| 研究生: |
陳宗翰 Chen, Zong-Han |
|---|---|
| 論文名稱: |
α/δ-Bi2O3同質接面合成與光催化應用 Synthesis of α/δ-Bi2O3 homojunction and their Photocatalytic applications |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | Bi2O3 、光催化 、同質接面 、沉澱法 |
| 外文關鍵詞: | homojunction, Bi2O3, photocatalysis, precipitation, hydrogen production |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用常溫沉澱法以不用前驅鹽與反應環境合成三種α-Bi2O3,發現添加油酸之樣品O6N60在可見光下對甲基橙具有最高降解率,因此將其作為下一階段合成之晶種,後藉由二階段沉澱法在常溫下不需經額外熱處理合成以α-Bi2O3為主體之混合相α/δ-Bi2O3,吸收光譜結果發現兩相之吸收波段均落於可見光範圍內,可利用可見光作為光催化之能量來源,PL光譜分析可證實混合相可降低電子電洞復合率且α/δ-Bi2O3在特定相組成比例下(α: δ=9:1)展現比純α-Bi2O3更高的甲基橙染料降解效率。透過比對實驗結果與兩相能帶結構推測降解反應機制,發現電洞與超氧離子為Bi2O3降解甲基橙系統之主要活性反應因子;亦確認兩相接面間光激發載子的移動方向,激發後電子δ-Bi2O3由移動至α-Bi2O3,而電洞則是相反方向。以光沉積法將奈米級Pt金屬粒子負載於Bi2O3可進一步增強對染料的降解效率,經由反應速率計算,可見光下α/δ-Bi2O3+1wt%Pt降解染料甲基橙效率是純α-Bi2O3的4倍。另一方面,將光觸媒投入產氫實驗中,發現表面負載Pt為效率提升的重點要素,而由於δ-Bi2O3結構中過渡元素V價數傾向於捕捉電子而使混合相產氫效率降低。
This work demonstrates the synthesis of α/δ mixed phase bismuth (III) oxide (Bi2O3) at room temperature using a two-step precipitation method. Photoluminescence spectroscopic analysis confirms that the mixed phase could form the homojunction to reduce the electron–hole pair recombination rate and that α/δ-Bi2O3 under a specific phase composition ratio (α:δ = 9:1) exhibits higher methyl orange dye degradation than pure α-Bi2O3. By comparing the experimental results and the two-phase energy band structure to speculate the degradation reaction mechanism, this study finds that the holes and superoxide ions are the main active reaction factors of the Bi2O3 degradation system for methyl orange. Experimental results confirm that α/δ-Bi2O3 can be used as a potential hydrogen production material.
[1] Wu, Y. C.; Chaing, Y. C.; Huang, C. Y.; Wang, S. F. & Yang, H. Y. (2013).
Morphology-controllable Bi2O3 crystals through an aqueous precipitation method
and their photocatalytic performance. Dyes and Pigments, 98(1), 25-30.
[2] Wu, Y. C.; Huang, Y. T. & Yang, H. Y. (2016). Crystallization mechanism and
photocatalytic performance of vanadium-modified bismuth oxide through
precipitation processes at room temperature. CrystEngComm, 18(36), 6881-6888.
[3] Gou, X.; Li, R.; Wang, G.; Chen, Z. & Wexler, D. (2009). Room-temperature
solution synthesis of Bi2O3 nanowires for gas sensing application.
Nanotechnology, 20(49), 495501.
[4] Wosylus, A.; Hoffmann, S.; Schmidt, M.; & Ruck, M. (2010). In‐situ study of the
solid‐gas reaction of BiCl3 to BiOCl via the intermediate hydrate BiCl3·
H2O. European Journal of Inorganic Chemistry, 2010(10), 1469-1471.
[5] Ho, C. H.; Chan, C. H.; Huang, Y. S.; Tien, L. C. & Chao, L. C. (2013).
The study of optical band edge property of bismuth oxide nanowires
α-Bi2O3. Optics express, 21(10), 11965-11972.
[6] Narang,S. N.;Patel, N. D. & Kartha, V. B. (1994). Infrared and Raman spectral
studies and normal modes of α-Bi2O3. Journal of Molecular Structure, 327(2-3),
221-235
[7] Bera, K. K.; Majumdar, R.; Chakraborty, M. & Bhattacharya, S. K. (2018).
Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and
synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B
under natural sunlight. Journal of hazardous materials, 352, 182-191.
[8] Liu, J. & Li, Y. D. (2007). Synthesis and Self‐Assembly of Luminescent
Ln3+‐Doped LaVO4 Uniform Nanocrystals. Advanced materials, 19(8),
1118-1122.
[9] Wu, Y. & Lu, G. (2014). The roles of density-tunable surface oxygen vacancy over
bouquet-like Bi2O3 in enhancing photocatalytic activity. Physical Chemistry
Chemical Physics, 16(9), 4165-4175.
[10] Hernández-Gordillo, A., Medina, J. C.; Bizarro, M., Zanella, R.; Monroy, B. M.;
& Rodil, S. E. (2016). Photocatalytic activity of enlarged microrods of α-Bi2O3
produced using ethylenediamine-solvent. Ceramics International, 42(10), 11866-
11875.
[11] Yang, L. L.; Han, Q. F.; Zhao, J.; Zhu, J. W.; Wang, X. & Ma, W. H. (2014).
Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method
and their photocatalytic activity. Journal of alloys and compounds, 614, 353-359.
[12] Abu-Dief, A. M. & Mohamed, W. S. (2017). α-Bi2O3 nanorods: synthesis,
characterization and UV-photocatalytic activity. Materials Research
Express, 4(3), 035039.
[13] Liu, G.; Li, S.; Lu, Y.; Zhang, J.; Feng, Z. & Li, C. (2016). Controllable synthesis
of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→ γ-
Bi2O3→ α-Bi2O3 transformation in a facile precipitation method. Journal of
Alloys and Compounds, 689, 787-799.
[14] Jesionowski,T.;Kołodziejczak-Radzimska, A.; Ciesielczyk, F.; Sojka-
Ledakowicz, J.; Olczyk, J. & Sielski, J. (2011). Synthesis of zinc oxide in an
emulsion system and its deposition on PES nonwoven fabrics. Fibres & Textiles
in Eastern Europe, (2 (85)), 70-75.
[15] Hada, R.; Amritphale, A.; Amritphale, S.S. & Dixit, S. (2010). A Novel Mixed
Reverse Microemulsion Route for the Synthesis of Nanosized Titania
Particles. The Open Mineral Processing Journal, 3(1).
[16] Holmberg, K.; Shah, D. O.; & Schwuger, M. J. (2002). Handbook of applied
surface and colloid chemistry (Vol. 1). John Wiley & Sons.
[17] Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables
and charts. John Wiley & Sons.
[18] Loubbidi, L.; Naji, M.; Chagraoui, A.; Igartua, J. M. & Moussaoui, A. (2016).
Chemically stabilized δ-Bi2O3 phase:Raman scattering and X-ray diffraction
studies. Oriental Journal of Chemistry, 32(1), 47-57.
[19] Yuan, Q.; Zhen, Q.; Li, R.; Gao, L. & Ni, L. (2010). Reaction mechanism of
preparing Bi0.75Dy0. 25O1. 5 nanopowder by the reverse titration chemical
coprecipitation method. Journal of University of Science and Technology
Beijing, 32(2), 245-249.
[20] Feng, H.; Wei-Min, M.; Lei, M.; Yang, S.; Shu-Jun, S.; Xiao-Long, L. & Ren-
Guo, G. (2014). Effect of the NSC and RSC Co-precipitation Methods on
Apparent Activation Energy of Pr2Zr2O7 Nanopowders. CHINESE JOURNAL
OF INORGANIC CHEMISTRY, 30(4), 811-820.
[21] ]CHENG, S. L. & TONG, Y. L. (2011). Synthesis and size control of the nano-
Fe3O4 particles synthesized by a reverse coprecipitation method. Chinese
Journal of Materials Research, 25(5), 489-494.
[22] Wu, Y. S.; Ma, J.; Hu, F. & Li, M. C. (2012). Synthesis and characterization of
mesoporous alumina via a reverse precipitation method. Journal of Materials
Science & Technology, 28(6), 572-576.
[23] Hassanzadeh-Tabrizi, S. A.; Mazaheri, M.; Aminzare, M. & Sadrnezhaad, S. K.
(2010). Reverse precipitation synthesis and characterization of CeO2
nanopowder. Journal of Alloys and Compounds, 491(1-2), 499-502.
[24] Sulistyaningsih, T.; Santosa, S. J.; Siswanta, D. & Rusdiarso, B. (2017).
Synthesis and characterization of magnetites obtained from mechanically and
sonochemically assissted co-precipitation and reverse co-precipitation
methods. Int J Mater, Mech Manuf, 5(1), 16-9.
[25] Mizukoshi, Y.; Shuto, T.; Masahashi, N. & Tanabe, S. (2009). Preparation of
superparamagnetic magnetite nanoparticles by reverse precipitation method:
contribution of sonochemically generated oxidants. Ultrasonics sonochemistry,
16(4), 525-531.
[26] Mahmed, N.; Heczko, O.; Söderberg, O. & Hannula, S. P. (2011, October).
Room temperature synthesis of magnetite (Fe3− δO4) nanoparticles by a simple
reverse co-precipitation Method. In IOP Conference Series: Materials Science
and Engineering (Vol. 18, No. 3, p. 032020). IOP Publishing.
[27] Brauer, G. (1975). Handbuch der präparativen anorganischen Chemie (Vol. 2).
Enke.
[28] Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H. & Nadeem, M. A. (2014).
Principles and mechanisms of photocatalytic dye degradation on TiO2 based
photocatalysts: a comparative overview. Rsc Advances, 4(70), 37003-37026.
[29] Wang, X.; Jia, J. & Wang, Y. (2011). Degradation of CI Reactive Red 2 through
photocatalysis coupled with water jet cavitation. Journal of Hazardous
Materials, 185(1), 315-321.
[30] Liu, T.; Wang, L.; Lu, X., Fan, J.; Cai, X.; Gao, B.; ... & Lv, Y. (2017).
Comparative study of the photocatalytic performance for the degradation of
different dyes by ZnIn 2 S 4: adsorption, active species, and pathways. RSC
advances, 7(20), 12292-12300.
[31] Litter, M. I. (1999). Heterogeneous photocatalysis: transition metal ions in
photocatalytic systems. Applied Catalysis B: Environmental, 23(2-3), 89-114.
[32] Bamwenda, G. R.; Tsubota, S.; Nakamura, T. & Haruta, M. (1997). The
influence of the preparation methods on the catalytic activity of platinum and
gold supported on TiO 2 for CO oxidation. Catalysis Letters, 44(1), 83-87.
[33] Bagheri, M.; Heydari, M. & Vaezi, M. R. (2018). Influence of reaction
conditions on formation of ionic liquid-based nanostructured Bi2O3 as an
efficient visible-light-driven photocatalyst. Journal of Physics and Chemistry of.
Solids, 112, 14-19.
[34] Fujishima, A. & Honda, K. (1972). Electrochemical photolysis of water at a
semiconductor electrode. nature, 238(5358), 37-38.
[35] Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z. & Zhang, L. (2002). Effects of F-doping on
the photocatalytic activity and microstructures of nanocrystalline TiO2 powders.
Chemistry of materials, 14(9), 3808-3816.
[36] Lasek, J.; Yu, Y. H. & Wu, J. C. (2013). Removal of NOx by photocatalytic
processes. Journal of Photochemistry and Photobiology C: Photochemistry
Reviews, 14, 29-52.
[37] Ran, J.; Jaroniec, M. & Qiao, S. Z. (2018). Cocatalysts in semiconductor‐based
photocatalytic CO2 reduction: achievements, challenges, and opportunities.
Advanced materials, 30(7), 1704649.
[38] Zhou, D.; Wang, H.; Pang, L. X.; Randall, C. A. & Yao, X. (2009). Bi2O3–
MoO3 binary system: an alternative ultralow sintering temperature microwave
dielectric. Journal of the American Ceramic Society, 92(10), 2242-2246.
[39] Mauvy, J. C. Launay; J. Darriet, “Synthesis, crystal structures and ionic
conductivities of Bi14P4O31 and Bi50V4O85. Two members of the series Bi18-
4mM4mO27+4m (M =P, V) related to the fluorite-type structure,” Journal of
Solid State Chemistry, 178, 2015-2023 (2005).
[40] N. M. Sammes; G. A. Tompsett; H. Nafe; F. Aldinger, “Bismuth based Oxide
Electrolytes-Structure and Ionic Conductivity, ” Journal of the European
Ceramic Society, 19, 1801-1826 (1999).
[41] A. Cabot; A. Marsal; J. Arbiol; J. R. Morante, “Bi2O3 as a selective sensing
material for NO detection, ” Sensors and Actuators B, 99, 74-89 (2004).
[42] Maeder*, T. (2013). Review of Bi2O3 based glasses for electronics and related
applications. International Materials Reviews, 58(1), 3-40.
[43] Hu, L.; Zhang, G.; Liu, M.; Wang, Q.; Dong, S.; & Wang, P. (2019). Application
of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA
removal by peroxymonosulfate activation. Science of the total environment, 647,
352-361.
[44] Qin, F.; Li, G.; Wang, R.; Wu, J.; Sun, H. & Chen, R. (2012). Template‐free
fabrication of Bi2O3 and (BiO) 2CO3 nanotubes and their application in water
treatment. Chemistry–A European Journal, 18(51), 16491-16497.
[45] Zhang, T.; Zeng, X.; Xia, Y.; Zhang, H.; Sun, B.; Wang, H. & Zhao, Y. (2019).
Morphology evolution and photocatalytic applications of W-doped Bi2O3 films
prepared using unique oblique angle co-sputtering technology. Ceramics
International, 45(17), 21968-21974.
[46] I. N. Sokolik, “Radiation Balance and Solar Radiation Spectrum,” Encyclopedia
of Ecology, 2951-2955 (2008).
[47] Matsubara, K.; Inoue, M.; Hagiwara, H. & Abe, T. (2019). Photocatalytic water
splitting over Pt-loaded TiO2 (Pt/TiO2) catalysts prepared by the polygonal barrel-
sputtering method. Applied Catalysis B: Environmental, 254, 7-14.
[48] Yu, J.; Qi, L. & Jaroniec, M. (2010). Hydrogen production by photocatalytic
water splitting over Pt/TiO2 nanosheets with exposed (001) facets. The Journal of
Physical Chemistry C, 114(30), 13118-13125.
[49] Schobert, H. (2013). Chemistry of fossil fuels and biofuels. Cambridge University
Press.
[50] Schneider, J. & Bahnemann, D. W. (2013). Undesired role of sacrificial reagents
in photocatalysis.
[51] 黃怡婷. (2015). 釩離子穩定 [delta] 相氧化鉍奈米粉末常溫合成法及其導
電及光催化性質 (Doctoral dissertation, National Cheng Kung University
Department of Resources Engineering).
[52] Melián, E. P.; Lopez, C. R.; Santiago, D. E.; Quesada-Cabrera, R.; Méndez, J. O.;
Rodríguez, J. D. & Díaz, O. G. (2016). Study of the photocatalytic activity of Pt-
modified commercial TiO2 for hydrogen production in the presence of common
organic sacrificial agents. Applied Catalysis A: General, 518, 189-197.
[53] Marchal, C.; Cottineau, T.; Méndez‐Medrano, M. G.; Colbeau‐Justin, C.; Caps,
V. & Keller, V. (2018). Au/TiO2–gC3N4 nanocomposites for enhanced
photocatalytic H2 production from water under visible light irradiation with very
low quantities of sacrificial agents. Advanced Energy Materials, 8(14), 1702142.
[54] Marchal, C., Piquet, A., Behr, M., Cottineau, T., Papaefthimiou, V., Keller, V., &
Caps, V. (2017). Activation of solid grinding-derived Au/TiO2 photocatalysts for
solar H2 production from water-methanol mixtures with low alcohol
content. Journal of catalysis, 352, 22-34.
[55] Kumaravel, V.; Imam, M. D.; Badreldin, A.; Chava, R. K.; Do, J. Y.; Kang, M. &
Abdel-Wahab, A. (2019). Photocatalytic hydrogen production: role of sacrificial
reagents on the activity of oxide, carbon, and sulfide catalysts. Catalysts, 9(3),
276.
[56] López, C. R.; Melián, E. P.; Méndez, J. O.; Santiago, D. E.; Rodríguez, J. D. &
Díaz, O. G. (2015). Comparative study of alcohols as sacrificial agents in H2
production by heterogeneous photocatalysis using Pt/TiO2 catalysts. Journal of
Photochemistry and Photobiology A: Chemistry, 312, 45-54.
[57] Zhou, L.; Wang, W.; Xu, H.; Sun, S. & Shang, M. (2009). Bi2O3 hierarchical
nanostructures: controllable synthesis, growth mechanism, and their application
in photocatalysis. Chemistry–A European Journal, 15(7), 1776-1782.
[58] Medina, J. C.; Bizarro, M.; Silva-Bermudez, P.; Giorcelli, M.; Tagliaferro, A. &
Rodil, S. E. (2016). Photocatalytic discoloration of methyl orange dye by δ-
Bi2O3 thin films. Thin Solid Films, 612, 72-81.
[59] Sudrajat, H. & Hartuti, S. (2019). Boosting electron population in δ-Bi2O3
through iron doping for improved photocatalytic activity. Advanced Powder
Technology, 30(5), 983-991.
[60] Tan, M. Y.; Tan, K. B.; Zainal, Z.; Khaw, C. C. & Chen, S. K. (2012). Subsolidus
formation and impedance spectroscopy studies of materials in the (Bi2O3) 1− x
(Y2O3) x binary system. Ceramics International, 38(4), 3403-3409.
[61] Li, G.; Mao, Y.; Li, L.; Feng, S.; Wang, M. & Yao, X. (1999). Solid solubility
and transport properties of nanocrystalline (CeO2) 1-x (BiO1.5) x by
hydrothermal conditions. Chemistry of materials, 11(5), 1259-1266.
[62] Han, M.; Sun, T.; Tan, P. Y.; Chen, X.; Tan, O. K. & Tse, M. S. (2013). m-BiVO
4@ γ-Bi2O3 core–shell p–n heterogeneous nanostructure for enhanced visible-
light photocatalytic performance. Rsc Advances, 3(47), 24964-24970.
[63] Turkoglu, O. & Belenli, I. (2003). Electrical conductivity of g-Bi2O3-V2O5
solid solution. Journal of thermal analysis and calorimetry, 73(3), 1001-1012.
[64] Lu, H.; Wang, S.; Zhao, L.; Dong, B.; Xu, Z. & Li, J. (2012). Surfactant-
assisted hydrothermal synthesis of Bi2O3 nano/microstructures with tunable
size. Rsc Advances, 2(8), 3374-3378
[65] Hosseini, S. M.; Alemi, A. & Rezvani, Z. (2015). Preparation and Study of
Bismuth Oxide Doped and co-Doped with Cobalt (III) and Holmium (III) via
Sol-Gel Method. Iranian Journal of Chemistry and Chemical Engineering
(IJCCE), 34(4), 53-59.
[66] Hao, W.; Gao, Y.; Jing, X.; Zou, W.; Chen, Y. & Wang, T. (2014). Visible light
photocatalytic properties of metastable γ-Bi2O3 with different morphologies.
Journal of Materials Science & Technology, 30(2), 192-196.
[67] Monnereau, O.; Tortet, L.; Llewellyn, P.; Rouquerol, F. & Vacquier, G. (2003).
Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new
route for this oxide?. Solid State Ionics, 157(1-4), 163-169.
[68] Gotić, M.; Popović, S. & Musić, S. (2007). Influence of synthesis procedure on
the morphology of bismuth oxide particles. Materials letters, 61(3), 709-714.
[69] Kumari, L.; Lin, J. H. & Ma, Y. R. (2007). Synthesis of bismuth oxide
nanostructures by an oxidative metal vapour phase deposition technique.
Nanotechnology, 18(29), 295605.
[70] Shuk, P.; Wiemhöfer, H. D.; Guth, U. & Göpel, W. (1996). New solid
electrolytes based on bismuth oxide. Ionics, 2(1), 46-52.
[71] Bang, J. H.; Choi, M. S., Mirzaei, A., Kwon, Y. J., Kim, S. S., Kim, T. W., &
Kim, H. W. (2018). Selective NO2 sensor based on Bi2O3 branched SnO2
nanowires. Sensors and Actuators B: Chemical, 274, 356-369.
[72] Qiu, Y.; Fan, H.; Chang, X.; Dang, H.; Luo, Q. & Cheng, Z. (2018). Novel
ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high
performance. Applied Surface Science, 434, 16-20.
[73] Jung, H. J., Park, S., Kim, K. D., Kim, T. H., Choi, M. Y., & Lee, K. Y. (2018).
Fabrication of porous β-Bi2O3 nanoplates by phase transformation of bismuth
precursor via low-temperature thermal decomposition process and their enhanced
photocatalytic activity. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 550, 37-45.
[74] Huang, Q.; Zhang, S.; Cai, C.; & Zhou, B. (2011). β-and α-Bi2O3 nanoparticles
synthesized via microwave-assisted method and their photocatalytic activity
towards the degradation of rhodamine B. Materials Letters, 65(6), 988-990.
[75] Chitrada, K. C.; Gakhar, R.; Chidambaram, D.; Aston, E. & Raja, K. S. (2016).
Enhanced performance of β-Bi2O3 by in-situ photo-conversion to Bi2O3-BiO2-
x composite photoanode for solar water splitting. Journal of The Electrochemical
Society, 163(7), H546.
[76] Wu, C.; Shen, L.; Huang, Q. & Zhang, Y. C. (2011). Hydrothermal synthesis and
characterization of Bi2O3 nanowires. Materials Letters, 65(7), 1134-1136.
[77] Abu-Dief, A. M. & Mohamed, W. S. (2017). α-Bi2O3 nanorods: synthesis,
characterization and UV-photocatalytic activity. Materials Research Express,
4(3), 035039.
[78] Yang, L. L.; Han, Q. F.; Zhao, J., Zhu, J. W.; Wang, X. & Ma, W. H. (2014).
Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method
and their photocatalytic activity. Journal of alloys and compounds, 614, 353-359.
[79] Han, M.; Zhu, S., Lu, S.; Song, Y.; Feng, T.; Tao, S.; ... & Yang, B. (2018). Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today, 19, 201-218.
[80] Wu, J.; Huang, Y.; Ye, W. & Li, Y. (2017). CO2 reduction: from the
electrochemical to photochemical approach. Advanced Science, 4(11), 1700194.
[81] Nah, Y. C.; Paramasivam, I. & Schmuki, P. (2010). Doped TiO2 and TiO2
nanotubes: synthesis and applications. ChemPhysChem, 11(13), 2698-2713.
[82] Zhu, J.; Deng, Z.; Chen, F.; Zhang, J.; Chen, H.; Anpo, M. ... & Zhang, L.
(2006). Hydrothermal doping method for preparation of Cr3+-TiO2
photocatalysts with concentration gradient distribution of Cr3+. Applied Catalysis B: Environmental, 62(3-4), 329-335.
[83] Zhang, X. & Liu, Q. (2008). Preparation and characterization of titania photocatalyst co-doped with boron, nickel, and cerium. Materials Letters, 62(17-18), 2589-2592.
[84] Ohno, T.; Mitsui, T.; & Matsumura, M. (2003). Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry letters, 32(4), 364-365.
[85] Jiang, S.; Wang, L.; Hao, W.; Li, W.; Xin, H.; Wang, W. & Wang, T. (2015). Visible-light photocatalytic activity of S-doped α-Bi2O3. The Journal of Physical Chemistry C, 119(25), 14094-14101.
[86] Faisal, M.; Ibrahim, A. A.; Bouzid, H.; Al-Sayari, S. A.; Al-Assiri, M. S., & Ismail, A. A. (2014). Hydrothermal synthesis of Sr-doped α-Bi2O3 nanosheets as highly efficient photocatalysts under visible light. Journal of Molecular Catalysis A: Chemical, 387, 69-75.
[87] Liang, J.; Zhu, G.; Liu, P.; Luo, X.; Tan, C.; Jin, L. & Zhou, J. (2014). Synthesis and characterization of Fe-doped β-Bi2O3 porous microspheres with enhanced visible light photocatalytic activity. Superlattices and Microstructures, 72, 272-282.
[88] Wu, S.; Fang, J.; Xu, X.; Liu, Z.; Zhu, X. & Xu, W. (2012). Microemulsion synthesis, characterization of highly visible light responsive rare earth‐doped Bi2O3. Photochemistry and photobiology, 88(5), 1205-1210.
[89] Liu, S. X.; Qu, Z. P.; Han, X. W. & Sun, C. L. (2004). A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 93, 877-884.
[90] Tun, P. P.; Wang, J.; Khaing, T. T.; Wu, X. & Zhang, G. (2020). Fabrication of functionalized plasmonic Ag loaded Bi2O3/montmorillonite nanocomposites for efficient photocatalytic removal of antibiotics and organic dyes. Journal of Alloys and Compounds, 818, 152836.
[91] Hu, J.; Li, H.; Huang, C.; Liu, M. & Qiu, X. (2013). Enhanced photocatalytic activity of Bi2O3 under visible light irradiation by Cu (II) clusters modification. Applied Catalysis B: Environmental, 142, 598-603.
[92] Zhu, G.; Que, W. & Zhang, J. (2011). Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation. Journal of alloys and compounds, 509(39), 9479-9486.
[93] Low, J.; Yu, J.; Jaroniec, M.; Wageh, S. & Al‐Ghamdi, A. A. (2017). Heterojunction photocatalysts. Advanced materials, 29(20), 1601694.
[94] Balachandran, S. & Swaminathan, M. (2012). Facile fabrication of heterostructured Bi2O3–ZnO photocatalyst and its enhanced photocatalytic activity. The Journal of Physical Chemistry C, 116(50), 26306-26312.
[95] Correia, F. C.; Calheiros, M.; Marques, J.; Ribeiro, J. M. & Tavares, C. J. (2018). Synthesis of Bi2O3/TiO2 nanostructured films for photocatalytic applications. Ceramics International, 44(18), 22638-22644.
[96] Ma, Z.; Hu, L.; Li, X.; Deng, L.; Fan, G. & He, Y. (2019). A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation. Ceramics International, 45(13), 15824-15833.
[97] Ge, M.; Li, Y.; Liu, L.; Zhou, Z. & Chen, W. (2011). Bi2O3− Bi2WO6 composite microspheres: hydrothermal synthesis and photocatalytic performances. The Journal of Physical Chemistry C, 115(13), 5220-5225.
[98] Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; & Li, C. (2008). Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angewandte Chemie, 120(9), 1790-1793.
[99] Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; ... & Sokol, A. A. (2013). Band alignment of rutile and anatase TiO 2. Nature materials, 12(9), 798-801.
[100] Wang, R.; Wan, J.; Jia, J.; Xue, W.; Hu, X.; Liu, E. & Fan, J. (2018). Synthesis of In2Se3 homojunction photocatalyst with α and γ phases for efficient photocatalytic performance. Materials & Design, 151, 74-82.
[101] Yu, J.; Yu, H.; Cheng, B.; Zhou, M., & Zhao, X. (2006). Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. Journal of Molecular Catalysis A: Chemical, 253(1-2), 112-118.
[102] Ohtani, B.; Prieto-Mahaney, O. O.; Li, D. & Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216(2-3), 179-182.
[103] Wang, G.; Xu, L.; Zhang, J.; Yin, T. & Han, D. (2012). Enhanced photocatalytic activity of powders (P25) via calcination treatment. International Journal of Photoenergy, 2012.
[104] Zhang, J.; Zhang, M.; Sun, R. Q. & Wang, X. (2012). A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angewandte Chemie International Edition, 51(40), 10145-10149.
[105] Li, Q. Y. & Zhao, Z. Y. (2015). Interfacial properties of α/β-Bi2O3 homo-junction from first-principles calculations. Physics Letters A, 379(42), 2766-2771.
[106] Sun, Y.; Wang, W.; Zhang, L. & Zhang, Z. (2012). Design and controllable synthesis of α-/γ-Bi2O3 homojunction with synergetic effect on photocatalytic activity. Chemical engineering journal, 211, 161-167.
[107] Lebedev, A.; Anariba, F.; Li, X.; Leng, D. S. H., & Wu, P. (2019). Rational design of visible-light-driven Pd-loaded α/β-Bi2O3 nanorods with exceptional cationic and anionic dye degradation properties. Solar Energy, 190, 531-542.
[108] Wu, Q.; Huang, F.; Zhao, M.; Xu, J.; Zhou, J. & Wang, Y. (2016). Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy, 24, 63-71.
[109] Xu, J.; Yue, J.; Niu, J.; Chen, M. & Teng, F. (2018). Fabrication of Bi2WO6 quantum dots/ultrathin nanosheets 0D/2D homojunctions with enhanced photocatalytic activity under visible light irradiation. Chinese Journal of Catalysis, 39(12), 1910-1918.
[110] Huang, H.; Xiao, K.; Du, X. & Zhang, Y. (2017). Vertically aligned nanosheets-array-like BiOI homojunction: three-in-one promoting photocatalytic oxidation and reduction abilities. ACS Sustainable Chemistry & Engineering, 5(6), 5253-5264.
[111] Méndez, J. O.; López, C. R.; Melián, E. P.; Díaz, O. G.; Rodríguez, J. D.; Hevia,
D. F. & Macías, M. (2014). Production of hydrogen by water photo-splitting
over commercial and synthesised Au/TiO2 catalysts. Applied Catalysis B:
Environmental, 147, 439-452.
[112] Wu, G.; Chen, T.; Su, W.; Zhou, G.; Zong, X.; Lei, Z. & Li, C. (2008). H2
production with ultra-low CO selectivity via photocatalytic reforming of
methanol on Au/TiO2 catalyst. International Journal of Hydrogen Energy,
33(4), 1243-1251.
[113] Xie, J.; Lü, X.; Chen, M.; Zhao, G.; Song, Y. & Lu, S. (2008). The synthesis,
characterization and photocatalytic activity of V (V), Pb (II), Ag (I) and Co (II)-
doped Bi2O3. Dyes and Pigments, 77(1), 43-47.
[114] Wu, S.; Fang, J.; Xu, W. & Cen, C. (2013). Hydrothermal synthesis,
characterization of visible‐light‐driven α‐Bi2O3 enhanced by Pr3+ doping.
Journal of Chemical Technology & Biotechnology, 88(10), 1828-1835.
校內:2026-08-10公開