| 研究生: |
柯黛玉 Kartchner, Danika |
|---|---|
| 論文名稱: |
可重寫光子油墨在液晶彈性體致動器上的應用與特性研究 Fabrication and Characterization of Rewritable Photonic Paint on Liquid Crystal Actuator Surface |
| 指導教授: |
苗君易
Miau, Jiun-Jih 劉俊彥 Liu, Chun-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 膽固醇液晶 、液晶彈性體 、人工智慧型致動器 、液晶染劑 、可逆致動器 、熱感應液晶 |
| 外文關鍵詞: | Cholesteric liquid crystal, Liquid crystal elastomer, Artificially intelligent actuator, Thermal responsive liquid crystal, Reversible Actuator, liquid crystal painting |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,液晶因其在感測器和顯示技術中的成功應用而引起了廣泛關注。此外,智能材料在軟機器人、人工肌肉和微流體傳輸領域也引起了極大的興趣。為了模仿自然界中的變色特性,開發了熱致變色膽固醇液晶(CLCs),覆蓋可見光譜。此外,還開發了具有形狀記憶的熱調變向列液晶彈性體(LCEs),作為膽固醇液晶的支架,這些液晶類型的組合產生了變形和變色的溫度感測器。對基本原型進行了各種調整,包括添加E7、改變LCEs的厚度和比例,以及改變CLC膽固醇手性掺雜劑的百分比。通過差示掃描量熱法(DSC)、偏光光學顯微鏡(POM)、掃描電子顯微鏡(SEM)和拉伸強度測試測量了熱性和拓撲性能。獨立的CLCs和LCEs以及結合的LCE和CLC網絡展示了可逆的熱性能。當以85°C從25°C加熱時,CLC表現出92納米波長的周期性變化,而LCE在同樣溫度下表現出100倍的可逆180度彎曲。此外,可以將具有不同相變閾值的雙層甚至三層CLCs結合起來,在加熱時顯示圖像,如眼睛或龍形圖案。通過改變E7的百分比,層次可以具有不同的特性。然而,如果CLC未持續使用,E7會在層間擴散,導致整體呈現紅色變化。這些致動器可以應用於溫度感測行業,以及墨水和顯示行業。
In recent years, liquid crystals have garnered attention for their successful utilization in sensor and display technologies. Furthermore, smart materials have garnered interest in the fields of soft robotics, artificial muscles, and microfluidic transport. To mimic the color-shifting properties found in nature, thermochromic cholesteric liquid crystals (CLCs) were developed across the visible spectrum. In addition, thermotunable nematic liquid crystal elastomers (LCEs) with shape memory were developed as a scaffold for the cholesteric liquid crystals, with the combination of liquid crystal types yielding a shape-changing and color-changing temperature sensor. Various adjustments to the base prototype were tested, including adding E7, changing the thickness and proportionality of the LCEs, and changing the percentage of the CLC chiral dopant. Thermal and topological properties were measured with differential scanning calorimetry (DSC), polarized optical microscopy (POM), scanning electron microscopy (SEM), and tensile strength tests. The separate CLCs and LCEs and combined LCE and CLC network demonstrate reversible thermal properties. The CLC demonstrates a 92 nm wavelength cyclical shift when heated at 85oC from 25oC and the LCE demonstrates a 100X reversible 180o bend when heated to the same temperature. Moreover, bilayer or even trilayer CLCs with different phase change thresholds can be combined to reveal images upon heating, such as an eye or a dragon. By changing the E7 percentage, layers can have different properties. However, if the CLC is not continuously in use, the E7 diffuses between the layers and results in an overall red color shift. These actuators can be applied to temperature sensor industries as well as ink and display industries.
[1] W.S. Kim, J.H. Im, H. Kim, J.K. Choi, Y. Choi, Y.K. Kim, Liquid Crystalline Systems from Nature and Interaction of Living Organisms with Liquid Crystals, Advanced Materials, 35 (2023).
[2] M. Mitov, Multifunctional reflectors in the carapace of scarab beetles, HAL Open Science, XXII (2018).
[3] R.J.H. van Raak, D.J. Broer, Biomimetic Liquid Crystal Cilia and Flagella, Polymers, 14 (2022).
[4] W.J. Chung, J.W. Oh, K. Kwak, B.Y. Lee, J. Meyer, E. Wang, A. Hexemer, S.W. Lee, Biomimetic self-templating supramolecular structures, Nature, 478 (2011) 364-368.
[5] H. Shahsavan, S.M. Salili, A. Jákli, B.X. Zhao, Thermally Active Liquid Crystal Network Gripper Mimicking the Self-Peeling of Gecko Toe Pads, Advanced Materials, 29 (2017).
[6] M. Mitov, Liquid-Crystal Science from 1888 to 1922: Building a Revolution, Chemphyschem, 15 (2014) 1245-1250.
[7] P. Zhang, L.T. de Haan, M.G. Debije, A. Schenning, Liquid crystal-based structural color actuators, Light-Science & Applications, 11 (2022).
[8] I. Dierking, S. Al-Zangana, Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials, Nanomaterials, 7 (2017).
[9] Y.H. Kim, D.K. Yoon, H.S. Jeong, O.D. Lavrentovich, H.T. Jung, Smectic Liquid Crystal Defects for Self-Assembling of Building Blocks and Their Lithographic Applications, Advanced Functional Materials, 21 (2011) 610-627.
[10] J. Pollard, G. Posnjak, S. Čopar, I. Muševič, G.P. Alexander, Point Defects, Topological Chirality, and Singularity Theory in Cholesteric Liquid-Crystal Droplets, Physical Review X, 9 (2019) 021004.
[11] H.S. Yun, Z.C. Meijs, G. Park, Y.T. Fu, L. Isa, D.K. Yoon, Controlling liquid crystal boojum defects on fixed microparticle arrays via capillarity-assisted particles assembly, Journal of Colloid and Interface Science, 645 (2023) 115-121.
[12] S. Alama, L. Bronsard, D. Golovaty, X. Lamy, Saturn ring defect around a spherical particle immersed in a nematic liquid crystal, Calculus of Variations and Partial Differential Equations, 60 (2021).
[13] D. Andrienko, Introduction to liquid crystals, Journal of Molecular Liquids, 267 (2018) 520-541.
[14] W.F. Brinkman, P.E. Cladis, DEFECTS IN LIQUID-CRYSTALS, Physics Today, 35 (1982) 48-54.
[15] R. Khalil Sarbaz, M. Zakerhamidi, B. Rezaei, A. Ranjkesh, Effect of different surface alignment layers and temperature changes on bandwidth of Bragg reflection in chiral nematic liquid crystal, Physica Scripta, 99 (2024) 075001.
[16] M.K. Singh, A. Singh, Chapter 8 - Overall orientation of textile fibers by sonic modulus and birefringence, in: M.K. Singh, A. Singh (Eds.) Characterization of Polymers and Fibres, Woodhead Publishing, 2022, pp. 187-200.
[17] J. Choi, Y. Choi, J.-H. Lee, M.C. Kim, S. Park, K. Hyun, K.M. Lee, T.-H. Yoon, S.-k. Ahn, Direct-Ink-Written Cholesteric Liquid Crystal Elastomer with Programmable Mechanochromic Response, Advanced Functional Materials, 34 (2024) 2310658.
[18] M. Chountoulesi, S. Pispas, I.K. Tseti, C. Demetzos, Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms, Pharmaceuticals, 15 (2022).
[19] Y. Barenholz, Doxil® - The first FDA-approved nano-drug: Lessons learned, Journal of Controlled Release, 160 (2012) 117-134.
[20] S. Urandur, V.T. Banala, R.P. Shukla, S. Gautam, D. Marwaha, N. Rai, M. Sharma, S. Sharma, P. Ramarao, P.R. Mishra, Theranostic lyotropic liquid crystalline nanostructures for selective breast cancer imaging and therapy, Acta Biomaterialia, 113 (2020) 522-540.
[21] R. Li, S.L. Zhang, R.F. Zhang, Recent progress in artificial structural colors and their applications in fibers and textiles, Chemistrymethods, 3 (2023).
[22] J. Zi, X.D. Yu, Y.Z. Li, X.H. Hu, C. Xu, X.J. Wang, X.H. Liu, R.T. Fu, Coloration strategies in peacock feathers, Proceedings of the National Academy of Sciences of the United States of America, 100 (2003) 12576-12578.
[23] H. Fudouzi, Tunable structural color in organisms and photonic materials for design of bioinspired materials, Science and Technology of Advanced Materials, 12 (2011).
[24] K.H. Kim, J.K. Song, Technical evolution of liquid crystal displays, Npg Asia Materials, 1 (2009) 29-36.
[25] Z. Zhang, C. Wang, Q. Wang, Y. Zhao, L. Shang, Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration, Proceedings of the National Academy of Sciences, 119 (2022) e2204113119.
[26] M.T. Brannum, A.M. Steele, M.C. Venetos, L.T.J. Korley, G.E. Wnek, T.J. White, Light Control with Liquid Crystalline Elastomers, Advanced Optical Materials, 7 (2019) 1801683.
[27] P. Zhang, L.T. de Haan, M.G. Debije, A.P.H.J. Schenning, Liquid crystal-based structural color actuators, Light: Science & Applications, 11 (2022) 248.
[28] J.H. Lee, J. Bae, J.H. Hwang, M.Y. Choi, Y.S. Kim, S. Park, J.H. Na, D.G. Kim, S.K. Ahn, Robust and Reprocessable Artificial Muscles Based on Liquid Crystal Elastomers with Dynamic Thiourea Bonds, Advanced Functional Materials, 32 (2022).
[29] X.W. Song, W.T. Zhang, H.R. Liu, L.M. Zhao, Q. Chen, H.M. Tian, 3D printing of liquid crystal elastomers-based actuator for an inchworm-inspired crawling soft robot, FRONTIERS IN ROBOTICS AND AI, 9 (2022).
[30] Y. Li, C. Luo, K. Yu, X. Wang, Remotely controlled, reversible, on-demand assembly and reconfiguration of 3D mesostructures via liquid crystal elastomer platforms, ACS Applied Materials & Interfaces, 13 (2021) 8929-8939.
[31] Y. Foelen, R. Puglisi, M.G. Debije, A.P.H.J. Schenning, Photonic Liquid Crystal Polymer Absorbent for Immobilization and Detection of Gaseous Nerve Agent Simulants, ACS Applied Optical Materials, 1 (2023) 107-114.
[32] H.C. Bi, K.B. Yin, X. Xie, J. Ji, S. Wan, L.T. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide, Scientific Reports, 3 (2013).
[33] R.A. van Delden, N. Koumura, N. Harada, B.L. Feringa, Unidirectional rotary motion in a liquid crystalline environment: Color tuning by a molecular motor, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002) 4945-4949.
[34] A. Ryabchun, F. Lancia, N. Katsonis, Light-Fueled Nanoscale Surface Waving in Chiral Liquid Crystal Networks, Acs Applied Materials & Interfaces, 13 (2021) 4777-4784.
[35] X. Lu, S. Guo, X. Tong, H. Xia, Y. Zhao, Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators, Advanced Materials, 29 (2017) 1606467.
[36] Z. Alipanah, M.S. Zakerhamidi, H. Movla, B. Azizi, I. Muševič, A. Ranjkesh, Light-Powered Liquid Crystal Polymer Network Actuator Using TiO2 Nanoparticles as an Inorganic Ultraviolet-Light Absorber, ACS Omega, 8 (2023) 10555-10564.
[37] L. Li, Z.-B. Wen, D. Li, Z.-Y. Xu, L.-Y. Shi, K.-K. Yang, Y.-Z. Wang, Fabricating Freestanding, Broadband Reflective Cholesteric Liquid-Crystal Networks via Topological Tailoring of the Sm–Ch Phase Transition, ACS Applied Materials & Interfaces, 15 (2023) 21425-21434.
[38] E. Hammett, How long does Coronavirus survive on different surfaces?, BDJ Team, 7 (2020) 14-15.
[39] J.A. Jelinek, Exploring the Phenomenon of the Additive Colour Process While Using a Computer Programme by 7–8-Year-Old Students, in: Education Sciences, 2022.
[40] E. Parry, D.-J. Kim, A.A. Castrejón-Pita, S.J. Elston, S.M. Morris, Formation of radial aligned and uniform nematic liquid crystal droplets via drop-on-demand inkjet printing into a partially-wet polymer layer, Optical Materials, 80 (2018) 71-76.
[41] T.W. Company, Phoenix, AZ Weather History, in, TWC Product and Technology LLC, 2024.
[42] W.C. Chuang, P. Gober, Predicting Hospitalization for Heat-Related Illness at the Census-Tract Level: Accuracy of a Generic Heat Vulnerability Index in Phoenix, Arizona (USA), ENVIRONMENTAL HEALTH PERSPECTIVES, 123 (2015) 606-612.
[43] Heat Stress: Hydration, in, Centers for Disease Control and Prevention, 2017.
校內:2025-12-31公開