簡易檢索 / 詳目顯示

研究生: 劉得煜
Liu, Te-Yu
論文名稱: 金/鉻/矽薄膜系統之奈米壓痕行為及其微觀結構變化之研究
Nanoindentation Behaviour and Microstructural Evolution of Au/Cr/Si Thin Films
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 120
中文關鍵詞: 奈米壓痕金矽共晶相熱處理金/鉻/矽薄膜系統
外文關鍵詞: annealing, Au/Cr/Si thin films, eutectic phase, nanoindentation
相關次數: 點閱:100下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用奈米壓痕的技術量測Au/Cr/Si薄膜系統的機械性質並且探討奈米壓痕深度及加熱溫度對Au/Cr/Si薄膜系統其微觀機械性質及薄膜介面金矽共晶相形成之影響。本實驗利用半導體製程於 (100) 方向之矽晶圓上製作800 nm與1800nm兩種厚度之金薄膜,選取並切割實驗試片後,以奈米壓痕器分別對試片進行1000 nm及1500 nm深度之奈米壓痕試驗,以瞭解壓痕深度對微觀機械性質之影響。再將經奈米壓痕測試之試片分別加熱至250℃、350℃及450℃,並持溫二分鐘,藉以比較未加熱及不同加熱條件下,其微觀組織之變化及薄膜界面金矽共晶相形成之特徵與機制。隨後,透過所發展之定位陣列技術定位出原有之奈米壓痕位置,並利用聚焦離子束顯微鏡切割出穿透式電子顯微鏡之觀測試片。
    巨觀機械性質的量測結果顯示:硬度與楊氏模數曲線之趨勢受壓痕尺寸效應 (在壓痕深度小於50 nm前) 及基材效應 (在壓痕深度大於金薄膜厚度20% 後) 所影響。在另外一方面,Au/Cr/Si薄膜系統的微觀結構及金矽共晶相的形成受壓痕深度及加熱溫度之影響甚巨,由微觀結構的觀測結果可知:奈米壓痕會在壓痕區域內造成金薄膜的塑性變形,而塑性變形越大金的擠出現象 (pile up) 就越明顯。然而,升高的溫度會使金薄膜內的原子擴散更快速劇烈,造成擠出現象消失,並使金原子往奈米壓痕區擴散。此外,在熱處理前,Au/Cr/Si薄膜系統的分層結構明顯,經過熱處理後,鉻薄膜的矽化作用開始,且矽化的程度與熱處理溫度成正比,矽化作用會造成鉻薄膜消失使金薄膜與矽基材直接接觸。當鉻薄膜完全矽化之後,超過金矽共晶點363℃的熱處理溫度會更進一步使金矽合金共晶相形成。
    金與矽之共晶溫度雖然在 363 ℃,但實務上若要形成金矽合金,往往須加熱至 500 ℃以上,並且施以外加壓力,再持溫一段時間,如此,金原子方有時間擴散進入矽基材,進而形成金矽共晶相,但溫度過高的接合技術,將可能使原本的電子元件失去功效,且較長的共晶形成時間將會使應用成本提高,因此如何降低製程溫度與縮短金矽合金共晶相形成的時間是目前研究改進的目標。由本實驗的微觀結構觀察可知,金矽合金共晶相的形成是因為超過金矽合晶共晶點的熱處理溫度 (450℃) 與適當的壓痕變形 (對800 nm厚度的金薄膜進行1000 nm深度的奈米壓痕),所以可利用此特性在特殊選擇的區域創造出金矽合金共晶相,強化特殊區域接合黏著的強度,達成類似「點焊」之效果。此結果亦說明了奈米壓痕改變薄膜與基材間之表面能量、內應力及原子排列,經由外加溫度之作用可加速金、矽介面之原子擴散形成金矽共晶相,進一步強化薄膜界面黏著之效果。

    The nano-mechanical properties of as-deposited thin Au/Cr films deposited on Si (100) substrates are investigated using a nanoindentation technique. The thin films are prepared by depositing a Cr layer on a Si (100) substrate using an evaporation deposition technique and then depositing Au films with thicknesses of 800 nm or 1800 nm over the Cr layer at a temperature of 150°C. The fabricated films are indented to maximum depths of 1000 nm or 1500 nm, and selected specimens are then annealed at temperatures of 250°C, 350°C or 450°C for 2 min. The hardness and Young’s modulus of the Au/Cr/Si thin films are found to vary with the nanoindentation depth. The overall tendencies of the hardness and Young’s modulus curves are governed by the indentation size effect for indentation depths of less than 50 nm and by the substrate effect for indentation depths greater than 20% of the thin film thickness. The microstructural evolutions of the as-deposited and annealed nanoindented specimens are examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The microstructural observations reveal that nanoindentation induces an atomic reorganisation, and results in the formation of high-stress plastic deformation regions beneath the indenter. However, the diffusion of Au atoms is enhanced at higher temperatures, and hence the annealing process prompts a homogenisation of these high stress areas. In the as-deposited samples, a clear delamination of the Au, Cr and Si layers is observed in the interfacial region of the thin film. However, in the annealed samples, silicidation of the Cr layer takes place, resulting in the formation of isolated nano-islands of Cr. A direct contact occurs between the Au film and the Si substrate in the regions between the island structures resulting in a significant improvement in the interfacial bonding strength. Following annealing at the highest temperature of 450°C, Au-Si eutectic phase is formed in the indentation zone of the thin film indented to a depth of 1000 nm. This phase further enhances the strength of the interfacial bond. Overall, the present results suggest that nanoindentation to a depth of 1000 nm followed by annealing at a temperature of 450°C represents the optimum process for the fabrication of IC devices and MEMS packages.

    中文摘要 I ABSTRACT III 誌謝 V 總目錄 VI 圖目錄 X 符號說明 XXII 第一章 前言 1 第二章 理論與文獻回顧 4 2-1奈米壓痕理論 4 2-1-1薄膜機械性質之量測 4 2-1-2初始卸載勁度與接觸面積之決定 6 2-1-3連續勁度量測法 (Continuous stiffness measurement, CSM) 8 2-2奈米壓痕實驗前應注意的校正 9 2-2-1探針面積函數的校正 9 2-2-2熱漂移校正 10 2-2-3機械撓性校正 11 2-2-4靜電力校正 11 2-3影響薄膜量測之因素 12 2-3-1尺寸效應 (Indentation size effect) 12 2-3-2表面粗糙度效應 (Surface roughness) 12 2-3-3基材效應 (Substrate effect) 13 2-3-4擠出和沉陷效應 (Pile-up & sink-in effect) 13 2-4聚焦離子束顯微技術 (Focused ion beam, FIB) 14 2-5 金矽合金性質介紹 15 2-5-1金矽合金之特性與形成機制 15 2-5-2共晶接合之製程 16 2-5-3金矽合金之應用 17 第三章 實驗方法與步驟 24 3-1實驗流程 24 3-2實驗儀器與設備 24 3-2-1熱蒸鍍機 (Thermal evaporator) 25 3-2-2電子束微影光罩製作系統 (Electron beam lithography system, EBL) 25 3-2-3奈米三維量測儀及奈米薄膜材料試驗機 (Nano indenterXP) 26 3-2-4快速退火爐 (Rapid thermal annealing, RTA) 27 3-2-5聚焦式離子束顯微鏡 (Focused ion beam, FIB) 27 3-2-6掃瞄式電子顯微鏡 (Scanning electron microscope, SEM) 28 3-2-7高解析穿透式電子顯微鏡 (High resolution transmission electron microscope, HR-TEM) 28 3-3試片製備 29 3-3-1 蒸鍍材料之性質與試片製備 29 3-3-2 微影蝕刻製程 30 3-4實驗方法與步驟 31 3-4-1奈米壓痕試驗 31 3-4-2對試片進行不同條件的熱處理 32 3-4-3微觀結構的觀察 32 第四章 實驗結果與討論 43 4-1 薄膜機械性質之討論 43 4-1-1 壓痕深度與負載曲線之分析 43 4-1-2 壓痕深度與楊氏模數曲線之分析 44 4-1-3 壓痕深度與硬度曲線之分析 45 4-2 壓痕表面形貌之討論 46 4-2-1 金薄膜厚度800 nm壓痕深度1000 nm熱處理前後之壓痕表面形貌分析 47 4-2-2 金薄膜厚度800 nm壓痕深度1500 nm熱處理前後之壓痕表面形貌分析 48 4-2-3 金薄膜厚度1800 nm壓痕深度1000 nm熱處理前後之壓痕表面形貌分析 49 4-2-4 金薄膜厚度1800 nm壓痕深度1500 nm熱處理前後之壓痕表面形貌分析 49 4-3 壓痕剖面形貌之討論 51 4-3-1 金薄膜厚度800 nm壓痕深度1000 nm熱處理前後之壓痕剖面形貌分析 52 4-3-2 金薄膜厚度800 nm壓痕深度1500 nm熱處理前後之壓痕剖面形貌分析 54 4-3-3 金薄膜厚度1800 nm壓痕深度1000 nm熱處理前後之壓痕剖面形貌分析 56 4-3-4 金薄膜厚度1800 nm壓痕深度1500 nm熱處理前後之壓痕剖面形貌分析 59 第五章 結論 111 文獻回顧 114 自述 120

    1. J. Wurfl and B. Janke, “Technology towards GaAs MESFET-based IC for high temperature applications,” Material Science and Engineering, B46 (1997) 52-56.
    2. M. Almasri, B. Altemus, A. Gracias, L. Clow, N. Tokranova, J. Castracane and B. Xu, “Reliability study of wafer bonding for Micro-Electro-Mechanical Systems,” Proceedings of SPIE, Vol. 5343 (SPIE, Bellingham, WA, 2004) 79-86.
    3. T. Adachi, “Eutectic reaction of gold thin-films deposited on silicon surface,” Surface Science, 506 (2002) 305-312.
    4. M. Modi and S. K. Sitaraman, “Effect of adhesive layer properties on interfacial fracture in thin-film high-density interconnects,” Proceedings of the 52ed Electronics Components and Technology Conference (ECTC), San Diego, (May 2002) 847-853.
    5. X. Li, L. Zhang and H. Gao, “Micro/nanomechanical characterization of a single decagonal AlCoNi quasicrystal,” J. Phys. D: Appl. Phys, Vol. 37 (2004) 753-757.
    6. Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti and W. Soboyejo, “Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness,” Mater. Sci. Eng. A, Vol. 427 (2006) 232-240.
    7. R. Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Materialia, Vol. 50 (2002) 23-38.
    8. A. A. Elmustafa and D. S. Stone, “Stacking fault energy and dynamic recovery: do they impact the indentation size effect,” Mat. Sci. Eng. A, Vol. 358 No. 1-2 (2003) 1-8.
    9. S. Suresh, T. G. Nieh and B. W. Choi, “Nano-indentation of copper thin films on silicon substrates,” Scripta Materialia, Vol. 41 No. 9 (1999) 951-957.
    10. C. F. Tsou, C. C. Hsu and W. L. Fang, “Interfaces friction effect of sliding contact on nanoindentation test,” Sensors and Actuators A, Vol.117 No.2 (2005) 309-316.
    11. M. Sakai and N. Hakiri, “Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales,” J. Mater. Res, Vol. 21 No.9 (2006) 2298-2303.
    12. Y. Gogotsi, C. Baek and F. Kirscht, “Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon,” Semicond. Sci. Technol, 14 (1999) 936-944.
    13. J. Yan, H. Takahashi, J. Tamaki and X. Gai, “Nanoindentation tests on diamond-machined silicon wafers,” Applied Physics Letters, 86, 181913 (2005) 1-3.
    14. G. Patriarche, E. Le Bourhis, D. Faurie and P. O. Renault, “TEM study of the indentation behaviour of thin Au film on GaAs,” Thin Solid Films, 460 (2004) 150-155.
    15. L. Zhang and I. Zarudi, “Towards a deeper understanding of plastic deformation in micro-crystalline silicon,” International Journal of Mechanical Sciences, 43 (2001) 1985-1996.
    16. I. Manika and J. Maniks, “Size effects in micro- and nanoscale indentation,” Acta Materialia, 54 (2006) 2049-2056.
    17. K. D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris and G. Erkens, “The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress-strain laws by nanoindentation,” Materials Characterization, 49 (2003) 149-156.
    18. M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, Ph. Houdy and J. L. bozet, ”Nanoindentation investigation of Ti/TiN multilayers films,” Journal of Applied Physics, Vol. 87 No.11 (2000) 7753-7757.
    19. F. K. Mante, G. R. Baran and B. Lucas, “Nanoindentation studies of titanium single crystals,” Biomaterials, Vol. 20 No.11 (1999) 1051-1055.
    20. M. S. Bobji and S. K. Biswas, “Deconvolution of hardness from data obtained from nanoindentation of rough surfaces,” Journal of Materials Research, Vol. 14 No. 6 (1999) 2259-2268.
    21. M. Qasmi, P. Delobelle, F. Richard and A. Bosseboeuf, “Effect of the residual stress on the determination through nanoindentation technique of the Young's modulus of W thin film deposit on SiO2/Si substrate,” Surface & Coatings Technology, 200 (2006) 4185-4194.
    22. N. Yu, A. A. Polycarpou and T. F. Conry, “Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation,” Thin Solid Films, 450 (2004) 295-303.
    23. M. Tanaka, K. Furuya and T. Saito, “TEM observation of structural differences between two types of Ni silicide/Si thin films caused by FIB irradiation,” Thin Solid Films, 319 (1998) 101-105.
    24. H. Hosokawa, K. Shimojima, H. Iwasaki and M. Mabuchi, “Nanomachining of nanocrystalline nickel by focused ion beam,” Philosophical Magazine Letters, Vol. 84 No. 11 (2004) 713-718.
    25. M. Tanaka, K. Furuya and T. Saito, “Radiation effects of focused ion beam microfabrication on Ni disilicide thin films by in situ transmission electron microscopy,” Appl. Phys. Lett., Vol. 68 No. 7 (1996) 961-963.
    26. M. Tanaka, K. Furuya and T. Saito, “TEM observation of FIB induced damages in Ni3Si/Si thin films,” Nuclear Instruments and Methods in Physics Research B, 127/128 (1997) 98-101.
    27. R. F. Wolffenbuttel, “Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond,” Sensors and Actuators A, 62 (1997) 680-686.
    28. B. Bokhonov and M. Korchagin, “In situ investigation of stage of the formation of eutectic alloys in Si-Au and Si-Al systems,” J. Alloys and Compounds, 312 (2000) 238-250.
    29. Y. T. Cheng, L. W. Lin and N. Khalil, “Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging,” J. Microelectromechanical Systems, Vol. 9 No. 1 (2000) 3-8.
    30. M. Qasmi and P. Delobelle, “Influence of the average roughness Rms on the precision of the Young's modulus and hardness determination using nanoindentation technique with a Berkovich indenter,” Surface & Coatings Technology, 201 (2006) 1191-1199.
    31. H. Saka, A. Shimatanu, M. Sugamura and Suprijadi, “Transmission electron microscopy of amorphization and phase transformation beneath indents in Si,” Philos. Mag. A, 82 (2002) 1971–1981.
    32. I. Zarudi, L. C. Zhang, W. C. D. Cheong and T. X. Tu, “The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters,” Acta Materialia, 53 (2005) 4795-4800.
    33. B. Haberl, J. E. Bradby, M. V. Swain and J. S. Williams, “Phase transformations induced in relaxed amorphous silicon by indentation at room temperature,” Appl. Phys. Lett., Vol. 85 No. 23 (2004) 5559-5561.
    34. A. A. Voevodin, J. J. Hu, J. G. Jones, T. A. Fitz and J. S. Zabinski, “Growth and structural characterization of yttria-stabilized zirconia-gold nanocomposite films with improved toughness,” Thin Solid Films, 401 (2001) 187-195.
    35. A. A. Elmustafa and D. S. Stone, “Indentation size effect in polycrystalline F.C.C. metals,” Acta Materialia, 50 (2002) 3641-3650.
    36. S. Chen, L. Liu and T. Wang, “Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations,” Surface & Coatings Technology, 191 (2005) 25-32.
    37. A. J. Leistner, A. C. Fischer-Cripps and J. M. Bennett, “Indentation hardness and modulus of the surface of a large super-polished single crystal silicon sphere,” Proceedings of the International Society of Optical Engineering (SPIE), Bellingham, 5179 Optical Materials and Strucyures Technologies (2003) 215-222.
    38. J. Biener, A. M. Hodge, A. V. Hamza, L. M. Hsiung and J. H. Satcher, Jr, “Nanoporous Au: A high yield strength material,” J. Appl. Phys. 97, 024301 (2005) 1-4.
    39. Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti and W. Soboyejo, “Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness,” Mater. Sci. Eng. A, 427 (2006) 232-240.
    40. J. Jang, S. Hayes, J. Lin and D. R. Frear, “Interfacial reaction of eutectic AuSi solder with Si (100) and Si (111) surface,” J. Appl. Phys., Vol. 95 No. 11 (2004) 6077-6081.
    41. Q. Wan, T. H. Wang and C. L. Lin, “Self-assembled Au-Si alloy nanocones: synthesis and electron field emission characteristics,” Appl. Surf. Sci., 221 (2004) 38-42.
    42. L. Siller, N. Peltekis, S. Krishnamurthy and Y. Chao, “Gold film with gold nitride-A conductor but harder than gold,” Appl. Phys. Lett. 86, 221912 (2005) 1-3.
    43. J. Yan, H. Takahashi, X. Gai, H. Harada, J. Tamaki and T. Kuriyagawa, “Load effects on the phase transformation of single-crystal silicon during nanoindentation tests,” Mater. Sci. Eng. A, 423 (2006) 19-23.
    44. I. Zarudi, J. Zou and L. C. Zhang, “Microstructures of phases in indented silicon: A high resolution characterization,” Appl. Phys. Lett., Vol. 82 No. 6 (2003) 874-876.
    45. K. Mirouh, A. Bouabellou, R. Halimi, A. Mosser and G. Ehret, “Microstructural study of annealed Cr/Si system using cross-sectional TEM combined with nano-analysis,” Mater. Sci. Eng. B, 102 (2003) 80-83.
    46. N. Brauner and M. Shacham, “Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants,” Chemical Engineering and Processing, 36 (1997) 243-249.
    47. A. K. Galwey and M. E. Brown, “Arrhenius parameters and compensation behaviour in solid-state decompositions,” Thermochimica Acta, 300 (1997) 107-115.
    48. Y. V. Naidich, V. Zhuravlev and N. Krasovskaya, “The wettability of silicon carbide by Au-Si alloys,” Mater. Sci. Eng. A, 245 (1998) 293-299.
    49. Y. Y. Wong, M. Yahaya, M. M. Salleh and B. Y. Majlis, “Controlled growth of silicon nanowires synthesized via solid-liquid-solid mechanism,” Science and Technology of Advanced Materials, 6 (2005) 330-334.
    50. D. Ge, V. Domnich and Y. Gogotsi, “Thermal stability of metastable silicon phases produced by nanoindentation,” J. Appl. Phys., Vol. 95 No. 5 (2004) 2725-2731.
    51. B. Satpati, P. V. Satyam, T. Som and B. N. Dev, “Nanoscale ion-beam mixing in Au-Si and Ag-Si eutectic systems,” Appl. Phys. A, 79 (2004) 447-451.
    52. V. Domnich and Y. Gogotsi, “Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon,” Appl. Phys. Lett., Vol. 76 No. 16 (2000) 2214-2216.
    53. J. Jang, M. J. Lance, S. Wen, T. Y. Tsui and G. M. Pharr, “Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior,” Acta Materialia, 53 (2005) 1759-1770.
    54. S. Ruffell, J. E. Bradby and J. S. Williams, “Annealing kinetics of nanoindentation-induced polycrystalline high pressure phases in crystalline silicon,” Appl. Phys. Lett. 90, 131901 (2007) 1-3.
    55. W. C. D. Cheng and L. C. Zhang, “Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation,” Nanotechnology, Vol. 11 No. 3 (2000) 178-180.
    56. R. J. Martin-Palma, P. Herrero and J. M. Martinez-Duart, “TEM study of metallic contacts to nanostructured silicon,” NanoStructured Materials, Vol. 11 No. 5 (1999) 631-635.

    下載圖示 校內:立即公開
    校外:2007-07-12公開
    QR CODE