簡易檢索 / 詳目顯示

研究生: 柯黛玉
Kartchner, Danika
論文名稱: 可重寫光子油墨在液晶彈性體致動器上的應用與特性研究
Fabrication and Characterization of Rewritable Photonic Paint on Liquid Crystal Actuator Surface
指導教授: 苗君易
Miau, Jiun-Jih
劉俊彥
Liu, Chun-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 113
中文關鍵詞: 膽固醇液晶液晶彈性體人工智慧型致動器液晶染劑可逆致動器熱感應液晶
外文關鍵詞: Cholesteric liquid crystal, Liquid crystal elastomer, Artificially intelligent actuator, Thermal responsive liquid crystal, Reversible Actuator, liquid crystal painting
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,液晶因其在感測器和顯示技術中的成功應用而引起了廣泛關注。此外,智能材料在軟機器人、人工肌肉和微流體傳輸領域也引起了極大的興趣。為了模仿自然界中的變色特性,開發了熱致變色膽固醇液晶(CLCs),覆蓋可見光譜。此外,還開發了具有形狀記憶的熱調變向列液晶彈性體(LCEs),作為膽固醇液晶的支架,這些液晶類型的組合產生了變形和變色的溫度感測器。對基本原型進行了各種調整,包括添加E7、改變LCEs的厚度和比例,以及改變CLC膽固醇手性掺雜劑的百分比。通過差示掃描量熱法(DSC)、偏光光學顯微鏡(POM)、掃描電子顯微鏡(SEM)和拉伸強度測試測量了熱性和拓撲性能。獨立的CLCs和LCEs以及結合的LCE和CLC網絡展示了可逆的熱性能。當以85°C從25°C加熱時,CLC表現出92納米波長的周期性變化,而LCE在同樣溫度下表現出100倍的可逆180度彎曲。此外,可以將具有不同相變閾值的雙層甚至三層CLCs結合起來,在加熱時顯示圖像,如眼睛或龍形圖案。通過改變E7的百分比,層次可以具有不同的特性。然而,如果CLC未持續使用,E7會在層間擴散,導致整體呈現紅色變化。這些致動器可以應用於溫度感測行業,以及墨水和顯示行業。

    In recent years, liquid crystals have garnered attention for their successful utilization in sensor and display technologies. Furthermore, smart materials have garnered interest in the fields of soft robotics, artificial muscles, and microfluidic transport. To mimic the color-shifting properties found in nature, thermochromic cholesteric liquid crystals (CLCs) were developed across the visible spectrum. In addition, thermotunable nematic liquid crystal elastomers (LCEs) with shape memory were developed as a scaffold for the cholesteric liquid crystals, with the combination of liquid crystal types yielding a shape-changing and color-changing temperature sensor. Various adjustments to the base prototype were tested, including adding E7, changing the thickness and proportionality of the LCEs, and changing the percentage of the CLC chiral dopant. Thermal and topological properties were measured with differential scanning calorimetry (DSC), polarized optical microscopy (POM), scanning electron microscopy (SEM), and tensile strength tests. The separate CLCs and LCEs and combined LCE and CLC network demonstrate reversible thermal properties. The CLC demonstrates a 92 nm wavelength cyclical shift when heated at 85oC from 25oC and the LCE demonstrates a 100X reversible 180o bend when heated to the same temperature. Moreover, bilayer or even trilayer CLCs with different phase change thresholds can be combined to reveal images upon heating, such as an eye or a dragon. By changing the E7 percentage, layers can have different properties. However, if the CLC is not continuously in use, the E7 diffuses between the layers and results in an overall red color shift. These actuators can be applied to temperature sensor industries as well as ink and display industries.

    Abstract II 中文摘要 IV Acknowledgements V Table of Contents VII List of Schema X List of Tables XI List of Figures XII 1. Introduction 1 1.1 Preface 1 1.2 Research Motivation 3 1.3 Nomenclature 4 1.3.1 Acronyms 4 1.3.2 Variables 4 2. Literature Review 6 2.1 Introduction of Liquid Crystals 6 2.1.1 Thermotropic Liquid Crystals 8 2.1.2 Lyotropic Liquid Crystals 17 2.2 Anisotropic Properties of Liquid Crystals 18 2.2.1 Birefringence 19 2.3 Structural Colors 20 2.3.1 Structural Color Alignment 22 2.3.2 Cholesteric Liquid Crystal Inks 24 2.3.3 Cholesteric Liquid Crystal Sensors 25 2.4 Introduction of Liquid Crystalline Actuators 26 2.4.1 Thermal Driven LC Actuators 27 2.4.2 Humidity/Solvent Driven LC Actuators 28 2.4.3 Light Driven LC Actuators 30 3. Experimental Section 32 3.1 Materials and Instruments 32 3.2 Experimental Process 34 3.2.1 Fabrication of Alignment Substrates 34 3.2.2 Fabrication of CLC Films 35 3.2.3 Thermal Properties of CLC Films 40 3.2.4 Optical Analysis of CLC Films 41 3.2.5 Fabrication of Liquid Crystal Elastomers (LCEs) 41 3.2.6 Mechanical properties of CLCs and LCEs 45 4. Results and Discussion 46 4.1 Overview 46 4.2 Characterization of CLCs on Glass Substrate 46 4.2.1 CLC High Temperature Sensor 46 4.2.2 CLC Low Temperature Sensor 47 4.2.3 Color Palette of CLCs on Glass 50 4.2.4 Multilayer CLCs 53 4.2.5 Erasable CLC Photonic Ink 56 4.3 Characterization of Liquid Crystal Elastomeric Films (LCEs) 58 4.3.1 Thermal Actuation of LCEs 58 4.3.2 LCE Shape Memory Characterization 62 4.4 Photonic Paint on Liquid Crystal Elastomer Substrate 63 4.4.1 CLC Paint on LCE Substrate 63 4.4.2 CLC Color Palette on LCE Substrate 65 4.4.3 Bilayer CLC Paint on LCE 66 4.6 Mechanical Properties of CLCs and LCEs 70 4.7 Substrate and Methodology Comparison 71 4.8 Potential Additional Applications 74 4.8.1 UV Sensor for Medical Sanitation 74 4.8.2 Oven Ventilation 75 4.8.3 CLC Inkjet Printing 77 4.8.4 Case Study: Phoenix Heatwave Phone Cover Suggestion Sensor 80 4.8.4.1 Phoenix Temperature Statistics and Background 80 4.8.4.2 Heat Advisory Phone Case 82 5. Conclusions 86 6. References 87 7. Supplementary 90 7.1 LCE Additional Analysis 90 7.2 CLC Additional Analysis 92

    [1] W.S. Kim, J.H. Im, H. Kim, J.K. Choi, Y. Choi, Y.K. Kim, Liquid Crystalline Systems from Nature and Interaction of Living Organisms with Liquid Crystals, Advanced Materials, 35 (2023).
    [2] M. Mitov, Multifunctional reflectors in the carapace of scarab beetles, HAL Open Science, XXII (2018).
    [3] R.J.H. van Raak, D.J. Broer, Biomimetic Liquid Crystal Cilia and Flagella, Polymers, 14 (2022).
    [4] W.J. Chung, J.W. Oh, K. Kwak, B.Y. Lee, J. Meyer, E. Wang, A. Hexemer, S.W. Lee, Biomimetic self-templating supramolecular structures, Nature, 478 (2011) 364-368.
    [5] H. Shahsavan, S.M. Salili, A. Jákli, B.X. Zhao, Thermally Active Liquid Crystal Network Gripper Mimicking the Self-Peeling of Gecko Toe Pads, Advanced Materials, 29 (2017).
    [6] M. Mitov, Liquid-Crystal Science from 1888 to 1922: Building a Revolution, Chemphyschem, 15 (2014) 1245-1250.
    [7] P. Zhang, L.T. de Haan, M.G. Debije, A. Schenning, Liquid crystal-based structural color actuators, Light-Science & Applications, 11 (2022).
    [8] I. Dierking, S. Al-Zangana, Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials, Nanomaterials, 7 (2017).
    [9] Y.H. Kim, D.K. Yoon, H.S. Jeong, O.D. Lavrentovich, H.T. Jung, Smectic Liquid Crystal Defects for Self-Assembling of Building Blocks and Their Lithographic Applications, Advanced Functional Materials, 21 (2011) 610-627.
    [10] J. Pollard, G. Posnjak, S. Čopar, I. Muševič, G.P. Alexander, Point Defects, Topological Chirality, and Singularity Theory in Cholesteric Liquid-Crystal Droplets, Physical Review X, 9 (2019) 021004.
    [11] H.S. Yun, Z.C. Meijs, G. Park, Y.T. Fu, L. Isa, D.K. Yoon, Controlling liquid crystal boojum defects on fixed microparticle arrays via capillarity-assisted particles assembly, Journal of Colloid and Interface Science, 645 (2023) 115-121.
    [12] S. Alama, L. Bronsard, D. Golovaty, X. Lamy, Saturn ring defect around a spherical particle immersed in a nematic liquid crystal, Calculus of Variations and Partial Differential Equations, 60 (2021).
    [13] D. Andrienko, Introduction to liquid crystals, Journal of Molecular Liquids, 267 (2018) 520-541.
    [14] W.F. Brinkman, P.E. Cladis, DEFECTS IN LIQUID-CRYSTALS, Physics Today, 35 (1982) 48-54.
    [15] R. Khalil Sarbaz, M. Zakerhamidi, B. Rezaei, A. Ranjkesh, Effect of different surface alignment layers and temperature changes on bandwidth of Bragg reflection in chiral nematic liquid crystal, Physica Scripta, 99 (2024) 075001.
    [16] M.K. Singh, A. Singh, Chapter 8 - Overall orientation of textile fibers by sonic modulus and birefringence, in: M.K. Singh, A. Singh (Eds.) Characterization of Polymers and Fibres, Woodhead Publishing, 2022, pp. 187-200.
    [17] J. Choi, Y. Choi, J.-H. Lee, M.C. Kim, S. Park, K. Hyun, K.M. Lee, T.-H. Yoon, S.-k. Ahn, Direct-Ink-Written Cholesteric Liquid Crystal Elastomer with Programmable Mechanochromic Response, Advanced Functional Materials, 34 (2024) 2310658.
    [18] M. Chountoulesi, S. Pispas, I.K. Tseti, C. Demetzos, Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms, Pharmaceuticals, 15 (2022).
    [19] Y. Barenholz, Doxil® - The first FDA-approved nano-drug: Lessons learned, Journal of Controlled Release, 160 (2012) 117-134.
    [20] S. Urandur, V.T. Banala, R.P. Shukla, S. Gautam, D. Marwaha, N. Rai, M. Sharma, S. Sharma, P. Ramarao, P.R. Mishra, Theranostic lyotropic liquid crystalline nanostructures for selective breast cancer imaging and therapy, Acta Biomaterialia, 113 (2020) 522-540.
    [21] R. Li, S.L. Zhang, R.F. Zhang, Recent progress in artificial structural colors and their applications in fibers and textiles, Chemistrymethods, 3 (2023).
    [22] J. Zi, X.D. Yu, Y.Z. Li, X.H. Hu, C. Xu, X.J. Wang, X.H. Liu, R.T. Fu, Coloration strategies in peacock feathers, Proceedings of the National Academy of Sciences of the United States of America, 100 (2003) 12576-12578.
    [23] H. Fudouzi, Tunable structural color in organisms and photonic materials for design of bioinspired materials, Science and Technology of Advanced Materials, 12 (2011).
    [24] K.H. Kim, J.K. Song, Technical evolution of liquid crystal displays, Npg Asia Materials, 1 (2009) 29-36.
    [25] Z. Zhang, C. Wang, Q. Wang, Y. Zhao, L. Shang, Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration, Proceedings of the National Academy of Sciences, 119 (2022) e2204113119.
    [26] M.T. Brannum, A.M. Steele, M.C. Venetos, L.T.J. Korley, G.E. Wnek, T.J. White, Light Control with Liquid Crystalline Elastomers, Advanced Optical Materials, 7 (2019) 1801683.
    [27] P. Zhang, L.T. de Haan, M.G. Debije, A.P.H.J. Schenning, Liquid crystal-based structural color actuators, Light: Science & Applications, 11 (2022) 248.
    [28] J.H. Lee, J. Bae, J.H. Hwang, M.Y. Choi, Y.S. Kim, S. Park, J.H. Na, D.G. Kim, S.K. Ahn, Robust and Reprocessable Artificial Muscles Based on Liquid Crystal Elastomers with Dynamic Thiourea Bonds, Advanced Functional Materials, 32 (2022).
    [29] X.W. Song, W.T. Zhang, H.R. Liu, L.M. Zhao, Q. Chen, H.M. Tian, 3D printing of liquid crystal elastomers-based actuator for an inchworm-inspired crawling soft robot, FRONTIERS IN ROBOTICS AND AI, 9 (2022).
    [30] Y. Li, C. Luo, K. Yu, X. Wang, Remotely controlled, reversible, on-demand assembly and reconfiguration of 3D mesostructures via liquid crystal elastomer platforms, ACS Applied Materials & Interfaces, 13 (2021) 8929-8939.
    [31] Y. Foelen, R. Puglisi, M.G. Debije, A.P.H.J. Schenning, Photonic Liquid Crystal Polymer Absorbent for Immobilization and Detection of Gaseous Nerve Agent Simulants, ACS Applied Optical Materials, 1 (2023) 107-114.
    [32] H.C. Bi, K.B. Yin, X. Xie, J. Ji, S. Wan, L.T. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide, Scientific Reports, 3 (2013).
    [33] R.A. van Delden, N. Koumura, N. Harada, B.L. Feringa, Unidirectional rotary motion in a liquid crystalline environment: Color tuning by a molecular motor, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002) 4945-4949.
    [34] A. Ryabchun, F. Lancia, N. Katsonis, Light-Fueled Nanoscale Surface Waving in Chiral Liquid Crystal Networks, Acs Applied Materials & Interfaces, 13 (2021) 4777-4784.
    [35] X. Lu, S. Guo, X. Tong, H. Xia, Y. Zhao, Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators, Advanced Materials, 29 (2017) 1606467.
    [36] Z. Alipanah, M.S. Zakerhamidi, H. Movla, B. Azizi, I. Muševič, A. Ranjkesh, Light-Powered Liquid Crystal Polymer Network Actuator Using TiO2 Nanoparticles as an Inorganic Ultraviolet-Light Absorber, ACS Omega, 8 (2023) 10555-10564.
    [37] L. Li, Z.-B. Wen, D. Li, Z.-Y. Xu, L.-Y. Shi, K.-K. Yang, Y.-Z. Wang, Fabricating Freestanding, Broadband Reflective Cholesteric Liquid-Crystal Networks via Topological Tailoring of the Sm–Ch Phase Transition, ACS Applied Materials & Interfaces, 15 (2023) 21425-21434.
    [38] E. Hammett, How long does Coronavirus survive on different surfaces?, BDJ Team, 7 (2020) 14-15.
    [39] J.A. Jelinek, Exploring the Phenomenon of the Additive Colour Process While Using a Computer Programme by 7–8-Year-Old Students, in: Education Sciences, 2022.
    [40] E. Parry, D.-J. Kim, A.A. Castrejón-Pita, S.J. Elston, S.M. Morris, Formation of radial aligned and uniform nematic liquid crystal droplets via drop-on-demand inkjet printing into a partially-wet polymer layer, Optical Materials, 80 (2018) 71-76.
    [41] T.W. Company, Phoenix, AZ Weather History, in, TWC Product and Technology LLC, 2024.
    [42] W.C. Chuang, P. Gober, Predicting Hospitalization for Heat-Related Illness at the Census-Tract Level: Accuracy of a Generic Heat Vulnerability Index in Phoenix, Arizona (USA), ENVIRONMENTAL HEALTH PERSPECTIVES, 123 (2015) 606-612.
    [43] Heat Stress: Hydration, in, Centers for Disease Control and Prevention, 2017.

    無法下載圖示 校內:2025-12-31公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE