簡易檢索 / 詳目顯示

研究生: 陳則甫
Chen, Tse-Pu
論文名稱: 氧化鋅奈米結構之感測器應用
Sensor Applications of ZnO-based Nanostructures
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 134
中文關鍵詞: 氧化鋅奈米柱奈米牆自組裝單分子膜感測器可撓基板
外文關鍵詞: ZnO, Nanorod, Nanowall, SAM, Sensor, Flexible substrate
相關次數: 點閱:128下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅材料因為具有直接能隙、大的激子束縛能、無毒、低價等特性,所以被視為有潛力的光電元件材料。本論文分成四個部分,分別討論一維和二維的氧化鋅奈米結構的紫外光和氣體感測器特性。
    首先,我們研究氧化鋅奈米柱的長徑比對紫外光感測器有甚麼影響。在此之前,氧化鋅奈米柱被製作成許多的元件,如場效電晶體、感測器等,但沒有對氧化鋅奈米柱的長度和寬度對薄膜式元件的特性影響程度作研究。因此我們藉由水熱法控制不同的成長濃度和成長時間製作不同長徑比的奈米柱,並將其應用於紫外光感測器,探討奈米柱對元件的影響程度。實驗的分析結果顯示,在濃度為0.05 M,成長時間為1.5小時的條件下,氧化鋅奈米柱紫外光感測器有最大的紫外光對可見光的拒斥比,約為56833。
    氧化鋅材料本身很容易形成氧空缺,對元件來說,會有一個漏電路徑,造成電流的上升。因此,我們提出一個簡單的辦法來解決此問題,此方式是用APTMS來修飾氧化鋅表面,經過APTMS的修飾後,可以發現電流有明顯的下降,藉由XPS的分析,氧空缺的確都消失,連表面的汙染物都被移除了。除了薄膜,我們也用APTMS修飾奈米柱結構,但在電性方面只有輕微的下降,這是因為APTMS在奈米柱表面形成不同的化學鍵結(O–Si–O/Si–OH和O-Si-O),且氧空缺無法完全的移除,所以才會導致此情形發生。我們是第一個藉由此方式應用於感測器上。
    接下來,我們將奈米柱紫外光感測器製作在可撓基板上。此感測器光暗電流比可達到1.74 103,響應拒斥比達到95。而在不同曲率半徑下,發現在曲率半徑0.2公分的情況下光暗電流表現無明顯差異,電流在同一數量級內些微下降,表示在不同撓曲半徑下仍有很高的穩定性。最後我們也研究元件在不同光功率下的光電流及光增益改變,以及時間反應和雜訊等表現。元件的雜訊等效功率和檢測度為1.72 10-11 W 和 3.08 1011 cmHz0.5W-1。
    一般來說,成長一維和二維的氧化鋅奈米結構都需要先在基板上鍍金屬顆粒或是沉積一層種子層,藉由氣-液-固法或是相似的晶格結構成長奈米結構,且需要較昂貴的機台和高溫成長方式。因此,使用一個新穎製程,以製程簡單、快速、便宜、較低溫的奈米結構製程方式有意義的。經過無數次的實驗,我們成功利用爐管在玻璃基板上合成出奈米牆結構,且無使用金屬觸媒或是種子層。在450度C,氧氣/氮氣比為10/200 sccm,製程壓力維持20 torr,製作出良好品質的氧化鋅奈米牆。接著將其製作成紫外光和氣體感測器,氧化鋅奈米牆的紫外光感測器對紫外光敏感、有很快的反應速度,在雜訊方面也有不錯的特性。雜訊等效功率和檢測度分為1.87 10-10 W 和 3.38 109 cm•Hz0.5•W-1。而在氣體感測器方面,對甲烷有較高的反應,且有著不錯的反應速度。我們用此方式做出的奈米牆感測器都有不錯的特性,甚至比別的團隊製作出的元件特性來的要好。

    Due to direct band gap, large exciton binding energy, non-toxic, low price, ZnO-based semiconductors have been regarded as one of the potential materials for optoelectronic devices. The dissertation can be divided into four parts, and separately discuss the fabrication and optoelectronic of one- and two-dimensional ZnO nanostructure devices.
    In first study, various aspect ratio (length divided to diameter) of NR are synthesized by hydrothermal method and applied at ZnO MSM UV sensor. Before that no study evidence the aspect ratio of ZnO NR whether affects the I-V characteristics of ZnO NR UV sensor or not. Therefore, various growth concentration and growth time can change the aspect ratios of NR. UV sensor with ZnO NR grown by aqueous concentration of 0.05 M and growth time of 1.5 h has the best I-V characteristic than others. The UV-to-visible rejection ratio is about 56833.
    As we know, ZnO eases to form oxygen vacancy, which could cause a leakage current path for ZnO device. Therefore, a simple surface treatment process is developed for improving its surface defects. We immerse the ZnO film and NR UV sensor into the 3-aminopropyltrimethoxysilane (APTMS). The APTMS-modified ZnO film UV sensor has lower dark current than that without modification. According to the XPS spectra, the ZnO film before and after APTMS-modified have different bonds. From O 1s and C 1s core level spectra, it can be known that the oxygen vacancy and surface contamination of ZnO could be modified by APTMS. Therefore, APTMS molecule is a good material to modify the surface of ZnO. The APTMS-modified ZnO NR UV sensor has lightly lower dark current than ZnO NR sensor without modification. According to the XPS spectra, oxygen vacancy can not be modified totally, and can be found it has O–Si–O/Si–OH and O-Si-O bond. The both reasons cause the I-V characteristics of ZnO NR sensor with APTMS-modified could not be improved too much.
    The third thesis discusses the study of ZnO NR UV sensor prepared on flexible substrate. The ZnO NRs are grown by hydrothermal method with low temperature. The ZnO NR sensor can have lower dark current and larger UV-to-visible rejection ratio than ZnO film sensor. The Iphoto / Idark ratio of ZnO NR sensor can reach 1.74 103 and the UV-to-visible rejection ratio of ZnO NR sensor is 95. I-V and responsivity characteristics of the flexible device under bending are also measured. There is no more than one order difference in dark current and responsivity when the device is bended from plane to 0.2 cm radius of curvature and this result shows that our device has high stability under bending. Finally, the photocurrents and photoconductive gains under various UV intensities, the photoresponse, and the noise characteristics of the device are performed. The noise equivalent power and the detectivity of ZnO NR UV sensor are 1.72 10-11 W and 3.08 1011 cmHz0.5W-1, respectively.
    As we know, the one- and two-dimensional ZnO nanostructures must deposit a metal-catalyst or a seed layer on the substrate before synthesizing ZnO nanostructures, and mostly have to use expensive machine and high growth temperature. Therefore, developing a simple, low cost, rapid, catalyst-free, non-toxic, and low-temperature process to synthesize ZnO nanostructures is meaningful. In this thesis, ZnO nanowalls-film directly grows on a glass substrate without catalyst or seed layers by furnace. After analysis of the experimental results, the ZnO nanowalls-film could be synthesized at 450 ℃ with O2/N2 gas ratio of 10/200 sccm and growth pressure of 20 torr. Then, a UV sensor and a gas sensor are fabricated on ZnO nanowalls-film using an interdigital metal mask. The ZnO nanowalls-film shows a strong UV emission and a preferred c-axis orientation with a hexagonal structure. The measurement of the ZnO nanowalls-film UV sensor shows a high sensitivity to UV light, rapid rise and decay time, a good UV-to-visible rejection ratio, and a good flicker noise characteristic. This shows the strong potential of ZnO nanowalls-film for using in UV sensor. At an applied bias of 2 V, the noise equivalent power and the normalized detectivity of the ZnO nanowalls-film UV sensor are 1.87 10-10 W and 3.38 109 cm•Hz0.5•W-1, respectively. Measurements of methane sensor show a high sensitivity to methane gas, and rapid response and recovery time. These unique characteristics are attributed to the high surface-to-volume ratio of the ZnO nanowalls. Thus, the ZnO nanowalls-film is a potential candidate as a methane gas sensor owing to its good performance. The characteristics of ZnO nanowalls-film devices are better than other literatures.

    Abstract (Chinese) I Abstract (English) III Acknowledgement VI Contents VII Table captions IX Figure captions X Chapter 1 Introduction 1 1.1 Background of ZnO Material and Related Optoelectronic Devices 1 1.2 Organization of this Dissertation 3 Chapter 2 Relevant Theory and Experimental Equipment 7 2.1 Theory of UV Sensor 7 2.2 Spectral Response 9 2.3 Types of Low Frequency Noise 9 2.4 Horizontal Vacuum Furnace 12 2.5 X-Ray Diffraction (XRD) System 13 2.6 Photoluminescence (PL) Spectrum System 13 2.7 Scanning Electron Microscope (SEM) 14 2.8 Field Emission Transmission Electron Microscopy (TEM) 15 Chapter 3 UV Sensor with Different Aspect Ratio of ZnO NR Arrays 18 3.1 Introduction 18 3.2 The Synthesis of ZnO Nanorod and the Fabrication of UV Sensor 19 3.3 Material Investigation of ZnO NR Arrays 20 3.4 I-V Characteristics of UV Sensor with Different Aspect Ratio of ZnO NR 21 3.5 Summary 22 Chapter 4 Effect of Surface Modification by Self-Assembled Monolayer (SAM) on the ZnO Film and NR UV Sensor 36 4.1 Introduction 36 4.2 ZnO Film and NR Growth and Device Fabrication 37 4.3 Material Investigation 38 4.4 I-V Characteristics of SAM modification ZnO UV Sensor 42 4.5 Summary 44 Chapter 5 Study of ZnO NR UV Sensor Prepared on Flexible Substrate 62 5.1 Introduction 62 5.2 Synthesis of ZnO NR and Device Fabrication 63 5.3 Material Investigation of ZnO NR Arrays 63 5.4 I-V Characteristics of UV Sensor with ZnO NR Arrays on Flexible Substrate 65 5.5 Summary 71 Chapter 6 Growth of ZnO Nanowalls-Film and Application for UV Sensor and Gas Sensor 87 6.1 Introduction 87 6.2 Synthesis of ZnO Nanowalls-Film and Device Fabrication 89 6.3 The SEM Images of ZnO Nanowalls-Film 90 6.3.1 Growth Temperature 90 6.3.2 Growth Pressure 90 6.3.3 Growth Time 91 6.4 Growth Mechanism of ZnO Nanowalls-Film 92 6.5 Material Investigation of ZnO Nanowalls-Film 93 6.6 I-V Characteristics of ZnO Nanowalls-Film UV Sensor 95 6.7 Potential Application as Gas Sensors 99 6.7.1 Methane Gas Sensing 101 6.7.2 Carbon Monoxide (CO) Gas Sensing 103 6.7.3 Hydrogen Gas Sensing 103 6.8 Summary 104 Chapter 7 Conclusion and Future Work 120 7.1 Conclusion 120 7.2 Future Work 121 7.2.1 ZnO NR Are Grown by Furnace 121 7.2.2 Devices with SAM-Modified 122 Reference 124

    [1] J. M. Hvam, “Direct recording of optical-gain spectra from ZnO,” Journal of Applied Physics, vol. 49, no. 6, pp. 3124-3126, 1978.
    [2] D. C. Look, “Recent advances in ZnO materials and devices,” Materials Science and Engineering: B, vol. 80, no. 1–3, pp. 383-387, 2001.
    [3] F. Solis-Pomar, E. Martinez, M. F. Melendrez, and E. Perez-Tijerina, “Growth of vertically aligned ZnO nanorods using textured ZnO films,” Nanoscale Research Letters, vol. 6, no. 524, pp. 1-11, 2011.
    [4] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V Nitride, and II-VI ZnSe-based semiconductor-device technologies,” Journal of Applied Physics, vol. 76, no. 3, pp. 1363-1398, 1994.
    [5] A. F. M. Anwar, S. L. Wu, and R. T. Webster, “Temperature dependent transport properties in GaN, A1(x)Ga(1-x)N, and InxGa1-xN semiconductors,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 567-572, 2001.
    [6] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, “Electrical properties of bulk ZnO,” Solid State Communications, vol. 105, no. 6, pp. 399-401, 1998.
    [7] C. P. Dietrich, M. Lange, M. Stolzel, and M. Grundmann, “Microwire (Mg,Zn)O/ZnO and (Mg,Zn)O/(Cd,Zn)O non-polar quantum well heterostructures for cavity applications,” Applied Physics Letters, vol. 100, no. 3, pp. 031110, 2012.
    [8] J. Zhang, H. P. Zhao, and N. Tansu, “Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid-and deep-ultraviolet spectral regimes,” Applied Physics Letters, vol. 98, no. 17, pp. 171111, 2011.
    [9] H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Optics Express, vol. 19, no. 14, pp. A991-A1007, 2011.
    [10] G. Shukla, “ZnO/MgZnO p-n junction light-emitting diodes fabricated on sapphire substrates by pulsed laser deposition technique,” Journal of Physics D-Applied Physics, vol. 42, no. 7, pp. 075105, 2009.
    [11] J. Ahn, H. Park, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Nanostructured n-ZnO / thin film p-silicon heterojunction light-emitting diodes,” Optics Express, vol. 19, no. 27, pp. 26006-26010, 2011.
    [12] Y. H. Leung, Z. B. He, L. B. Luo, C. H. A. Tsang, N. B. Wong, W. J. Zhang, and S. T. Lee, “ZnO nanowires array p-n homojunction and its application as a visible-blind ultraviolet photodetector,” Applied Physics Letters, vol. 96, no. 5, pp. 053102, 2010.
    [13] F. Sun, C. X. Shan, S. P. Wang, B. H. Li, Z. Z. Zhang, C. L. Yang, and D. Z. Shen, “Ultraviolet photodetectors fabricated from ZnO p-i-n homojunction structures,” Materials Chemistry and Physics, vol. 129, no. 1-2, pp. 27-29, 2011.
    [14] J. Kim, J. H. Yun, C. H. Kim, Y. C. Park, J. Y. Woo, J. Park, J. H. Lee, J. Yi, and C. S. Han, “ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect,” Nanotechnology, vol. 21, no. 11, pp. 115205, 2010.
    [15] L. Qin, C. Shing, and S. Sawyer, “Metal-semiconductor-metal ultraviolet photodetectors based on zinc-oxide colloidal nanoparticles,” IEEE Electron Device Letters, vol. 32, no. 1, pp. 51-53, 2011.
    [16] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors,” Journal of Applied Physics, vol. 79, no. 10, pp. 7433-7473, 1996.
    [17] T. Yen, J. Yun, S. J. Kim, A. Cartwright, and W. A. Anderson, “Photocurrent enhancement in nanocrystalline-ZnO/Si heterojunction metal-semiconductor-metal photodetectors,” Electrochemical and Solid-State Letters, vol. 14, no. 10, pp. H415-H418, 2011.
    [18] D. Li, X. Sun, H. Song, Z. Li, Y. Chen, G. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-semiconductor-metal ultraviolet photodetectors,” Applied Physics Letters, vol. 98, no. 1, pp. 011108, 2011.
    [19] Z. L. Wang, and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, vol. 312, no. 5771, pp. 242-246, 2006.
    [20] S. S. Kwon, W. K. Hong, G. Jo, J. Maeng, T. W. Kim, S. Song, and T. Lee, “Piezoelectric effect on the electronic transport characteristics of ZnO nanowire field-effect transistors on bent flexible substrates,” Advanced Materials, vol. 20, no. 23, pp. 4557-4562, 2008.
    [21] J. Zhou, Y. D. Gu, P. Fei, W. J. Mai, Y. F. Gao, R. S. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Letters, vol. 8, no. 9, pp. 3035-3040, 2008.
    [22] Z. L. Wang, C. S. Lao, Q. Kuang, M. C. Park, and Y. L. Deng, “Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors,” Applied Physics Letters, vol. 90, no. 26, pp. 262107, 2007.
    [23] J. Yu, S. J. Ippolito, W. Wlodarski, M. Strano, and K. Kalantar-Zadeh, “Nanorod based Schottky contact gas sensors in reversed bias condition,” Nanotechnology, vol. 21, no. 26, PP. 265502, 2010.
    [24] J. B. Han, F. R. Fan, C. Xu, S. S. Lin, M. Wei, X. Duan, and Z. L. Wang, “ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices,” Nanotechnology, vol. 21, no. 40, pp. 405203, 2010.
    [25] Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Materials Science & Engineering R-Reports, vol. 64, no. 3-4, pp. 33-71, 2009.
    [26] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, and W. Huang, “Growth mechanism of tubular ZnO formed in aqueous solution,” Nanotechnology, vol. 17, no. 6, pp. 1740-1744, 2006.
    [27] X. Y. Zhang, J. Y. Dai, H. C. Ong, N. Wang, H. L. W. Chan, and C. L. Choy, “Hydrothermal synthesis of oriented ZnO nanobelts and their temperature dependent photoluminescence,” Chemical Physics Letters, vol. 393, no. 1-3, pp. 17-21, 2004.
    [28] T. R. Zhang, W. J. Dong, R. N. Njabon, V. K. Varadan, and Z. R. Tian, “Kinetically probing site-specific heterogeneous nucleation and hierarchical growth of nanobranches,” Journal of Physical Chemistry C, vol. 111, no. 37, pp. 13691-13695, 2007.
    [29] J. Liu, X. Huang, Y. Li, J. Duan, and H. Ai, “Large-scale synthesis of flower-like ZnO structures by a surfactant-free and low-temperature process,” Materials Chemistry and Physics, vol. 98, no. 2–3, pp. 523-527, 2006.
    [30] S. W. Liu, C. Li, J. G. Yu, and Q. J. Xiang, “Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers,” Crystengcomm, vol. 13, no. 7, pp. 2533-2541, 2011.
    [31] J. B. Liang, J. W. Liu, Q. Xie, S. Bai, W. C. Yu, and Y. T. Qian, “Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles,” Journal of Physical Chemistry B, vol. 109, no. 19, pp. 9463-9467, 2005.
    [32] Aldert van der Ziel, “Noise in solid state devices and circuits”, John Wiley & Sons publication, 1986.
    [33] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, “Neutral-donor–bound-exciton complexes in ZnO crystals,” Physical Review B, vol. 57, no. 19, pp. 12151-12155, 1998.
    [34] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “AlxGa1-xN : Si Schottky barrier photodiodes with fast response and high detectivity,” Applied Physics Letters, vol. 73, no. 15, pp. 2146-2148, 1998.
    [35] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Applied Physics Letters, vol. 68, no. 5, pp. 643-645, 1996.
    [36] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, E. K. Suh, K. S. Nahm, H. J. Lee, D. H. Lim, and A. Yoshikawa, “Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers,” Applied Physics Letters, vol. 77, no. 16, pp. 2557-2559, 2000.
    [37] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou, and D. J. Smith, “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy,” Applied Physics Letters, vol. 86, no. 4, pp. 043108, 2005.
    [38] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Advanced Materials, vol. 14, no. 2, pp. 158-160, 2002.
    [39] Y. S. Huang, Y. Y. Chen, and T. T. Wu, “A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods,” Nanotechnology, vol. 21, no. 9, pp. 095503, 2010.
    [40] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Applied Physics Letters, vol. 84, no. 18, pp. 3654-3656, 2004.
    [41] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nature Materials, vol. 4, no. 1, pp. 42-46, 2005.
    [42] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Applied Physics Letters, vol. 72, no. 25, pp. 3270-3272 1998.
    [43] A. Leonardy, W. Z. Hung, D. S. Tsai, C. C. Chou, and Y. S. Huang, “Structural features of SnO2 nanowires and raman spectroscopy analysis,” Crystal Growth & Design, vol. 9, no. 9, pp. 3958-3963, 2009.
    [44] Y. Han, G. Wu, M. Wang, and H. Chen, “Hybrid ultraviolet photodetectors with high photosensitivity based on TiO2 nanorods array and polyfluorene,” Applied Surface Science, vol. 256, no. 5, pp. 1530-1533, 2009.
    [45] S. V. Pol, V. G. Pol, V. G. Kessler, G. A. Seisenbaeva, L. A. Solovyov, and A. Gedanken, “Synthesis of WO3 nanorods by reacting WO(OMe)(4) under autogenic pressure at elevated temperature followed by annealing,” Inorganic Chemistry, vol. 44, no. 26, pp. 9938-9945, 2005.
    [46] W. K. Hong, B. J. Kim, T. W. Kim, G. Jo, S. Song, S. S. Kwon, A. Yoon, E. A. Stach, and T. Lee, “Electrical properties of ZnO nanowire field effect transistors by surface passivation,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 313, pp. 378-382, 2008.
    [47] M. A. Aziz, M. Oyama, and I. V. Kityk, “Pump-probe third harmonic generation kinetics of gold nanoparticle-attached aluminum-doped zinc oxide substrate,” Materials Letters, vol. 74, pp. 226-228, 2012.
    [48] T. W. Zeng, I. S. Liu, K. T. Huang, H. C. Liao, C. T. Chien, D. K. P. Wong, C. W. Chen, J. J. Wu, Y. F. Chen, and W. F. Su, “Effects of bifunctional linker on the optical properties of ZnO nanocolumn-linker-CdSe quantum dots heterostructure,” Journal of Colloid and Interface Science, vol. 358, no. 2, pp. 323-328, 2011.
    [49] N. Satyanarayana, and S. K. Sinha, “Tribology of PFPE overcoated self-assembled monolayers deposited on Si surface,” Journal of Physics D-Applied Physics, vol. 38, no. 18, pp. 3512-3522, 2005.
    [50] J. C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, “Systematic XPS studies of metal oxides, hydroxides and peroxides,” Physical Chemistry Chemical Physics, vol. 2, no. 6, pp. 1319-1324, 2000.
    [51] C. Faure, J. Clatot, L. Teulé-Gay, G. Campet, C. Labrugère, M. Nistor, and A. Rougier, “Co-sputtered ZnO:Si thin films as transparent conductive oxides,” Thin Solid Films, vol. 524, pp. 151-156, 2012.
    [52] M. Arroyo-Hernández, R. J. Martin-Palma, J. Pérez-Rigueiro, J. P. Garcıa-Ruiz, J. L. Garcia-Fierro, and J. M. Martinez-Duart, “Biofunctionalization of surfaces of nanostructured porous silicon,” Materials Science and Engineering: C, vol. 23, no. 6–8, pp. 697-701, 2003.
    [53] H. L. Cabibil, V. Pham, J. Lozano, H. Celio, R. M. Winter, and J. M. White, “Self-organized fibrous nanostructures on poly[(aminopropyl)siloxane] films studied by atomic force microscopy,” Langmuir, vol. 16, no. 26, pp. 10471-10481, 2000.
    [54] I. George, P. Viel, C. Bureau, J. Suski, and G. Lécayon, “Study of the silicon/γ-APS/pyralin assembly interfaces by X-ray photoelectron spectroscopy,” Surface and Interface Analysis, vol. 24, no. 11, pp. 774-780, 1996.
    [55] D. Schmeisser, M. Tallarida, K. Henkel, K. Muller, D. Mandal, D. Chumakov, and E. Zschech, “Characterization of oxidic and organic materials with synchrotron radiation based XPS and XAS,” Materials Science-Poland, vol. 27, no. 1, pp. 141-157, 2009.
    [56] M. R. Davidson, S. A. Mitchell, and R. H. Bradley, “UV-ozone modification of plasma-polymerised acetonitrile films for enhanced cell attachment,” Colloids and Surfaces B: Biointerfaces, vol. 34, no. 4, pp. 213-219, 2004.
    [57] T. G. G. Maffeis, M. W. Penny, A. Castaing, O. J. Guy, and S. P. Wilks, “XPS investigation of vacuum annealed vertically aligned ultralong ZnO nanowires,” Surface Science, vol. 606, no. 1–2, pp. 99-103, 2012.
    [58] S. J. Xiao, M. Textor, N. D. Spencer, and H. Sigrist, “Covalent attachment of cell-adhesive, (arg-gly-asp)-containing peptides to titanium surfaces,” Langmuir, vol. 14, no. 19, pp. 5507-5516, 1998.
    [59] N. E. Quaranta, J. Soria, V. C. Corberán, and J. L. G. Fierro, “Selective oxidation of ethanol to acetaldehyde on V2O5/TiO2/SiO2 Catalysts,” Journal of Catalysis, vol. 171, no. 1, pp. 1-13, 1997.
    [60] M. J. Webb, P. Palmgren, P. Pal, O. Karis, and H. Grennberg, “A simple method to produce almost perfect graphene on highly oriented pyrolytic graphite,” Carbon, vol. 49, no. 10, pp. 3242-3249, 2011.
    [61] C. K. M. Heo, and J. W. Bunting, “Nucleophilicity towards a vinylic carbon atom: rate constants for the addition of amines to the 1-methyl-4-vinylpyridinium cation in aqueous solution,” Journal of the Chemical Society, Perkin Transactions 2, no. 11, pp. 2279-2290, 1994.
    [62] G. A. Zhu, R. S. Yang, S. H. Wang, and Z. L. Wang, “Flexible high-output nanogenerator based on lateral ZnO nanowire array,” Nano Letters, vol. 10, no. 8, pp. 3151-3155, 2010.
    [63] A. Nadarajah, R. C. Word, J. Meiss, and R. Konenkamp, “Flexible inorganic nanowire light-emitting diode,” Nano Letters, vol. 8, no. 2, pp. 534-537, 2008.
    [64] M. Matsumura, and R. P. Camata, “Pulsed laser deposition and photoluminescence measurements of ZnO thin films on flexible polyimide substrates,” Thin Solid Films, vol. 476, no. 2, pp. 317-321, 2005.
    [65] C. H. Lee, Y. J. Kim, Y. J. Hong, S. R. Jeon, S. Bae, B. H. Hong, and G. C. Yi, “Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films,” Advanced Materials, vol. 23, no. 40, pp. 4614-4619, 2011.
    [66] S. Chu, D. D. Li, P. C. Chang, and J. G. Lu, “Flexible dye-sensitized solar cell based on vertical ZnO nanowire arrays,” Nanoscale Research Letters, vol. 6, no. 38, pp. 1-4, 2011.
    [67] J. O. Hwang, D. H. Lee, J. Y. Kim, T. H. Han, B. H. Kim, M. Park, K. No, and S. O. Kim, “Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission,” Journal of Materials Chemistry, vol. 21, no. 10, pp. 3432-3437, 2011.
    [68] Bube, R. H. PhotoconductiVity of Solids; Wiley: New York, 1960; p 461.
    [69] A. Vasudevan, S. Jung, and T. Ji, “On the responsivity of UV detectors based on selectively grown ZnO nanorods,” IEEE Sensors Journal, vol. 12, no. 5, pp. 1317-1325, 2012.
    [70] A. Loffl, H. Kerber, H. W. Schock, O. Kluth, L. Houben, B. Rech, and H. Wagner, “Texture etched aluminium doped zinc oxide-stuctural and electrical properties,” Solid State Phenomena, vol. 67-8, pp. 277-282, 1999.
    [71] J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Solar Energy, vol. 77, no. 6, pp. 917-930, 2004.
    [72] A. Rose, Concepts in Photoconductivity and Allied Problems, Krieger Publishing Company, New York 1978.
    [73] W. Wu, and Z. L. Wang, “Piezotronic nanowire-based resistive switches as programmable electromechanical memories,” Nano Letters, vol. 11, no. 7, pp. 2779-2785, 2011.
    [74] J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric gated diode of a single ZnO nanowire,” Advanced Materials, vol. 19, no. 6, pp. 781-784, 2007.
    [75] Sze SM Physics of Semiconductor Devices, 2nd ed.;Wiley: New York, 1981.
    [76] M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, “Strain: a solution for higher carrier mobility in nanoscale MOSFETs,” Annual Review of Materials Research, vol. 39, no. 1, pp. 203-229, 2009.
    [77] M. H. Lee, S. T. Chang, T. H. Wu, and W. N. Tseng, “Driving current enhancement of strained Ge (110) p-type tunnel FETs and anisotropic effect,” IEEE Electron Device Letters, vol. 32, no. 10, pp. 1355-1357, 2011.
    [78] Y. C. Yeo, “Enhancing CMOS transistor performance using lattice-mismatched materials in source/drain regions,” Semiconductor Science and Technology, vol. 22, no. 1, pp. S177-S182, 2007.
    [79] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, "A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors," IEEE International Electron Devices Meeting, Vol. 03, pp. 11.6.1-11.6.3, 2003.
    [80] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection,” Applied Physics Letters, vol. 70, no. 17, pp. 2277-2279, 1997.
    [81] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays,” Applied Physics Letters, vol. 94, no. 20, pp. 203106, 2009.
    [82] M. I. B. Utama, F. J. Belarre, C. Magen, B. Peng, J. Arbiol, and Q. H. Xiong, “Incommensurate van der waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates,” Nano Letters, vol. 12, no. 4, pp. 2146-2152, 2012.
    [83] B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, and H. Koinuma, “Formation of highly aligned ZnO tubes on sapphire (0001) substrates,” Applied Physics Letters, vol. 84, no. 20, pp. 4098-4100, 2004.
    [84] B. Fang, C. H. Zhang, W. Zhang, and G. F. Wang, “A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode,” Electrochimica Acta, vol. 55, no. 1, pp. 178-182, 2009.
    [85] X. D. Wang, C. J. Summers, and Z. L. Wang, “Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,” Nano Letters, vol. 4, no. 3, pp. 423-426, 2004.
    [86] X. D. Wang, J. H. Song, and Z. L. Wang, “Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices,” Journal of Materials Chemistry, vol. 17, no. 8, pp. 711-720, 2007.
    [87] Y. Yang, J. J. Qi, W. Guo, Y. S. Gu, Y. H. Huang, and Y. Zhang, “Transverse piezoelectric field-effect transistor based on single ZnO nanobelts,” Physical Chemistry Chemical Physics, vol. 12, no. 39, pp. 12415-12419, 2010.
    [88] S. Xu, C. Xu, Y. Liu, Y. F. Hu, R. S. Yang, Q. Yang, J. H. Ryou, H. J. Kim, Z. Lochner, S. Choi, R. Dupuis, and Z. L. Wang, “Ordered nanowire array blue/near-UV light emitting diodes,” Advanced Materials, vol. 22, no. 42, pp. 4749-4753, 2010.
    [89] Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced growth of asymmetric nanocantilever arrays on polar surfaces,” Physical Review Letters, vol. 91, no. 18, pp. 185502, 2003.
    [90] S. W. Kim, H. K. Park, M. S. Yi, N. M. Park, J. H. Park, S. H. Kim, S. L. Maeng, C. J. Choi, and S. E. Moon, “Epitaxial growth of ZnO nanowall networks on GaN/sapphire substrates,” Applied Physics Letters, vol. 90, no. 3, pp. 033107, 2007.
    [91] J. Maeng, M. Jo, S. J. Kang, M. K. Kwon, G. Jo, T. W. Kim, J. Seo, H. Hwang, D. Y. Kim, S. J. Park, and T. Lee, “Transient reverse current phenomenon in a p-n heterojunction comprised of poly(3,4-ethylene-dioxythiophene): poly(styrene-sulfonate) and ZnO nanowall,” Applied Physics Letters, vol. 93, no. 12, pp. 123109, 2008.
    [92] B. Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, and T. Okada, “ZnO nanowalls grown with high-pressure PLD and their applications as field emitters and UV detectors,” Journal of Physical Chemistry C, vol. 113, no. 25, pp. 10975-10980, 2009.
    [93] C. H. Lee, Y. J. Kim, J. Lee, Y. J. Hong, J. M. Jeon, M. Kim, S. Hong, and G. C. Yi, “Scalable network electrical devices using ZnO nanowalls,” Nanotechnology, vol. 22, no. 5, pp. 055205, 2011.
    [94] M. Q. Israr, J. R. Sadaf, O. Nur, M. Willander, S. Salman, and B. Danielsson, “Chemically fashioned ZnO nanowalls and their potential application for potentiometric cholesterol biosensor,” Applied Physics Letters, vol. 98, no. 25, pp. 253705, 2011.
    [95] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, “Growth of epitaxial nanowires at the junctions of nanowalls,” Science, vol. 300, no. 5623, pp. 1249-1249, 2003.
    [96] M. M. Brewster, M. Y. Lu, S. K. Lim, M. J. Smith, X. Zhou, and S. Gradecak, “The growth and optical properties of ZnO nanowalls,” Journal of Physical Chemistry Letters, vol. 2, no. 15, pp. 1940-1945, 2011.
    [97] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Advanced Materials, vol. 13, no. 2, pp. 113-116, 2001.
    [98] S. W. Kim, S. Fujita, M. S. Yi, and D. H. Yoon, “Catalyst-free synthesis of ZnO nanowall networks on Si3N4/Si substrates by metalorganic chemical vapor deposition,” Applied Physics Letters, vol. 88, no. 25, 2006.
    [99] Y. J. Hong, H. S. Jung, J. Yoo, Y. J. Kim, C. H. Lee, M. Kim, and G. C. Yi, “Shape-controlled nanoarchitectures using nanowalls,” Advanced Materials, vol. 21, no. 2, pp. 222-226, 2009.
    [100] B. Q. Cao, W. P. Cai, H. B. Zeng, and G. T. Duan, “Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates,” Journal of Applied Physics, vol. 99, no. 7, pp. 073516, 2006.
    [101] Z. G. Yin, N. F. Chen, R. X. Dai, L. Liu, X. W. Zhang, X. H. Wang, J. L. Wu, and C. L. Chai, “On the formation of well-aligned ZnO nanowall networks by catalyst-free thermal evaporation method,” Journal of Crystal Growth, vol. 305, no. 1, pp. 296-301, 2007.
    [102] A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, and S. Gwo, “Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength,” Applied Physics Letters, vol. 88, no. 10, pp. 103107, 2006.
    [103] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” Applied Physics Letters, vol. 86, no. 12, pp. 123117, 2005.
    [104] J. M. Bao, I. Shalish, Z. H. Su, R. Gurwitz, F. Capasso, X. W. Wang, and Z. F. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Research Letters, vol. 6, no. 404, pp. 1-7, 2011.
    [105] T. Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, R. D. Dupuis, and J. C. Campbell, “Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors,” Electronics Letters, vol. 36, no. 18, pp. 1581-1583, 2000.
    [106] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981, p. 747.
    [107] G. Kiriakidis, K. Moschovis, I. Kortidis, and V. Binas, “Ultra-low gas sensing utilizing metal oxide thin films,” Vacuum, vol. 86, no. 5, pp. 495-506, 2012.
    [108] C. L. Chen, Y. D. Xu, G. J. Li, and X. X. Guo, “Oxidative coupling of methane by carbon dioxide: A highly C-2 selective La2O3/ZnO catalyst,” Catalysis Letters, vol. 42, no. 3-4, pp. 149-153, 1996.
    [109] S. Roy, C. K. Sarkar, and P. Bhattacharyya, “Ultrasensitive Pd-Ag/ZnO/nickel alloy-based metal-insulator-metal methane sensor on micromachined silicon substrate,” IEEE Sensors Journal, vol. 12, no. 7, pp. 2526-2527, 2012.
    [110] N. F. Hamedani, A. R. Mahjoub, A. A. Khodadadi, and Y. Mortazavi, “Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH(4) and ethanol,” Sensors and Actuators B-Chemical, vol. 156, no. 2, pp. 737-742, 2011.
    [111] P. Bhattacharyya, P. K. Basu, B. Mondal, and H. Saha, “A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane,” Microelectronics Reliability, vol. 48, no. 11-12, pp. 1772-1779, 2008.
    [112] P. Mitra, and A. K. Mukhopadhyay, “ZnO thin film as methane sensor,” Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 55, no. 3, pp. 281-285, 2007.
    [113] P. Bhattacharyya, P. K. Basu, C. Lang, H. Saha, and S. Basu, “Noble metal catalytic contacts to sol–gel nanocrystalline zinc oxide thin films for sensing methane,” Sensors and Actuators B: Chemical, vol. 129, no. 2, pp. 551-557, 2008.
    [114] Y. D. Wang, J. B. Chen, and X. H. Wu, “Preparation and gas-sensing properties of perovskite-type SrFeO3 oxide,” Materials Letters, vol. 49, no. 6, pp. 361-364, 2001.
    [115] C. M. Ghimbeu, J. Schoonman, M. Lumbreras, and M. Siadat, “Electrostatic spray deposited zinc oxide films for gas sensor applications,” Applied Surface Science, vol. 253, no. 18, pp. 7483-7489, 2007.
    [116] P. K. Basu, N. Saha, S. K. Jana, H. Saha, A. L. Spetz, and S. Basu, “Schottky junction methane sensors using electrochemically grown nanocrystalline-nanoporous ZnO thin films,” Journal of Sensors, vol. 2009, pp. 790476, 2009.
    [117] D. Barreca, D. Bekermann, E. Comini, A. Devi, R. A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, and E. Tondello, “1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases,” Sensors and Actuators B: Chemical, vol. 149, no. 1, pp. 1-7, 2010.
    [118] C. Y. Liu, C. F. Chen, and J. P. Leu, “Fabrication and CO sensing properties of mesostructured ZnO gas sensors,” Journal of the Electrochemical Society, vol. 156, no. 1, pp. J16-J19, 2009.
    [119] N. Le Hung, E. Ahn, S. Park, H. Jung, H. Kim, S. K. Hong, D. Kim, and C. Hwang, “Synthesis and hydrogen gas sensing properties of ZnO wirelike thin films,” Journal of Vacuum Science & Technology A, vol. 27, no. 6, pp. 1347-1351, 2009.
    [120] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Applied Physics Letters, vol. 80, no. 22, pp. 4232-4234, 2002.
    [121] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angewandte Chemie-International Edition, vol. 42, no. 26, pp. 3031-3034, 2003.

    下載圖示 校內:2018-07-05公開
    校外:2018-07-05公開
    QR CODE