| 研究生: |
白冠智 Pai, Kuan-Chih |
|---|---|
| 論文名稱: |
錫-鋅共晶無鉛銲錫球柵式陣列構裝
之電遷移研究 Electromigration in Ball Grid Array of Eutectic Sn-Zn Lead-Free Solders |
| 指導教授: |
林光隆
Lin, Kuang-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 電遷移 、無鉛銲錫 |
| 外文關鍵詞: | lead-free solder, electromigration |
| 相關次數: | 點閱:87 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係探討共晶錫鋅球柵式陣列構裝銲錫接點,於通電條件之下,電遷移效應(Electromigration)對於銲錫接點結構產生之影響,本實驗試片以兩個接點為一組進行通電,電子流方向互為相反,另選一接點不通電,只進行高溫時效實驗以作為通電實驗之對照組,進而瞭解通電對於銲錫接點為結構之影響。實驗前試片先研磨拋光至欲進行實驗之接點的一半,實驗是在環境溫度120℃下進行,通電接點通以0.75A電流,換算成平均電流密度為3.06x103 A/cm2,於不同通電時間將實驗暫停,將試片取出後,利用掃瞄式電子顯微鏡(SEM)進行表面微結構之觀察,以及藉由能量散佈光譜儀(EDS)分析其組成。
在高溫環境下發現新的富鋅相在表面產生,這是由於鋅傾向往表面擴散形成氧化鋅,擴散至表面之鋅原子會聚集形成新的富鋅相,由於鋅原子擴散受到電子風力作用,所以在不同電子流方向接點中形成之位置也不相同。另外,鋅原子會傾向擴散至界面與鎳層發生界面反應以降低自由能,當電子流方向與鋅原子往界面方向擴散相同時,會加速鎳鋅界面反應;反之,當方向相反時則會抑制界面反應,鎳鋅界面反應的產物為Ni5Zn21。在通電實驗中,由於基板與電路板中之銅線路尺寸大小差不多,不會造成銲錫接點中明顯熱梯度的產生,所以在本實驗中並不考慮熱遷移效應(Thermomigration)對銲錫接點之影響。
The present work investigated the behavior of electromigration in the Pb-free eutectic Sn-9Zn BGA (Ball Grid Array) solder joint at 120℃. In order to observe electromigration in situ, the joints were cross-sectioned in half, and polished before the current stressing. The average current stressing density applied was 3.06x103 A/cm2. The solder joint were examined at specified period of current stressing using SEM (Scanning Electron Microscope) and EDX (Energy Dispersive X-ray).
The electron wind force affected the diffusion direction of the Zn atoms. At higher ambient temperature, the Zn diffused toward the free surface, combining together to form new Zn rich phase and transforming into ZnO. The position of new Zn rich phase was different in the opposite electron direction joint. Besides, the Zn atoms diffused to the interface in order to react with the Ni layer. When the electron wind force direction was the same as the diffusion direction of the Zn atoms, the Ni-Zn interfacial reaction would be accelerated, whereas the interfacial reaction would be inhibited. Ni5Zn21 was formed during interfacial reaction. Because no temperature gradient exists across the solder joint, thermomigration behavior did not come into picture in the present study.
1. D. P. Seraphim, R. C. Lasky, and C. Y. Li,
Principles of Electronic Packaging, McGraw-Hill,
Inc., New York, pp. 2-4, 1989.
2. D. L. Deborah Chung, Material for Electronic
Packaging, Butterworth-Heinemann, Boston, pp.
3-4, 1995.
3. A. W. Gibson, S. Choi, T. R. Bieler and K. N. Subramanian, Environmental
Concerns and Materials Issues in Manufactured Solder Joints, Proceeding of the
1997 International Symposium on Electronics and the Environmental, pp. 245-251,
1997.
4. N. C. Lee, Getting Ready for Lead-free Solder, Soldering and Surface Mount
Technology, Vol. 9, No.2, pp. 65-69 , 1997.
5. C. M .L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, Properties of Lead-Free Solder
Alloys with Rare Earth Element Additions, Materials Science and Engineering,
Vol. 44, No, 1, pp. 1-44, 2004.
6. K. S. Kim, S. H. Huh and K. Suganuma, Effects of Fourth Alloying Additive on
Microstructures and Tensile Preperties of Sn-Ag-Cu Alloy and Joints with Cu,
Microelectronic Reliability, Vol. 43, pp. 259-267, 2003.
7. C. F. Chan, S. K. Lahiri, P. Yuan and J. B. H. How, An Intermetallic Study of
Solder Joints with Sn-Ag-Cu Lead-free Solder, Electronics Packaging Technology
Conference, pp. 72-80, 2000.
8. M. K. Huang, C. Lee and P. L. Wu, The Effects of Surface Finish on the
Reliability of Lead Free and Tin Lead chip Scale Package Solder Joints,
Soldering and Surface Mount Technology, Vol.17, No. 3, pp. 3-8, 2005.
9. B. A. Cook, I. E. Anderson, J. L. Harringa, and R. L. Terpstra, Effect of Heat
Treatment on the Electrical Resistivity of Near-Eutectic Sn-Ag-Cu Pb-Free
Solder Alloys, Vol. 31, No. 11, pp. 1190-1194, 2002.
10. M. Abtew and G. Selvaduray, Lead-Free Solders in Microelectronics, Materials
Science and Engineering, Vol. 27, pp.95-141, 2000.
11. S. Vaynman and M. E. Fine, Flux Development for Lead-free Solders Containing
Zinc, Journal of Electronic Materials, Vol.29. No.10, pp. 1160-1163, 2000.
12. P. Ratchev, B. Vandevelde, and I. D. Wolf, Reliability and Failure Analysis of
Sn-Ag-Cu Solder Interconnections for PSGA Packages on Ni/Au Surface Finish,
IEEE Transactions on Device and Materials Reliability, Vol.4, No.1, pp. 5-10,
2004.
13. R. P. Prasad, Surface Mount Technology, Van Nostrand Reinhold, New York, pp.
10-18, 1989.
14. J. H. Lau, Ball Grid Array Technology, McGraw-Hill, Inc., New York, pp. 34-38,
1995.
15. R. Strauss, SMT Soldering Handbook, Newnes, Oxford, pp. 11-13, 1998.
16. S. Jin, Developing Lead-Free Solders: A Challenge and Opportunity, JOM, Vol.
45, No. 7, p. 3, 1993.
17. J. J. Liu, H. Berg , Y. Wen , S. Mulgaonker , R. Bowlby and A. Mawer, Plastic
Ball Grid Array (PBGA) Overview, Materials Chemistry and Physics, Vol. 40, pp.
236-244, 1995.
18. S. K. Kang, W. K. Choi, M. J. Yim and D. Y. Shih, Studies of the Mechanical
and Electrical Properties of Lead-Free Solder Joints, Journal of Electronic
Materials, Vol. 31, No. 11, pp. 1292-1303, 2002.
19. C. Y. Liu, C. Chen, A. K. Mal and K. N. Tu, Direct Correlation between
Mechanical Failure and Metallurgical Reaction in Flip Chip Solder Joints,
Journal of Applied Physics, Vol.85, No.7, pp. 3882-3886, 1999.
20. C. H. Zhong and S. Yi, Solder Joint Reliability of Plastic Ball Grid Array,
Vol. 11, No. 1, pp. 44-48, 1997.
21. R. Strauss, SMT Soldering Handbook, Newnes, Oxford, pp. 37-38, 1998.
22. K. Suganuma, Advances in Lead-Free Electronics Soldering, Current Opinion in
Solid State and Materials Science, Vol. 5, No. 1, pp. 55-64, 2001.
23. K. Zeng and K. N. Tu, Six cases of reliability study of Pb-free Solder Joints
in Electronic Packaging Technology, Materials Science and Engineering, Vol.
38, pp. 55-105, 2002.
24. K. Suganuma, K. Niihara, T. Shoutoku and Y. Nakamura, Wetting and Interface
Microstructure Between Sn–Zn Binary Alloys and Cu, Journal of Materials
Research, Vol. 13, No. 10, pp. 2859-2865, 1998.
25. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, K. N. Tu, Ductile-to-Brittle
Transition in Sn–Zn Solder Joints Measured by Impact Test, Scripta
Materialia, Vol. 51, No. 7, pp. 641-645, 2004.
26. H. M. Lee; S. W. Yoon and B. J. Lee, Thermodynamic Prediction of Interface
Phases at Cu/Solder Joints, Journal of Electronic Materials, Vol. 27, No. 11,
pp. 1161-1166, 1998.
27. K. Suganuma, T. Murata, H. Noguchi and Yoshitaka Toyoda, Heat Resistance of
Sn–9Zn Solder/Cu Interface with or without Coating, Journal of Materials
Research, Vol. 15, No. 4, pp. 884-891, 2000.
28. C. Y. Lee, J. W. Yoon, Y. J. Kim and S. B. Jung, Interfacial Reactions and
Joint Reliability of Sn–9Zn Solder on Cu or Electrolytic Au/Ni/Cu BGA
Substrate, Microelectronic Engineering, Vol. 82, No. 3-4, pp. 561-568, 2005.
29. K. S. Kim, K. W. Ryu, C. H. Yu and J. M. Kim, The Formation and Growth of
Intermetallic Compounds and Shear Strength at Sn–Zn Solder/Au–Ni–Cu
Interfaces, Microelectronic Engineering, Vol. 45, No. 3-4, pp. 647-655, 2005.
30. C. W. Huang and K. L. Lin, Wetting Properties of and Interfacial Reactions in
Lead-free Sn-Zn Based Solders on Cu and Cu Plated with an Electroless Ni-P/Au
Layer, Materials Transactions, Vol. 45, No. 2, pp. 1-7, 2004.
31. K. S. Kim, J. M. Yang, C. H. Yu, I. O. Jung and H. H. Kim, Analysis on
Interfacial Reactions Between Sn–Zn Solders and the Au/Ni Electrolytic-Plated
Cu Pad, Journal of Alloys and Compounds, Vol. 379, No. 1-2, pp. 314–318,
2004.
32. M. Date, K. N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, Interfacial Reactions
and Impact Reliability of Sn–Zn Solder Joints on Cu or Electroless Au/Ni(P)
Bond-pads, Journal of Materials Research, Vol. 19, No. 10, pp. 2887-2896,
2004.
33. J. V. Ek and A. Lodder, Electromigration of Hydrogen in Metals, Defect and
Diffusion Forum, Vol. 115, pp. 3-4, 1994.
34. G. A. Rinne, Issues in Accelerated Electromigration of Solder Bumps,
Microelectronics Reliability, Vol. 43, No. 12, pp. 1975–1980, 2003.
35. E. C. C. Yeh, W. J. Choi, and K. N. Tu, Current-crowding-induced
Electromigration Failure in Flip Chip Solder Joints, Applied Physics Letters,
Vol. 80, No. 4, 2002.
36. T. Y. Lee, K. N. Tu, S. M. Kuo and D. R. Frear, Electromigration of Eutectic
SnPb Solder Interconnects for Flip Chip Technology, Journal of Applied
Physics, Vol. 89, No. 6, pp. 3189-3194, 2001.
37. T. Y. Lee, K. N. Tu and D. R. Frear, Electromigration of Eutectic SnPb and
SnAg3.8Cu0.7 Flip Chip Solder Bumps and Under-bump Metallization, Vol. 90, No.
9, pp. 4502-4508, 2001.
38. M. Tammaro, Investigation of the Temperature Dependence in Black' s Equation
Using Microscopic Electromigration Modeling, Journal of Applied Physics, Vol.
86, No. 7, pp. 3612-3616, 1999.
39. M. McCormack and S. Jin, Progress in the Design of New Lead-Free Solder
Alloys, JOM, Vol. 45, No. 7, pp. 36-40, 1993.
40. T. B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals,
Metals Park, Vol. 1, p. 338, 1986.
41. S. Vaynman and M. E. Fine, Development of Fluxes For Lead-free Solders
Containing Zinc, Scripta Materialia, Vol. 41, No. 12, pp. 1269–1271, 1999.
42. H. Ye, C. Basaran, and D. Hopkins, Thermomigration in Pb–Sn Solder Joints
under Joule Heating during Electric Current Stressing, Applied Physics
Letters, Vol. 82, No. 7, pp. 1045-1047, 2003.
43. S. H. Chiu, T. L. Shao, C. Chen, D. J. Yao and C. Y. Hsu, Infrared Microscopy
of Hot Spots Induced by Joule Heating in Flip-chip SnAg Solder Joints under
Accelerated Electromigration, Applied Physics Letters, Vol. 88, No. 2, pp.
0221101-0221102, 2006.
44. H. Ye, C. Basaran and D. C. Hopkins, Mechanical Degradation of
Microelectronics Solder Joints under Current Stressing, International Journal
of Solids and Structures Vol. 40, No. 26, pp. 7269–7284, 2003.
45. A. T. Huang, A. M. Gusak, K. N. Tu, and Y. S. Lai, Thermomigration in SnPb
Composite Flip Chip Solder Joints, Applied Physics Letters, Vol. 88, No. 14,
pp. 1419111-1419113, 2006.
46. T. B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals,
Metals Park, Vol. 2, p. 2086, 1986.
47. F. Vnuk, M. Sahoo, D. Baragar and R. W. Swith, Mechanical Properties of the
Sn-Zn Eutectic Alloys, Journal of Materials Science Vol. 15, pp. 2573-2583,
1980.
48. H. Kaya, E. Cadirli, and M. Gunduz, Effects of Growth Rates and Temperature
Gradients on the Spacing and Undercooling in the Broken-Lamellar Eutectic
Growth (Sn-Zn Eutectic System), Journal of Materials Engineering and
Performance, Vol. 12, No.4, pp. 456-469,2003.
49. C. M. Chen and S. W. Chen, Electromigration Effect Upon Zn/Ni and Interfacial
Reactions, Journal of Electronic Materials, Vol. 29, No. 10, pp. 1222-1228,
2000.
50. M. Y. Chiu, S. S. Wang, and T. H. Chuang, Intermetallic Compounds Formed
during Interfacial Reactions between Liquid Sn-8Zn-3Bi Solders and Ni
Substrates, Journal of Electronic Materials, Vol. 31, No. 5, pp. 495-499,
2002.
51. T. B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals,
Metals Park, Vol. 2, p. 778, 1986.
52. F. H. Fuang and H. B. Huntingtun, Diffusion of Sb124, Cd109, Sn113 and Zn65 in
tin, Physical Review B, Vol. 9, No. 4, pp. 1479-1488, 1974.
53. A. Christou, Electromigration and Electroinc Device Degradation, Wiley, New
York, pp. 28-31, 1994.
54. C. R. Black well, The Electronic Packaging Handbook, CRC Press, Boca Raton, p.
2-1.