簡易檢索 / 詳目顯示

研究生: 白冠智
Pai, Kuan-Chih
論文名稱: 錫-鋅共晶無鉛銲錫球柵式陣列構裝 之電遷移研究
Electromigration in Ball Grid Array of Eutectic Sn-Zn Lead-Free Solders
指導教授: 林光隆
Lin, Kuang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 76
中文關鍵詞: 電遷移無鉛銲錫
外文關鍵詞: lead-free solder, electromigration
相關次數: 點閱:87下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係探討共晶錫鋅球柵式陣列構裝銲錫接點,於通電條件之下,電遷移效應(Electromigration)對於銲錫接點結構產生之影響,本實驗試片以兩個接點為一組進行通電,電子流方向互為相反,另選一接點不通電,只進行高溫時效實驗以作為通電實驗之對照組,進而瞭解通電對於銲錫接點為結構之影響。實驗前試片先研磨拋光至欲進行實驗之接點的一半,實驗是在環境溫度120℃下進行,通電接點通以0.75A電流,換算成平均電流密度為3.06x103 A/cm2,於不同通電時間將實驗暫停,將試片取出後,利用掃瞄式電子顯微鏡(SEM)進行表面微結構之觀察,以及藉由能量散佈光譜儀(EDS)分析其組成。
    在高溫環境下發現新的富鋅相在表面產生,這是由於鋅傾向往表面擴散形成氧化鋅,擴散至表面之鋅原子會聚集形成新的富鋅相,由於鋅原子擴散受到電子風力作用,所以在不同電子流方向接點中形成之位置也不相同。另外,鋅原子會傾向擴散至界面與鎳層發生界面反應以降低自由能,當電子流方向與鋅原子往界面方向擴散相同時,會加速鎳鋅界面反應;反之,當方向相反時則會抑制界面反應,鎳鋅界面反應的產物為Ni5Zn21。在通電實驗中,由於基板與電路板中之銅線路尺寸大小差不多,不會造成銲錫接點中明顯熱梯度的產生,所以在本實驗中並不考慮熱遷移效應(Thermomigration)對銲錫接點之影響。

    The present work investigated the behavior of electromigration in the Pb-free eutectic Sn-9Zn BGA (Ball Grid Array) solder joint at 120℃. In order to observe electromigration in situ, the joints were cross-sectioned in half, and polished before the current stressing. The average current stressing density applied was 3.06x103 A/cm2. The solder joint were examined at specified period of current stressing using SEM (Scanning Electron Microscope) and EDX (Energy Dispersive X-ray).
    The electron wind force affected the diffusion direction of the Zn atoms. At higher ambient temperature, the Zn diffused toward the free surface, combining together to form new Zn rich phase and transforming into ZnO. The position of new Zn rich phase was different in the opposite electron direction joint. Besides, the Zn atoms diffused to the interface in order to react with the Ni layer. When the electron wind force direction was the same as the diffusion direction of the Zn atoms, the Ni-Zn interfacial reaction would be accelerated, whereas the interfacial reaction would be inhibited. Ni5Zn21 was formed during interfacial reaction. Because no temperature gradient exists across the solder joint, thermomigration behavior did not come into picture in the present study.

    中文摘要..........................................Ι 英文摘..........................................ΙΙ 致謝......................................... ΙΙΙ 總目錄..........................................ΙⅤ 表目錄..........................................ⅤΙ 圖目錄........................................ⅤΙΙ 第壹章 緒論........................................1 1-1 BGA電子構裝技術................................1 1-1-1 BGA電子構裝之製程與元件結構..................1 1-1-2 BGA電子構裝技術之特色與應用..................2 1-2 電子產品無鉛化之發展...........................7 1-3 銲錫接合之界面反應............................11 1-3-1 鋅/金界面反應...............................12 1-3-2 鋅/鎳界面反應...............................12 1-4 電遷移........................................12 1-4-1 電遷移的理論模型............................12 1-4-2 銲錫接點之電遷移行為........................16 1-5 研究目的......................................16 第貳章 實驗方法與步驟.............................18 2-1 實驗構想......................................18 2-2 電遷移實驗試片準備............................18 2-3 電遷移實驗裝置................................22 2-4 電遷移實驗條件................................27 2-5 通電實驗......................................27 2-6 通電試片阻抗量測..............................27 2-7 通電試片溫度量測..............................30 2-8 試片分析......................................30 第參章 結果與討論.................................32 3-1 通電試片之電性變化............................32 3-2 通電試片之溫度變化............................32 3-3 通電對銲錫隆點微觀結構之影響..................35 3-3-1 通電造成鋅在表面之聚集......................39 3-3-2 富鋅相之變化................................45 3-3-3 通電造成孔洞的生成..........................49 3-4 通電對試片界面之影響..........................49 3-4-1 通電對Au-Zn 化合物之影響....................49 3-4-2 通電後Sn-Zn 突起物的生成....................52 3-4-3 通電後Ni-Zn 突起物的生成....................59 第肆章 結論.......................................69 參考文獻..........................................70 自述..............................................76

    1. D. P. Seraphim, R. C. Lasky, and C. Y. Li,
    Principles of Electronic Packaging, McGraw-Hill,
    Inc., New York, pp. 2-4, 1989.
    2. D. L. Deborah Chung, Material for Electronic
    Packaging, Butterworth-Heinemann, Boston, pp.
    3-4, 1995.
    3. A. W. Gibson, S. Choi, T. R. Bieler and K. N. Subramanian, Environmental
    Concerns and Materials Issues in Manufactured Solder Joints, Proceeding of the
    1997 International Symposium on Electronics and the Environmental, pp. 245-251,
    1997.
    4. N. C. Lee, Getting Ready for Lead-free Solder, Soldering and Surface Mount
    Technology, Vol. 9, No.2, pp. 65-69 , 1997.
    5. C. M .L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, Properties of Lead-Free Solder
    Alloys with Rare Earth Element Additions, Materials Science and Engineering,
    Vol. 44, No, 1, pp. 1-44, 2004.
    6. K. S. Kim, S. H. Huh and K. Suganuma, Effects of Fourth Alloying Additive on
    Microstructures and Tensile Preperties of Sn-Ag-Cu Alloy and Joints with Cu,
    Microelectronic Reliability, Vol. 43, pp. 259-267, 2003.
    7. C. F. Chan, S. K. Lahiri, P. Yuan and J. B. H. How, An Intermetallic Study of
    Solder Joints with Sn-Ag-Cu Lead-free Solder, Electronics Packaging Technology
    Conference, pp. 72-80, 2000.
    8. M. K. Huang, C. Lee and P. L. Wu, The Effects of Surface Finish on the
    Reliability of Lead Free and Tin Lead chip Scale Package Solder Joints,
    Soldering and Surface Mount Technology, Vol.17, No. 3, pp. 3-8, 2005.
    9. B. A. Cook, I. E. Anderson, J. L. Harringa, and R. L. Terpstra, Effect of Heat
    Treatment on the Electrical Resistivity of Near-Eutectic Sn-Ag-Cu Pb-Free
    Solder Alloys, Vol. 31, No. 11, pp. 1190-1194, 2002.
    10. M. Abtew and G. Selvaduray, Lead-Free Solders in Microelectronics, Materials
    Science and Engineering, Vol. 27, pp.95-141, 2000.
    11. S. Vaynman and M. E. Fine, Flux Development for Lead-free Solders Containing
    Zinc, Journal of Electronic Materials, Vol.29. No.10, pp. 1160-1163, 2000.
    12. P. Ratchev, B. Vandevelde, and I. D. Wolf, Reliability and Failure Analysis of
    Sn-Ag-Cu Solder Interconnections for PSGA Packages on Ni/Au Surface Finish,
    IEEE Transactions on Device and Materials Reliability, Vol.4, No.1, pp. 5-10,
    2004.
    13. R. P. Prasad, Surface Mount Technology, Van Nostrand Reinhold, New York, pp.
    10-18, 1989.
    14. J. H. Lau, Ball Grid Array Technology, McGraw-Hill, Inc., New York, pp. 34-38,
    1995.
    15. R. Strauss, SMT Soldering Handbook, Newnes, Oxford, pp. 11-13, 1998.
    16. S. Jin, Developing Lead-Free Solders: A Challenge and Opportunity, JOM, Vol.
    45, No. 7, p. 3, 1993.
    17. J. J. Liu, H. Berg , Y. Wen , S. Mulgaonker , R. Bowlby and A. Mawer, Plastic
    Ball Grid Array (PBGA) Overview, Materials Chemistry and Physics, Vol. 40, pp.
    236-244, 1995.
    18. S. K. Kang, W. K. Choi, M. J. Yim and D. Y. Shih, Studies of the Mechanical
    and Electrical Properties of Lead-Free Solder Joints, Journal of Electronic
    Materials, Vol. 31, No. 11, pp. 1292-1303, 2002.
    19. C. Y. Liu, C. Chen, A. K. Mal and K. N. Tu, Direct Correlation between
    Mechanical Failure and Metallurgical Reaction in Flip Chip Solder Joints,
    Journal of Applied Physics, Vol.85, No.7, pp. 3882-3886, 1999.
    20. C. H. Zhong and S. Yi, Solder Joint Reliability of Plastic Ball Grid Array,
    Vol. 11, No. 1, pp. 44-48, 1997.
    21. R. Strauss, SMT Soldering Handbook, Newnes, Oxford, pp. 37-38, 1998.
    22. K. Suganuma, Advances in Lead-Free Electronics Soldering, Current Opinion in
    Solid State and Materials Science, Vol. 5, No. 1, pp. 55-64, 2001.
    23. K. Zeng and K. N. Tu, Six cases of reliability study of Pb-free Solder Joints
    in Electronic Packaging Technology, Materials Science and Engineering, Vol.
    38, pp. 55-105, 2002.
    24. K. Suganuma, K. Niihara, T. Shoutoku and Y. Nakamura, Wetting and Interface
    Microstructure Between Sn–Zn Binary Alloys and Cu, Journal of Materials
    Research, Vol. 13, No. 10, pp. 2859-2865, 1998.
    25. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, K. N. Tu, Ductile-to-Brittle
    Transition in Sn–Zn Solder Joints Measured by Impact Test, Scripta
    Materialia, Vol. 51, No. 7, pp. 641-645, 2004.
    26. H. M. Lee; S. W. Yoon and B. J. Lee, Thermodynamic Prediction of Interface
    Phases at Cu/Solder Joints, Journal of Electronic Materials, Vol. 27, No. 11,
    pp. 1161-1166, 1998.
    27. K. Suganuma, T. Murata, H. Noguchi and Yoshitaka Toyoda, Heat Resistance of
    Sn–9Zn Solder/Cu Interface with or without Coating, Journal of Materials
    Research, Vol. 15, No. 4, pp. 884-891, 2000.
    28. C. Y. Lee, J. W. Yoon, Y. J. Kim and S. B. Jung, Interfacial Reactions and
    Joint Reliability of Sn–9Zn Solder on Cu or Electrolytic Au/Ni/Cu BGA
    Substrate, Microelectronic Engineering, Vol. 82, No. 3-4, pp. 561-568, 2005.
    29. K. S. Kim, K. W. Ryu, C. H. Yu and J. M. Kim, The Formation and Growth of
    Intermetallic Compounds and Shear Strength at Sn–Zn Solder/Au–Ni–Cu
    Interfaces, Microelectronic Engineering, Vol. 45, No. 3-4, pp. 647-655, 2005.
    30. C. W. Huang and K. L. Lin, Wetting Properties of and Interfacial Reactions in
    Lead-free Sn-Zn Based Solders on Cu and Cu Plated with an Electroless Ni-P/Au
    Layer, Materials Transactions, Vol. 45, No. 2, pp. 1-7, 2004.
    31. K. S. Kim, J. M. Yang, C. H. Yu, I. O. Jung and H. H. Kim, Analysis on
    Interfacial Reactions Between Sn–Zn Solders and the Au/Ni Electrolytic-Plated
    Cu Pad, Journal of Alloys and Compounds, Vol. 379, No. 1-2, pp. 314–318,
    2004.
    32. M. Date, K. N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, Interfacial Reactions
    and Impact Reliability of Sn–Zn Solder Joints on Cu or Electroless Au/Ni(P)
    Bond-pads, Journal of Materials Research, Vol. 19, No. 10, pp. 2887-2896,
    2004.
    33. J. V. Ek and A. Lodder, Electromigration of Hydrogen in Metals, Defect and
    Diffusion Forum, Vol. 115, pp. 3-4, 1994.
    34. G. A. Rinne, Issues in Accelerated Electromigration of Solder Bumps,
    Microelectronics Reliability, Vol. 43, No. 12, pp. 1975–1980, 2003.
    35. E. C. C. Yeh, W. J. Choi, and K. N. Tu, Current-crowding-induced
    Electromigration Failure in Flip Chip Solder Joints, Applied Physics Letters,
    Vol. 80, No. 4, 2002.
    36. T. Y. Lee, K. N. Tu, S. M. Kuo and D. R. Frear, Electromigration of Eutectic
    SnPb Solder Interconnects for Flip Chip Technology, Journal of Applied
    Physics, Vol. 89, No. 6, pp. 3189-3194, 2001.
    37. T. Y. Lee, K. N. Tu and D. R. Frear, Electromigration of Eutectic SnPb and
    SnAg3.8Cu0.7 Flip Chip Solder Bumps and Under-bump Metallization, Vol. 90, No.
    9, pp. 4502-4508, 2001.
    38. M. Tammaro, Investigation of the Temperature Dependence in Black' s Equation
    Using Microscopic Electromigration Modeling, Journal of Applied Physics, Vol.
    86, No. 7, pp. 3612-3616, 1999.
    39. M. McCormack and S. Jin, Progress in the Design of New Lead-Free Solder
    Alloys, JOM, Vol. 45, No. 7, pp. 36-40, 1993.
    40. T. B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals,
    Metals Park, Vol. 1, p. 338, 1986.
    41. S. Vaynman and M. E. Fine, Development of Fluxes For Lead-free Solders
    Containing Zinc, Scripta Materialia, Vol. 41, No. 12, pp. 1269–1271, 1999.
    42. H. Ye, C. Basaran, and D. Hopkins, Thermomigration in Pb–Sn Solder Joints
    under Joule Heating during Electric Current Stressing, Applied Physics
    Letters, Vol. 82, No. 7, pp. 1045-1047, 2003.
    43. S. H. Chiu, T. L. Shao, C. Chen, D. J. Yao and C. Y. Hsu, Infrared Microscopy
    of Hot Spots Induced by Joule Heating in Flip-chip SnAg Solder Joints under
    Accelerated Electromigration, Applied Physics Letters, Vol. 88, No. 2, pp.
    0221101-0221102, 2006.
    44. H. Ye, C. Basaran and D. C. Hopkins, Mechanical Degradation of
    Microelectronics Solder Joints under Current Stressing, International Journal
    of Solids and Structures Vol. 40, No. 26, pp. 7269–7284, 2003.
    45. A. T. Huang, A. M. Gusak, K. N. Tu, and Y. S. Lai, Thermomigration in SnPb
    Composite Flip Chip Solder Joints, Applied Physics Letters, Vol. 88, No. 14,
    pp. 1419111-1419113, 2006.
    46. T. B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals,
    Metals Park, Vol. 2, p. 2086, 1986.
    47. F. Vnuk, M. Sahoo, D. Baragar and R. W. Swith, Mechanical Properties of the
    Sn-Zn Eutectic Alloys, Journal of Materials Science Vol. 15, pp. 2573-2583,
    1980.
    48. H. Kaya, E. Cadirli, and M. Gunduz, Effects of Growth Rates and Temperature
    Gradients on the Spacing and Undercooling in the Broken-Lamellar Eutectic
    Growth (Sn-Zn Eutectic System), Journal of Materials Engineering and
    Performance, Vol. 12, No.4, pp. 456-469,2003.
    49. C. M. Chen and S. W. Chen, Electromigration Effect Upon Zn/Ni and Interfacial
    Reactions, Journal of Electronic Materials, Vol. 29, No. 10, pp. 1222-1228,
    2000.
    50. M. Y. Chiu, S. S. Wang, and T. H. Chuang, Intermetallic Compounds Formed
    during Interfacial Reactions between Liquid Sn-8Zn-3Bi Solders and Ni
    Substrates, Journal of Electronic Materials, Vol. 31, No. 5, pp. 495-499,
    2002.
    51. T. B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals,
    Metals Park, Vol. 2, p. 778, 1986.
    52. F. H. Fuang and H. B. Huntingtun, Diffusion of Sb124, Cd109, Sn113 and Zn65 in
    tin, Physical Review B, Vol. 9, No. 4, pp. 1479-1488, 1974.
    53. A. Christou, Electromigration and Electroinc Device Degradation, Wiley, New
    York, pp. 28-31, 1994.
    54. C. R. Black well, The Electronic Packaging Handbook, CRC Press, Boca Raton, p.
    2-1.

    下載圖示 校內:2007-07-14公開
    校外:2007-07-14公開
    QR CODE