簡易檢索 / 詳目顯示

研究生: 陳宗翰
Chen, Zong-Han
論文名稱: α/δ-Bi2O3同質接面合成與光催化應用
Synthesis of α/δ-Bi2O3 homojunction and their Photocatalytic applications
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 92
中文關鍵詞: Bi2O3光催化同質接面沉澱法
外文關鍵詞: homojunction, Bi2O3, photocatalysis, precipitation, hydrogen production
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用常溫沉澱法以不用前驅鹽與反應環境合成三種α-Bi2O3,發現添加油酸之樣品O6N60在可見光下對甲基橙具有最高降解率,因此將其作為下一階段合成之晶種,後藉由二階段沉澱法在常溫下不需經額外熱處理合成以α-Bi2O3為主體之混合相α/δ-Bi2O3,吸收光譜結果發現兩相之吸收波段均落於可見光範圍內,可利用可見光作為光催化之能量來源,PL光譜分析可證實混合相可降低電子電洞復合率且α/δ-Bi2O3在特定相組成比例下(α: δ=9:1)展現比純α-Bi2O3更高的甲基橙染料降解效率。透過比對實驗結果與兩相能帶結構推測降解反應機制,發現電洞與超氧離子為Bi2O3降解甲基橙系統之主要活性反應因子;亦確認兩相接面間光激發載子的移動方向,激發後電子δ-Bi2O3由移動至α-Bi2O3,而電洞則是相反方向。以光沉積法將奈米級Pt金屬粒子負載於Bi2O3可進一步增強對染料的降解效率,經由反應速率計算,可見光下α/δ-Bi2O3+1wt%Pt降解染料甲基橙效率是純α-Bi2O3的4倍。另一方面,將光觸媒投入產氫實驗中,發現表面負載Pt為效率提升的重點要素,而由於δ-Bi2O3結構中過渡元素V價數傾向於捕捉電子而使混合相產氫效率降低。

    This work demonstrates the synthesis of α/δ mixed phase bismuth (III) oxide (Bi2O3) at room temperature using a two-step precipitation method. Photoluminescence spectroscopic analysis confirms that the mixed phase could form the homojunction to reduce the electron–hole pair recombination rate and that α/δ-Bi2O3 under a specific phase composition ratio (α:δ = 9:1) exhibits higher methyl orange dye degradation than pure α-Bi2O3. By comparing the experimental results and the two-phase energy band structure to speculate the degradation reaction mechanism, this study finds that the holes and superoxide ions are the main active reaction factors of the Bi2O3 degradation system for methyl orange. Experimental results confirm that α/δ-Bi2O3 can be used as a potential hydrogen production material.

    摘要 II Abstract III 致謝 XVII 目錄 XVIII 表目錄 XX 圖目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 氧化鉍 3 2.1.1 α-Bi2O3 6 2.1.2 δ-Bi2O3 6 2.1.3 β、γ-Bi2O3 6 2.2 Bi2O3合成 7 2.2.1 α-Bi2O3 7 2.2.2 β-Bi2O3 8 2.2.3 γ-Bi2O3 8 2.2.4 δ-Bi2O3 9 2.3 光觸媒 10 2.3.1 光催化反應機制 10 2.4 材料改質提升光催化效率 14 2.4.1 結構摻雜 14 2.4.2 表面金屬負載 15 2.4.3 異質接面複合 17 2.4.4 同質接面複合 19 第三章 研究方法 21 3.1 實驗藥品 21 3.2 光觸媒合成 21 3.2.1 α-Bi2O3合成 21 3.2.2 α/δ-Bi2O3混合相合成 22 3.3 光催化實驗 23 3.3.1 染料降解實驗 23 3.3.2 產氫實驗 24 3.4 光觸媒性質分析 24 3.4.1 X-ray粉末繞射分析(X-ray Diffraction,XRD) 24 3.4.2 比表面積分析儀 25 3.4.3 掃描式電子顯微鏡與穿透式電子顯微鏡 26 3.4.4 傅立葉轉換紅外線光譜儀 27 3.4.5 拉曼光譜儀 27 3.4.6 紫外可見光分光光譜儀 28 3.4.7 氣相層析儀 28 3.4.8 表面凱爾文探針掃描光譜儀與光電子能譜儀 29 第四章 結果與討論 30 4.1以化學沉澱法合成單一相Bi2O3 30 4.1.1反應環境對化學沉澱法合成α-Bi2O3之影響 30 4.1.2形貌調整劑與沉澱劑影響 39 4.2二階段沉澱法合成混合相Bi2O3 46 4.2.1反向沉澱法合成混合相Bi2O3 46 4.2.2 α/δ混合相合成並控制相組成比例 51 4.3光催化染料降解反應機制與同質接面形成探討 58 4.3.1染料降解機制討論 58 4.3.2 α/δ-Bi2O3同質接面 62 4.4表面覆載鉑金屬粒子改質 64 4.4.1光沉積法負載鉑金屬粒子 64 4.4.2光催化染料降解反應常數比較 69 4.5光催化產氫實驗 71 4.5.1光觸媒材料影響 72 4.5.2光觸媒添加量影響 74 4.5.3犧牲試劑影響 75 第五章 結論 76 參考文獻 78

    [1] Wu, Y. C.; Chaing, Y. C.; Huang, C. Y.; Wang, S. F. & Yang, H. Y. (2013).
    Morphology-controllable Bi2O3 crystals through an aqueous precipitation method
    and their photocatalytic performance. Dyes and Pigments, 98(1), 25-30.
    [2] Wu, Y. C.; Huang, Y. T. & Yang, H. Y. (2016). Crystallization mechanism and
    photocatalytic performance of vanadium-modified bismuth oxide through
    precipitation processes at room temperature. CrystEngComm, 18(36), 6881-6888.
    [3] Gou, X.; Li, R.; Wang, G.; Chen, Z. & Wexler, D. (2009). Room-temperature
    solution synthesis of Bi2O3 nanowires for gas sensing application.
    Nanotechnology, 20(49), 495501.
    [4] Wosylus, A.; Hoffmann, S.; Schmidt, M.; & Ruck, M. (2010). In‐situ study of the
    solid‐gas reaction of BiCl3 to BiOCl via the intermediate hydrate BiCl3·
    H2O. European Journal of Inorganic Chemistry, 2010(10), 1469-1471.
    [5] Ho, C. H.; Chan, C. H.; Huang, Y. S.; Tien, L. C. & Chao, L. C. (2013).
    The study of optical band edge property of bismuth oxide nanowires
    α-Bi2O3. Optics express, 21(10), 11965-11972.
    [6] Narang,S. N.;Patel, N. D. & Kartha, V. B. (1994). Infrared and Raman spectral
    studies and normal modes of α-Bi2O3. Journal of Molecular Structure, 327(2-3),
    221-235
    [7] Bera, K. K.; Majumdar, R.; Chakraborty, M. & Bhattacharya, S. K. (2018).
    Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and
    synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B
    under natural sunlight. Journal of hazardous materials, 352, 182-191.
    [8] Liu, J. & Li, Y. D. (2007). Synthesis and Self‐Assembly of Luminescent
    Ln3+‐Doped LaVO4 Uniform Nanocrystals. Advanced materials, 19(8),
    1118-1122.
    [9] Wu, Y. & Lu, G. (2014). The roles of density-tunable surface oxygen vacancy over
    bouquet-like Bi2O3 in enhancing photocatalytic activity. Physical Chemistry
    Chemical Physics, 16(9), 4165-4175.
    [10] Hernández-Gordillo, A., Medina, J. C.; Bizarro, M., Zanella, R.; Monroy, B. M.;
    & Rodil, S. E. (2016). Photocatalytic activity of enlarged microrods of α-Bi2O3
    produced using ethylenediamine-solvent. Ceramics International, 42(10), 11866-
    11875.
    [11] Yang, L. L.; Han, Q. F.; Zhao, J.; Zhu, J. W.; Wang, X. & Ma, W. H. (2014).
    Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method
    and their photocatalytic activity. Journal of alloys and compounds, 614, 353-359.
    [12] Abu-Dief, A. M. & Mohamed, W. S. (2017). α-Bi2O3 nanorods: synthesis,
    characterization and UV-photocatalytic activity. Materials Research
    Express, 4(3), 035039.
    [13] Liu, G.; Li, S.; Lu, Y.; Zhang, J.; Feng, Z. & Li, C. (2016). Controllable synthesis
    of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→ γ-
    Bi2O3→ α-Bi2O3 transformation in a facile precipitation method. Journal of
    Alloys and Compounds, 689, 787-799.
    [14] Jesionowski,T.;Kołodziejczak-Radzimska, A.; Ciesielczyk, F.; Sojka-
    Ledakowicz, J.; Olczyk, J. & Sielski, J. (2011). Synthesis of zinc oxide in an
    emulsion system and its deposition on PES nonwoven fabrics. Fibres & Textiles
    in Eastern Europe, (2 (85)), 70-75.
    [15] Hada, R.; Amritphale, A.; Amritphale, S.S. & Dixit, S. (2010). A Novel Mixed
    Reverse Microemulsion Route for the Synthesis of Nanosized Titania
    Particles. The Open Mineral Processing Journal, 3(1).
    [16] Holmberg, K.; Shah, D. O.; & Schwuger, M. J. (2002). Handbook of applied
    surface and colloid chemistry (Vol. 1). John Wiley & Sons.
    [17] Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables
    and charts. John Wiley & Sons.
    [18] Loubbidi, L.; Naji, M.; Chagraoui, A.; Igartua, J. M. & Moussaoui, A. (2016).
    Chemically stabilized δ-Bi2O3 phase:Raman scattering and X-ray diffraction
    studies. Oriental Journal of Chemistry, 32(1), 47-57.
    [19] Yuan, Q.; Zhen, Q.; Li, R.; Gao, L. & Ni, L. (2010). Reaction mechanism of
    preparing Bi0.75Dy0. 25O1. 5 nanopowder by the reverse titration chemical
    coprecipitation method. Journal of University of Science and Technology
    Beijing, 32(2), 245-249.
    [20] Feng, H.; Wei-Min, M.; Lei, M.; Yang, S.; Shu-Jun, S.; Xiao-Long, L. & Ren-
    Guo, G. (2014). Effect of the NSC and RSC Co-precipitation Methods on
    Apparent Activation Energy of Pr2Zr2O7 Nanopowders. CHINESE JOURNAL
    OF INORGANIC CHEMISTRY, 30(4), 811-820.
    [21] ]CHENG, S. L. & TONG, Y. L. (2011). Synthesis and size control of the nano-
    Fe3O4 particles synthesized by a reverse coprecipitation method. Chinese
    Journal of Materials Research, 25(5), 489-494.
    [22] Wu, Y. S.; Ma, J.; Hu, F. & Li, M. C. (2012). Synthesis and characterization of
    mesoporous alumina via a reverse precipitation method. Journal of Materials
    Science & Technology, 28(6), 572-576.
    [23] Hassanzadeh-Tabrizi, S. A.; Mazaheri, M.; Aminzare, M. & Sadrnezhaad, S. K.
    (2010). Reverse precipitation synthesis and characterization of CeO2
    nanopowder. Journal of Alloys and Compounds, 491(1-2), 499-502.

    [24] Sulistyaningsih, T.; Santosa, S. J.; Siswanta, D. & Rusdiarso, B. (2017).
    Synthesis and characterization of magnetites obtained from mechanically and
    sonochemically assissted co-precipitation and reverse co-precipitation
    methods. Int J Mater, Mech Manuf, 5(1), 16-9.
    [25] Mizukoshi, Y.; Shuto, T.; Masahashi, N. & Tanabe, S. (2009). Preparation of
    superparamagnetic magnetite nanoparticles by reverse precipitation method:
    contribution of sonochemically generated oxidants. Ultrasonics sonochemistry,
    16(4), 525-531.
    [26] Mahmed, N.; Heczko, O.; Söderberg, O. & Hannula, S. P. (2011, October).
    Room temperature synthesis of magnetite (Fe3− δO4) nanoparticles by a simple
    reverse co-precipitation Method. In IOP Conference Series: Materials Science
    and Engineering (Vol. 18, No. 3, p. 032020). IOP Publishing.
    [27] Brauer, G. (1975). Handbuch der präparativen anorganischen Chemie (Vol. 2).
    Enke.
    [28] Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H. & Nadeem, M. A. (2014).
    Principles and mechanisms of photocatalytic dye degradation on TiO2 based
    photocatalysts: a comparative overview. Rsc Advances, 4(70), 37003-37026.
    [29] Wang, X.; Jia, J. & Wang, Y. (2011). Degradation of CI Reactive Red 2 through
    photocatalysis coupled with water jet cavitation. Journal of Hazardous
    Materials, 185(1), 315-321.
    [30] Liu, T.; Wang, L.; Lu, X., Fan, J.; Cai, X.; Gao, B.; ... & Lv, Y. (2017).
    Comparative study of the photocatalytic performance for the degradation of
    different dyes by ZnIn 2 S 4: adsorption, active species, and pathways. RSC
    advances, 7(20), 12292-12300.
    [31] Litter, M. I. (1999). Heterogeneous photocatalysis: transition metal ions in
    photocatalytic systems. Applied Catalysis B: Environmental, 23(2-3), 89-114.
    [32] Bamwenda, G. R.; Tsubota, S.; Nakamura, T. & Haruta, M. (1997). The
    influence of the preparation methods on the catalytic activity of platinum and
    gold supported on TiO 2 for CO oxidation. Catalysis Letters, 44(1), 83-87.
    [33] Bagheri, M.; Heydari, M. & Vaezi, M. R. (2018). Influence of reaction
    conditions on formation of ionic liquid-based nanostructured Bi2O3 as an
    efficient visible-light-driven photocatalyst. Journal of Physics and Chemistry of.
    Solids, 112, 14-19.
    [34] Fujishima, A. & Honda, K. (1972). Electrochemical photolysis of water at a
    semiconductor electrode. nature, 238(5358), 37-38.
    [35] Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z. & Zhang, L. (2002). Effects of F-doping on
    the photocatalytic activity and microstructures of nanocrystalline TiO2 powders.
    Chemistry of materials, 14(9), 3808-3816.
    [36] Lasek, J.; Yu, Y. H. & Wu, J. C. (2013). Removal of NOx by photocatalytic
    processes. Journal of Photochemistry and Photobiology C: Photochemistry
    Reviews, 14, 29-52.
    [37] Ran, J.; Jaroniec, M. & Qiao, S. Z. (2018). Cocatalysts in semiconductor‐based
    photocatalytic CO2 reduction: achievements, challenges, and opportunities.
    Advanced materials, 30(7), 1704649.
    [38] Zhou, D.; Wang, H.; Pang, L. X.; Randall, C. A. & Yao, X. (2009). Bi2O3–
    MoO3 binary system: an alternative ultralow sintering temperature microwave
    dielectric. Journal of the American Ceramic Society, 92(10), 2242-2246.
    [39] Mauvy, J. C. Launay; J. Darriet, “Synthesis, crystal structures and ionic
    conductivities of Bi14P4O31 and Bi50V4O85. Two members of the series Bi18-
    4mM4mO27+4m (M =P, V) related to the fluorite-type structure,” Journal of
    Solid State Chemistry, 178, 2015-2023 (2005).
    [40] N. M. Sammes; G. A. Tompsett; H. Nafe; F. Aldinger, “Bismuth based Oxide
    Electrolytes-Structure and Ionic Conductivity, ” Journal of the European
    Ceramic Society, 19, 1801-1826 (1999).
    [41] A. Cabot; A. Marsal; J. Arbiol; J. R. Morante, “Bi2O3 as a selective sensing
    material for NO detection, ” Sensors and Actuators B, 99, 74-89 (2004).
    [42] Maeder*, T. (2013). Review of Bi2O3 based glasses for electronics and related
    applications. International Materials Reviews, 58(1), 3-40.
    [43] Hu, L.; Zhang, G.; Liu, M.; Wang, Q.; Dong, S.; & Wang, P. (2019). Application
    of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA
    removal by peroxymonosulfate activation. Science of the total environment, 647,
    352-361.
    [44] Qin, F.; Li, G.; Wang, R.; Wu, J.; Sun, H. & Chen, R. (2012). Template‐free
    fabrication of Bi2O3 and (BiO) 2CO3 nanotubes and their application in water
    treatment. Chemistry–A European Journal, 18(51), 16491-16497.
    [45] Zhang, T.; Zeng, X.; Xia, Y.; Zhang, H.; Sun, B.; Wang, H. & Zhao, Y. (2019).
    Morphology evolution and photocatalytic applications of W-doped Bi2O3 films
    prepared using unique oblique angle co-sputtering technology. Ceramics
    International, 45(17), 21968-21974.
    [46] I. N. Sokolik, “Radiation Balance and Solar Radiation Spectrum,” Encyclopedia
    of Ecology, 2951-2955 (2008).
    [47] Matsubara, K.; Inoue, M.; Hagiwara, H. & Abe, T. (2019). Photocatalytic water
    splitting over Pt-loaded TiO2 (Pt/TiO2) catalysts prepared by the polygonal barrel-
    sputtering method. Applied Catalysis B: Environmental, 254, 7-14.
    [48] Yu, J.; Qi, L. & Jaroniec, M. (2010). Hydrogen production by photocatalytic
    water splitting over Pt/TiO2 nanosheets with exposed (001) facets. The Journal of
    Physical Chemistry C, 114(30), 13118-13125.
    [49] Schobert, H. (2013). Chemistry of fossil fuels and biofuels. Cambridge University
    Press.
    [50] Schneider, J. & Bahnemann, D. W. (2013). Undesired role of sacrificial reagents
    in photocatalysis.
    [51] 黃怡婷. (2015). 釩離子穩定 [delta] 相氧化鉍奈米粉末常溫合成法及其導
    電及光催化性質 (Doctoral dissertation, National Cheng Kung University
    Department of Resources Engineering).
    [52] Melián, E. P.; Lopez, C. R.; Santiago, D. E.; Quesada-Cabrera, R.; Méndez, J. O.;
    Rodríguez, J. D. & Díaz, O. G. (2016). Study of the photocatalytic activity of Pt-
    modified commercial TiO2 for hydrogen production in the presence of common
    organic sacrificial agents. Applied Catalysis A: General, 518, 189-197.
    [53] Marchal, C.; Cottineau, T.; Méndez‐Medrano, M. G.; Colbeau‐Justin, C.; Caps,
    V. & Keller, V. (2018). Au/TiO2–gC3N4 nanocomposites for enhanced
    photocatalytic H2 production from water under visible light irradiation with very
    low quantities of sacrificial agents. Advanced Energy Materials, 8(14), 1702142.
    [54] Marchal, C., Piquet, A., Behr, M., Cottineau, T., Papaefthimiou, V., Keller, V., &
    Caps, V. (2017). Activation of solid grinding-derived Au/TiO2 photocatalysts for
    solar H2 production from water-methanol mixtures with low alcohol
    content. Journal of catalysis, 352, 22-34.
    [55] Kumaravel, V.; Imam, M. D.; Badreldin, A.; Chava, R. K.; Do, J. Y.; Kang, M. &
    Abdel-Wahab, A. (2019). Photocatalytic hydrogen production: role of sacrificial
    reagents on the activity of oxide, carbon, and sulfide catalysts. Catalysts, 9(3),
    276.
    [56] López, C. R.; Melián, E. P.; Méndez, J. O.; Santiago, D. E.; Rodríguez, J. D. &
    Díaz, O. G. (2015). Comparative study of alcohols as sacrificial agents in H2
    production by heterogeneous photocatalysis using Pt/TiO2 catalysts. Journal of
    Photochemistry and Photobiology A: Chemistry, 312, 45-54.
    [57] Zhou, L.; Wang, W.; Xu, H.; Sun, S. & Shang, M. (2009). Bi2O3 hierarchical
    nanostructures: controllable synthesis, growth mechanism, and their application
    in photocatalysis. Chemistry–A European Journal, 15(7), 1776-1782.
    [58] Medina, J. C.; Bizarro, M.; Silva-Bermudez, P.; Giorcelli, M.; Tagliaferro, A. &
    Rodil, S. E. (2016). Photocatalytic discoloration of methyl orange dye by δ-
    Bi2O3 thin films. Thin Solid Films, 612, 72-81.
    [59] Sudrajat, H. & Hartuti, S. (2019). Boosting electron population in δ-Bi2O3
    through iron doping for improved photocatalytic activity. Advanced Powder
    Technology, 30(5), 983-991.
    [60] Tan, M. Y.; Tan, K. B.; Zainal, Z.; Khaw, C. C. & Chen, S. K. (2012). Subsolidus
    formation and impedance spectroscopy studies of materials in the (Bi2O3) 1− x
    (Y2O3) x binary system. Ceramics International, 38(4), 3403-3409.
    [61] Li, G.; Mao, Y.; Li, L.; Feng, S.; Wang, M. & Yao, X. (1999). Solid solubility
    and transport properties of nanocrystalline (CeO2) 1-x (BiO1.5) x by
    hydrothermal conditions. Chemistry of materials, 11(5), 1259-1266.
    [62] Han, M.; Sun, T.; Tan, P. Y.; Chen, X.; Tan, O. K. & Tse, M. S. (2013). m-BiVO
    4@ γ-Bi2O3 core–shell p–n heterogeneous nanostructure for enhanced visible-
    light photocatalytic performance. Rsc Advances, 3(47), 24964-24970.
    [63] Turkoglu, O. & Belenli, I. (2003). Electrical conductivity of g-Bi2O3-V2O5
    solid solution. Journal of thermal analysis and calorimetry, 73(3), 1001-1012.

    [64] Lu, H.; Wang, S.; Zhao, L.; Dong, B.; Xu, Z. & Li, J. (2012). Surfactant-
    assisted hydrothermal synthesis of Bi2O3 nano/microstructures with tunable
    size. Rsc Advances, 2(8), 3374-3378
    [65] Hosseini, S. M.; Alemi, A. & Rezvani, Z. (2015). Preparation and Study of
    Bismuth Oxide Doped and co-Doped with Cobalt (III) and Holmium (III) via
    Sol-Gel Method. Iranian Journal of Chemistry and Chemical Engineering
    (IJCCE), 34(4), 53-59.
    [66] Hao, W.; Gao, Y.; Jing, X.; Zou, W.; Chen, Y. & Wang, T. (2014). Visible light
    photocatalytic properties of metastable γ-Bi2O3 with different morphologies.
    Journal of Materials Science & Technology, 30(2), 192-196.
    [67] Monnereau, O.; Tortet, L.; Llewellyn, P.; Rouquerol, F. & Vacquier, G. (2003).
    Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new
    route for this oxide?. Solid State Ionics, 157(1-4), 163-169.
    [68] Gotić, M.; Popović, S. & Musić, S. (2007). Influence of synthesis procedure on
    the morphology of bismuth oxide particles. Materials letters, 61(3), 709-714.
    [69] Kumari, L.; Lin, J. H. & Ma, Y. R. (2007). Synthesis of bismuth oxide
    nanostructures by an oxidative metal vapour phase deposition technique.
    Nanotechnology, 18(29), 295605.
    [70] Shuk, P.; Wiemhöfer, H. D.; Guth, U. & Göpel, W. (1996). New solid
    electrolytes based on bismuth oxide. Ionics, 2(1), 46-52.
    [71] Bang, J. H.; Choi, M. S., Mirzaei, A., Kwon, Y. J., Kim, S. S., Kim, T. W., &
    Kim, H. W. (2018). Selective NO2 sensor based on Bi2O3 branched SnO2
    nanowires. Sensors and Actuators B: Chemical, 274, 356-369.
    [72] Qiu, Y.; Fan, H.; Chang, X.; Dang, H.; Luo, Q. & Cheng, Z. (2018). Novel
    ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high
    performance. Applied Surface Science, 434, 16-20.
    [73] Jung, H. J., Park, S., Kim, K. D., Kim, T. H., Choi, M. Y., & Lee, K. Y. (2018).
    Fabrication of porous β-Bi2O3 nanoplates by phase transformation of bismuth
    precursor via low-temperature thermal decomposition process and their enhanced
    photocatalytic activity. Colloids and Surfaces A: Physicochemical and
    Engineering Aspects, 550, 37-45.
    [74] Huang, Q.; Zhang, S.; Cai, C.; & Zhou, B. (2011). β-and α-Bi2O3 nanoparticles
    synthesized via microwave-assisted method and their photocatalytic activity
    towards the degradation of rhodamine B. Materials Letters, 65(6), 988-990.
    [75] Chitrada, K. C.; Gakhar, R.; Chidambaram, D.; Aston, E. & Raja, K. S. (2016).
    Enhanced performance of β-Bi2O3 by in-situ photo-conversion to Bi2O3-BiO2-
    x composite photoanode for solar water splitting. Journal of The Electrochemical
    Society, 163(7), H546.
    [76] Wu, C.; Shen, L.; Huang, Q. & Zhang, Y. C. (2011). Hydrothermal synthesis and
    characterization of Bi2O3 nanowires. Materials Letters, 65(7), 1134-1136.
    [77] Abu-Dief, A. M. & Mohamed, W. S. (2017). α-Bi2O3 nanorods: synthesis,
    characterization and UV-photocatalytic activity. Materials Research Express,
    4(3), 035039.
    [78] Yang, L. L.; Han, Q. F.; Zhao, J., Zhu, J. W.; Wang, X. & Ma, W. H. (2014).
    Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method
    and their photocatalytic activity. Journal of alloys and compounds, 614, 353-359.
    [79] Han, M.; Zhu, S., Lu, S.; Song, Y.; Feng, T.; Tao, S.; ... & Yang, B. (2018). Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today, 19, 201-218.
    [80] Wu, J.; Huang, Y.; Ye, W. & Li, Y. (2017). CO2 reduction: from the
    electrochemical to photochemical approach. Advanced Science, 4(11), 1700194.

    [81] Nah, Y. C.; Paramasivam, I. & Schmuki, P. (2010). Doped TiO2 and TiO2
    nanotubes: synthesis and applications. ChemPhysChem, 11(13), 2698-2713.
    [82] Zhu, J.; Deng, Z.; Chen, F.; Zhang, J.; Chen, H.; Anpo, M. ... & Zhang, L.
    (2006). Hydrothermal doping method for preparation of Cr3+-TiO2
    photocatalysts with concentration gradient distribution of Cr3+. Applied Catalysis B: Environmental, 62(3-4), 329-335.
    [83] Zhang, X. & Liu, Q. (2008). Preparation and characterization of titania photocatalyst co-doped with boron, nickel, and cerium. Materials Letters, 62(17-18), 2589-2592.
    [84] Ohno, T.; Mitsui, T.; & Matsumura, M. (2003). Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry letters, 32(4), 364-365.
    [85] Jiang, S.; Wang, L.; Hao, W.; Li, W.; Xin, H.; Wang, W. & Wang, T. (2015). Visible-light photocatalytic activity of S-doped α-Bi2O3. The Journal of Physical Chemistry C, 119(25), 14094-14101.
    [86] Faisal, M.; Ibrahim, A. A.; Bouzid, H.; Al-Sayari, S. A.; Al-Assiri, M. S., & Ismail, A. A. (2014). Hydrothermal synthesis of Sr-doped α-Bi2O3 nanosheets as highly efficient photocatalysts under visible light. Journal of Molecular Catalysis A: Chemical, 387, 69-75.
    [87] Liang, J.; Zhu, G.; Liu, P.; Luo, X.; Tan, C.; Jin, L. & Zhou, J. (2014). Synthesis and characterization of Fe-doped β-Bi2O3 porous microspheres with enhanced visible light photocatalytic activity. Superlattices and Microstructures, 72, 272-282.
    [88] Wu, S.; Fang, J.; Xu, X.; Liu, Z.; Zhu, X. & Xu, W. (2012). Microemulsion synthesis, characterization of highly visible light responsive rare earth‐doped Bi2O3. Photochemistry and photobiology, 88(5), 1205-1210.

    [89] Liu, S. X.; Qu, Z. P.; Han, X. W. & Sun, C. L. (2004). A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 93, 877-884.
    [90] Tun, P. P.; Wang, J.; Khaing, T. T.; Wu, X. & Zhang, G. (2020). Fabrication of functionalized plasmonic Ag loaded Bi2O3/montmorillonite nanocomposites for efficient photocatalytic removal of antibiotics and organic dyes. Journal of Alloys and Compounds, 818, 152836.
    [91] Hu, J.; Li, H.; Huang, C.; Liu, M. & Qiu, X. (2013). Enhanced photocatalytic activity of Bi2O3 under visible light irradiation by Cu (II) clusters modification. Applied Catalysis B: Environmental, 142, 598-603.
    [92] Zhu, G.; Que, W. & Zhang, J. (2011). Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation. Journal of alloys and compounds, 509(39), 9479-9486.
    [93] Low, J.; Yu, J.; Jaroniec, M.; Wageh, S. & Al‐Ghamdi, A. A. (2017). Heterojunction photocatalysts. Advanced materials, 29(20), 1601694.
    [94] Balachandran, S. & Swaminathan, M. (2012). Facile fabrication of heterostructured Bi2O3–ZnO photocatalyst and its enhanced photocatalytic activity. The Journal of Physical Chemistry C, 116(50), 26306-26312.
    [95] Correia, F. C.; Calheiros, M.; Marques, J.; Ribeiro, J. M. & Tavares, C. J. (2018). Synthesis of Bi2O3/TiO2 nanostructured films for photocatalytic applications. Ceramics International, 44(18), 22638-22644.
    [96] Ma, Z.; Hu, L.; Li, X.; Deng, L.; Fan, G. & He, Y. (2019). A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation. Ceramics International, 45(13), 15824-15833.

    [97] Ge, M.; Li, Y.; Liu, L.; Zhou, Z. & Chen, W. (2011). Bi2O3− Bi2WO6 composite microspheres: hydrothermal synthesis and photocatalytic performances. The Journal of Physical Chemistry C, 115(13), 5220-5225.
    [98] Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; & Li, C. (2008). Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angewandte Chemie, 120(9), 1790-1793.
    [99] Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; ... & Sokol, A. A. (2013). Band alignment of rutile and anatase TiO 2. Nature materials, 12(9), 798-801.
    [100] Wang, R.; Wan, J.; Jia, J.; Xue, W.; Hu, X.; Liu, E. & Fan, J. (2018). Synthesis of In2Se3 homojunction photocatalyst with α and γ phases for efficient photocatalytic performance. Materials & Design, 151, 74-82.
    [101] Yu, J.; Yu, H.; Cheng, B.; Zhou, M., & Zhao, X. (2006). Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. Journal of Molecular Catalysis A: Chemical, 253(1-2), 112-118.
    [102] Ohtani, B.; Prieto-Mahaney, O. O.; Li, D. & Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216(2-3), 179-182.
    [103] Wang, G.; Xu, L.; Zhang, J.; Yin, T. & Han, D. (2012). Enhanced photocatalytic activity of powders (P25) via calcination treatment. International Journal of Photoenergy, 2012.
    [104] Zhang, J.; Zhang, M.; Sun, R. Q. & Wang, X. (2012). A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angewandte Chemie International Edition, 51(40), 10145-10149.
    [105] Li, Q. Y. & Zhao, Z. Y. (2015). Interfacial properties of α/β-Bi2O3 homo-junction from first-principles calculations. Physics Letters A, 379(42), 2766-2771.
    [106] Sun, Y.; Wang, W.; Zhang, L. & Zhang, Z. (2012). Design and controllable synthesis of α-/γ-Bi2O3 homojunction with synergetic effect on photocatalytic activity. Chemical engineering journal, 211, 161-167.
    [107] Lebedev, A.; Anariba, F.; Li, X.; Leng, D. S. H., & Wu, P. (2019). Rational design of visible-light-driven Pd-loaded α/β-Bi2O3 nanorods with exceptional cationic and anionic dye degradation properties. Solar Energy, 190, 531-542.
    [108] Wu, Q.; Huang, F.; Zhao, M.; Xu, J.; Zhou, J. & Wang, Y. (2016). Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy, 24, 63-71.
    [109] Xu, J.; Yue, J.; Niu, J.; Chen, M. & Teng, F. (2018). Fabrication of Bi2WO6 quantum dots/ultrathin nanosheets 0D/2D homojunctions with enhanced photocatalytic activity under visible light irradiation. Chinese Journal of Catalysis, 39(12), 1910-1918.
    [110] Huang, H.; Xiao, K.; Du, X. & Zhang, Y. (2017). Vertically aligned nanosheets-array-like BiOI homojunction: three-in-one promoting photocatalytic oxidation and reduction abilities. ACS Sustainable Chemistry & Engineering, 5(6), 5253-5264.
    [111] Méndez, J. O.; López, C. R.; Melián, E. P.; Díaz, O. G.; Rodríguez, J. D.; Hevia,
    D. F. & Macías, M. (2014). Production of hydrogen by water photo-splitting
    over commercial and synthesised Au/TiO2 catalysts. Applied Catalysis B:
    Environmental, 147, 439-452.
    [112] Wu, G.; Chen, T.; Su, W.; Zhou, G.; Zong, X.; Lei, Z. & Li, C. (2008). H2
    production with ultra-low CO selectivity via photocatalytic reforming of
    methanol on Au/TiO2 catalyst. International Journal of Hydrogen Energy,
    33(4), 1243-1251.
    [113] Xie, J.; Lü, X.; Chen, M.; Zhao, G.; Song, Y. & Lu, S. (2008). The synthesis,
    characterization and photocatalytic activity of V (V), Pb (II), Ag (I) and Co (II)-
    doped Bi2O3. Dyes and Pigments, 77(1), 43-47.
    [114] Wu, S.; Fang, J.; Xu, W. & Cen, C. (2013). Hydrothermal synthesis,
    characterization of visible‐light‐driven α‐Bi2O3 enhanced by Pr3+ doping.
    Journal of Chemical Technology & Biotechnology, 88(10), 1828-1835.

    無法下載圖示 校內:2026-08-10公開
    校外:2026-08-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE