, 2007.
校內:2019-07-14公開