| 研究生: |
趙健麟 Chao, Chien-Lin |
|---|---|
| 論文名稱: |
Morusin 經由細胞凋亡抑制大腸直腸癌細胞生長之作用機制 Morusin induces human colorectal cancer cell death via apoptosis |
| 指導教授: |
翁舷誌
Won, Shen-Jeu 李政昌 Lee, Jeng-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 抗癌藥物 、細胞凋亡 、大腸直腸癌 |
| 外文關鍵詞: | apoptosis, anti-cancer drug, colorectal cancer, morusin |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類大腸直腸癌是一個非常嚴重的腫瘤疾病,而目前醫學上,對於大腸直腸癌的化學療法效果上卻很有限。而在台灣民間,由傳統中草藥M. australis (Moraceae)所分離出的粗萃取物被廣泛用在治療腫瘤疾病上,不過其確實的治療機制卻不甚明暸。Morusin是由M. australis (Moraceae)的根部中分離出的成份,具有引發癌細胞進行細胞凋亡的效果。在以morusin處理HT-29細胞6天後,其50%抑制濃度(IC50)為5.95 M,而以morusin處理PBMC細胞,其IC50為 29.75 M。在以morusin做軟洋菜膠分析14天後,其IC50為 2.76 M。在以morusn處理HT-29細胞後,可以發現細胞膜內側的磷脂絲胺酸有翻轉至外側細胞膜,細胞的sub-G1期的DNA有增加,有DNA片段化現象出現,並造成細胞核濃縮及出現凋亡小體現象,由以上結果證實morusin經由誘發細胞凋亡而抑制HT-29細胞生長。由西方墨點法分析morusin誘發HT-29細胞進行細胞凋亡的途徑,發現會造成caspase-8活化,並造成Bax、Bak活化,並降低Bcl-XL表現,並使用rhodamine 123染色,發現粒線體膜電位喪失,並造成cytochrome c及Smac/DIABLO由粒線體中釋放到細胞質中,另外抑制XIAP表現,接著活化caspase-9、caspase-3,最後造成細胞核中的PARP切割,以及使DFF45/ICAD被切割失去活性,造成細胞核內DFF40/CAD活化,最終造成細胞DNA斷裂,造成細胞凋亡現象出現。本研究證實morusin能經由活化caspase並影響粒線體的途徑造成大腸直腸癌細胞凋亡,本研究的結果,在未來可提供為抗癌藥物研發之參考。
Colorectal cancer is one of the leading causes of malignant death in western countries as well as in Taiwan. The crude extracts of M. australis (Moraceae) are common remedy to treat human colorectal cancer in Taiwan. However, the action mechanism of this crude extract is still unclear. The specific goal of the present study is to explore the anti-tumor mechanism of morusin, isolated from of M. australis, in human colorectal cancer, and to better understands if it can be used as a chemotherapeutic agent for cancer. The present study demonstrated that the IC50 of morusin on the growth of human colorectal cancer HT-29 cells was 5.95 M as compared to peripheral blood mononuclear cells was 29.75 M at day 6 of post-treatment. The inhibitory efficacy of morusin on colony formation of HT-29 in soft agar was 2.76 M at day 14 of post-treatment. The susceptibility of cells to morusin is caused by apoptosis through phosphtidylserine exposure, increase of sub-G1 content, DNA fragmentation, and nuclear morphologic change. Morusin induced caspase-8 activation, loss of mitochondria membrane potential, releases of cytochrome c and Smac/DIABLO from mitochondria to cytosol, decreased expression of XIAP, further activated caspase-9 and the caspase-3, which in turn cleaved DFF45/ICAD and PARP, and increased nuclear PARP and DFF40/CAD and DNA fragmentation. Our findings demonstrated that morusin induced HT-29 cell death via apoptosis. The molecular mechanism of morusin may provide new ideal for anti-cancer drug design.
Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., and Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9, 423-432.
Adams, J. M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326.
Almond, J. B., Snowden, R. T., Hunter, A., Dinsdale, D., Cain, K., and Cohen, G. M. (2001). Proteasome inhibitor-induced apoptosis of B-chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an approximately 700 kDa Apaf-1 containing apoptosome complex. Leukemia 15, 1388-1397.
Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W., and Yuan, J. (1996). Human ICE/CED-3 protease nomenclature. Cell 87, 171.
Biswal, B. M., Sain, A. H., Othman, N. H., and Baba, A. (2002). Adjuvant treatment in colorectal cancer. Experience from a referral center in eastern peninsular Malaysia. Trop Gastroenterol 23, 134-137.
Bodmer, J. L., Holler, N., Reynard, S., Vinciguerra, P., Schneider, P., Juo, P., Blenis, J., and Tschopp, J. (2000). TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2, 241-243.
Boise, L. H., Gonzalez-Garcia, M., Postema, C. E., Ding, L., Lindsten, T., Turka, L. A., Mao, X., Nunez, G., and Thompson, C. B. (1993). bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597-608.
Cain, K., Brown, D. G., Langlais, C., and Cohen, G. M. (1999). Caspase activation involves the formation of the aposome, a large (approximately 700 kDa) caspase-activating complex. Journal of Biological Chemistry 274, 22686-22692.
Chai, J., Du, C., Wu, J. W., Kyin, S., Wang, X., and Shi, Y. (2000). Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855-862.
Chapman, R. S., Chresta, C. M., Herberg, A. A., Beere, H. M., Heer, S., Whetton, A. D., Hickman, J. A., and Dive, C. (1995). Further characterisation of the in situ terminal deoxynucleotidyl transferase (TdT) assay for the flow cytometric analysis of apoptosis in drug resistant and drug sensitive leukaemic cells. Cytometry 20, 245-256.
Chi, Y. S., Jong, H. G., Son, K. H., Chang, H. W., Kang, S. S., and Kim, H. P. (2001). Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: cyclooxygenases and lipoxygenases. Biochem Pharmacol 62, 1185-1191.
Coppola, D., Saunders, B., Fu, L., Mao, W., and Nicosia, S. V. (1999). The insulin-like growth factor 1 receptor induces transformation and tumorigenicity of ovarian mesothelial cells and down-regulates their Fas-receptor expression. Cancer Res 59, 3264-3270.
Daugas, E., Susin, S. A., Zamzami, N., Ferri, K. F., Irinopoulou, T., Larochette, N., Prevost, M. C., Leber, B.,
Andrews, D., Penninger, J., and Kroemer, G. (2000).
Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. Faseb J 14, 729-739.
Degli Esposti, M., and Dive, C. (2003). Mitochondrial membrane permeabilisation by Bax/Bak. Biochem Biophys Res Commun 304, 455-461.
Degterev, A., Boyce, M., and Yuan, J. (2003). A decade of caspases. Oncogene 22, 8543-8567.
Deveraux, Q. L., Leo, E., Stennicke, H. R., Welsh, K., Salvesen, G. S., and Reed, J. C. (1999). Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. Embo J 18, 5242-5251.
Deveraux, Q. L., and Reed, J. C. (1999). IAP family proteins: suppressors of apoptosis. Genes Dev 13, 239-252.
Deveraux, Q. L., Roy, N., Stennicke, H. R., Van Arsdale, T., Zhou, Q., Srinivasula, S. M., Alnemri, E. S., Salvesen,
G. S., and Reed, J. C. (1998). IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. Embo J 17, 2215-2223.
Deveraux, Q. L., Takahashi, R., Salvesen, G. S., and Reed,
J. C. (1997). X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:, 300-304,.
Dray, X., Boutron-Ruault, M. C., Bertrais, S., Sapinho, D., Benhamiche-Bouvier, A. M., and Faivre, J. (2003). Influence of dietary factors on colorectal cancer survival. Gut 52, 868-873.
Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42.
Ekert, P. G., Read, S. H., Silke, J., Marsden, V. S.,
Kaufmann, H., Hawkins, C. J., Gerl, R., Kumar, S., and Vaux, D. L. (2004). Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J Cell Biol 165, 835-842.
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50.
Farrow, S. N., White, J. H., Martinou, I., Raven, T., Pun, K. T., Grinham, C. J., Martinou, J. C., and Brown, R. (1995). Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K. Nature 374, 731-733.
Fearnhead, H. O., Rodriguez, J., Govek, E. E., Guo, W., Kobayashi, R., Hannon, G., and Lazebnik, Y. A. (1998). Oncogene-dependent apoptosis is mediated by caspase-9. Proc Natl Acad Sci U S A 95, 13664-13669.
Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S. (1994). CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269, 30761-30764.
Ferri, K. F., and Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nat Cell Biol 3, E255-263.
Fewell, J. W., and Kuff, E. L. (1996). Intracellular redistribution of Ku immunoreactivity in response to cell-cell contact and growth modulating components in the medium. J Cell Sci 109 ( Pt 7), 1937-1946.
Frederiksen, C. M., Knudsen, S., Laurberg, S., and TF, O. R. (2003). Classification of Dukes' B and C colorectal cancers using expression arrays. J Cancer Res Clin Oncol.
Fukai, T., Satoh, K., Nomura, T., and Sakagami, H. (2003). Antinephritis and radical scavenging activity of prenylflavonoids. Fitoterapia 74, 720-724.
Gianola, F. J., Sugarbaker, P. H., Barofsky, I., White, D.
E., and Meyers, C. E. (1986). Toxicity studies of adjuvant intravenous versus intraperitoneal 5-FU in patients with advanced primary colon or rectal cancer. Am J Clin Oncol 9, 403-410.
Giuliano, M., Lauricella, M., Calvaruso, G., Carabillo, M., Emanuele, S., Vento, R., and Tesoriere, G. (1999). The apoptotic effects and synergistic interaction of sodium butyrate and MG132 in human retinoblastoma Y79 cells. Cancer Res 59, 5586-5595.
Griffiths, G. J., Corfe, B. M., Savory, P., Leech, S., Esposti, M. D., Hickman, J. A., and Dive, C. (2001). Cellular damage signals promote sequential changes at the N-terminus and BH-1 domain of the pro-apoptotic protein Bak. Oncogene 20, 7668-7676.
Gross, A., Jockel, J., Wei, M. C., and Korsmeyer, S. J. (1998). Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. Embo J 17, 3878-3885.
Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13, 1899-1911.
Gu, J., Dong, R. P., Zhang, C., McLaughlin, D. F., Wu, M. X., and Schlossman, S. F. (1999). Functional interaction of DFF35 and DFF45 with caspase-activated DNA fragmentation nuclease DFF40. J Biol Chem 274, 20759-20762.
Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature 407, 770-776.
Herr, I., and Debatin, K. M. (2001). Cellular stress response and apoptosis in cancer therapy. Blood 98, 2603-2614.
Hobday, T. J., and Erlichman, C. (2002). Adjuvant therapy of colon cancer: a review. Clin Colorectal Cancer 1, 230-236.
Hu, W., and Kavanagh, J. J. (2003). Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4, 721-729.
Huang, D. C., and Strasser, A. (2000). BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839-842.
Inohara, N., Koseki, T., Chen, S., Benedict, M. A., and Nunez, G. (1999a). Identification of regulatory and catalytic domains in the apoptosis nuclease DFF40/CAD. J Biol Chem 274, 270-274.
Inohara, N., Koseki, T., Chen, S., Benedict, M. A., and Nunez, G. (1999b). Identification of regulatory and catalytic domains in the apoptosis nuclease DFF40/CAD. J Biol Chem 274, 270-274.
Jacobson, M. D., Burne, J. F., and Raff, M. C. (1994). Mechanisms of programmed cell death and Bcl-2 protection. Biochemical Society Transactions 22, 600-602.
Jemmerson, R., LaPlante, B., and Treeful, A. (2002). Release of intact, monomeric cytochrome c from apoptotic and necrotic cells. Cell Death Differ 9, 538-548.
Jiang, X., and Wang, X. (2000). Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275, 31199-31203.
Judge, T. A., Lewis, J. D., and Lichtenstein, G. R. (2002). Colonic dysplasia and cancer in inflammatory bowel disease. Gastrointest Endosc Clin N Am 12, 495-523.
Jurgensmeier, J. M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., and Reed, J. C. (1998). Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A 95, 4997-5002.
Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., and Poirier, G. G. (1993). Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53, 3976-3985.
Keating, J. P., Pater, P., Lolohea, S., and Wickremesekera, J. K. (2003). The epidemiology of colorectal cancer: what can we learn from the New Zealand Cancer Registry? N Z Med J 116, U437-437.
Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 26, 239-257.
Khanna, K. K., and Jackson, S. P. (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27, 247-254.
Kharbanda, S., Pandey, P., Schofield, L., Israels, S.,
Roncinske, R., Yoshida, K., Bharti, A., Yuan, Z. M., Saxena, S., Weichselbaum, R., et al. (1997). Role for Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc Natl Acad Sci U S A 94, 6939-6942.
Kischkel, F. C., Lawrence, D. A., Chuntharapai, A., Schow, P., Kim, K. J., and Ashkenazi, A. (2000). Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611-620.
Ko, H. H., Wang, J. J., Lin, H. C., Wang, J. P., and Lin, C. N. (1999). Chemistry and biological activities of constituents from Morus australis. Biochim Biophys Acta 1428, 293-299.
Ko, H. H., Yu, S. M., Ko, F. N., Teng, C. M., and Lin, C. N. (1997). Bioactive constituents of Morus australis and Broussonetia papyrifera. J Nat Prod 60, 1008-1011.
Kohnoe, S., Kakeji, Y., and Maehara, Y. (2002). [Progress in adjuvant therapy for colorectal cancer]. Gan To Kagaku Ryoho 29, 2488-2497.
Kolodner, R. D. (1995). Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem Sci 20, 397-401.
Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J., and Schlesinger, P. H. (2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7, 1166-1173.
Kroemer, G., and Reed, J. C. (2000). Mitochondrial control of cell death. Nat Med 6, 513-519.
Kuida, K., Zheng, T. S., Na, S., Kuan, C., Yang, D.,
Karasuyama, H., Rakic, P., and Flavell, R. A. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 368-372.
Kulms, D., Dussmann, H., Poppelmann, B., Stander, S., Schwarz, A., and Schwarz, T. (2002). Apoptosis induced by disruption of the actin cytoskeleton is mediated via activation of CD95 (Fas/APO-1). Cell Death Differ 9, 598-608.
Kumar, S., and Vaux, D. L. (2002). Apoptosis. A cinderella caspase takes center stage. Science 297, 1290-1291.
Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C. (1994). Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347.
Le, D. A., Wu, Y., Huang, Z., Matsushita, K., Plesnila, N.,
Augustinack, J. C., Hyman, B. T., Yuan, J., Kuida, K., Flavell, R. A., and Moskowitz, M. A. (2002). Caspase activation and neuroprotection in caspase-3- deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc Natl Acad Sci U S A 99, 15188-15193.
Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.
Li, S., Nie, Z., Li, N., Li, J., Zhang, P., Yang, Z., Mu, S., Du, Y., Hu, J., Yuan, S., et al. (2003). Colorectal cancer screening for the natural population of Beijing with sequential fecal occult blood test: a multicenter study. Chin Med J (Engl) 116, 200-202.
Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175-184.
Lorenzo, H. K., Susin, S. A., Penninger, J., and Kroemer, G. (1999). Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6, 516-524.
Lynch, D. H., Campbell, K. A., Miller, R. E., Badley, A. D., and Paya, C. V. (1996). FasL/Fas and TNF/TNFR interactions in the regulation of immune responses and disease. Behring Inst Mitt, 175-184.
Malcomson, R. D., and McGregor, A. H. (2002). Molecular screening for colon cancer in inflammatory bowel disease. Eur J Gastroenterol Hepatol 14, 1045-1047.
Marteau, P. (2002). Inflammatory bowel disease. Endoscopy 34, 63-68.
Mathur, A., Hong, Y., Kemp, B. K., Barrientos, A. A., and Erusalimsky, J. D. (2000). Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res 46, 126-138.
Miyashita, T., and Reed, J. C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299.
Molinete, M., Vermeulen, W., Burkle, A., Menissier-de Murcia, J., Kupper, J. H., Hoeijmakers, J. H., and de Murcia, G. (1993). Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA
repair synthesis in mammalian cells. Embo J 12, 2109-2117.
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55-63.
Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke,
K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., et al. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell
85, 817-827.
Nechushtan, A., Smith, C. L., Lamensdorf, I., Yoon, S. H., and Youle, R. J. (2001). Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol 153, 1265-1276.
Newmeyer, D. D., and Ferguson-Miller, S. (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481-490.
Nicholson, D. W., and Thornberry, N. A. (1997). Caspases: killer proteases. Trends Biochem Sci 22, 299-306.
Nomura, T., Fukai, T., Hano, Y., Yoshizawa, S., Suganuma, M., and Fujiki, H. (1988). Chemistry and anti-tumor promoting activity of Morus flavonoids. Prog Clin Biol Res 280, 267-281.
Papadopoulos, N., Nicolaides, N. C., Wei, Y. F., Ruben, S. M., Carter, K. C., Rosen, C. A., Haseltine, W. A., Fleischmann, R. D., Fraser, C. M., Adams, M. D., and et al. (1994). Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625-1629.
Partik, G., Kahl-Rainer, P., Sedivy, R., Ellinger, A., Bursch, W., and Marian, B. (1998). Apoptosis in human colorectal tumours: ultrastructure and quantitative studies on tissue localization and association with bak expression. Virchows Arch 432, 415-426.
Partyka, S., and Ajani, J. (1999). Chemotherapy of Colorectal Cancer. Curr Treat Options Gastroenterol 2, 38-48.
Pervaiz, S., Hirpara, J. L., and Clement, M. V. (1998). Caspase proteases mediate apoptosis induced by anticancer agent preactivated MC540 in human tumor cell lines. Cancer Lett 128, 11-22.
Raff, R. A. (1992). Evolution of developmental decisions and morphogenesis: the view from two camps. Dev Suppl, 15-22.
Ranger, A. M., Malynn, B. A., and Korsmeyer, S. J. (2001). Mouse models of cell death. Nat Genet 28, 113-118.
Rayet, B., and Gelinas, C. (1999). Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18, 6938-6947.
Reddy, G. R., Ueda, N., Hada, T., Sackeyfio, A. C.,
Yamamoto, S., Hano, Y., Aida, M., and Nomura, T. (1991). A prenylflavone, artonin E, as arachidonate 5-lipoxygenase inhibitor. Biochem Pharmacol 41, 115-118.
Reed, J. C. (1995). Regulation of apoptosis by bcl-2 family
proteins and its role in cancer and chemoresistance. Curr Opin Oncol 7, 541-546.
Reed, J. C., Haldar, S., Cuddy, M. P., Croce, C., and Makover, D. (1989). Deregulated BCL2 expression enhances growth of a human B cell line. Oncogene 4, 1123-1127.
Rodriguez, J., and Lazebnik, Y. (1999). Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13, 3179-3184.
Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S., and Reed, J. C. (1997). The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16:, 6914-6925,.
Royds, J. A., Dower, S. K., Qwarnstrom, E. E., and Lewis, C. E. (1998). Response of tumour cells to hypoxia: role of p53 and NFkB. Molecular Pathology 51, 55-61.
Sakahira, H., Enari, M., and Nagata, S. (1998). Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99.
Satoh, M. S., Poirier, G. G., and Lindahl, T. (1994). Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry 33, 7099-7106.
Sawada, M., Sun, W., Hayes, P., Leskov, K., Boothman, D. A., and Matsuyama, S. (2003). Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5, 320-329.
Shehata, N., Pater, A., and Tang, S. C. (1999). Prolonged severe 5-fluorouracil-associated neurotoxicity in a patient with dihydropyrimidine dehydrogenase deficiency. Cancer Invest 17, 201-205.
Smulson, M. E., Pang, D., Jung, M., Dimtchev, A., Chasovskikh, S., Spoonde, A., Simbulan-Rosenthal, C., Rosenthal, D., Yakovlev, A., and Dritschilo, A. (1998). Irreversible binding of poly(ADP)ribose polymerase cleavage product to DNA ends revealed by atomic force microscopy: possible role in apoptosis. Cancer Res 58, 3495-3498.
Sprick, M. R., Weigand, M. A., Rieser, E., Rauch, C. T., Juo, P., Blenis, J., Krammer, P. H., and Walczak, H. (2000). FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599-609.
Sun, C., Cai, M., Gunasekera, A. H., Meadows, R. P., Wang, H., Chen, J., Zhang, H., Wu, W., Xu, N., Ng, S. C., and Fesik, S. W. (1999). NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818-822.
Sun, C., Cai, M., Meadows, R. P., Xu, N., Gunasekera, A. H., Herrmann, J., Wu, J. C., and Fesik, S. W. (2000). NMR structure and mutagenesis of the third bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 275, 33777-33781.
Sureda, F. X., Gabriel, C., Comas, J., Pallas, M., Escubedo, E., Camarasa, J., and Camins, A. (1999). Evaluation of free radical prodction, Mitochondrial membrane potential and cytoplasmic calcium in mammalian neurons by flow cytometry. Brain Res Prot 4, 280-287.
Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M. C., Alzari, P. M., and Kroemer, G. (1999). Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 189, 381-394.
Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., and Takahashi, R. (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8, 613-621.
Tait, J. F., and Gibson, D. (1992). Phospholipid binding of annexin V: effects of calcium and membrane phosphatidylserine content. Arch Biochem Biophys 298, 187-191.
Takahashi, A., Musy, P. Y., Martins, L. M., Poirier, G. G., Moyer, R. W., and Earnshaw, W. C. (1996). CrmA/SPI-2 inhibition of an endogenous ICE-related protease responsible for lamin A cleavage and apoptotic nuclear fragmentation. Journal of Biological Chemistry 271, 32487-32490.
Takahashi, R., Deveraux, Q., Tamm, I., Welsh, K., Assa-Munt, N., Salvesen, G. S., and Reed, J. C. (1998). A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 273:, 7787-7790,.
Tang, D., Lahti, J. M., and Kidd, V. J. (2000). Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. J Biol Chem 275, 9303-9307.
Tewari, M., Quan, L. T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S., and Dixit, V. M. (1995). Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:, 801-809.
Thornberry, N. A., and Lazebnik, Y. (1998). Caspases: enemies within. Science 281, 1312-1316.
Tokudome, S., Nagaya, T., Okuyama, H., Tokudome, Y., Imaeda, N., Kitagawa, I., Fujiwara, N., Ikeda, M., Goto,
C., Ichikawa, H., et al. (2000). Japanese versus
Mediterranean Diets and Cancer. Asian Pac J Cancer Prev 1, 61-66.
Uchida, H., Shinoura, N., Kitayama, J., Watanabe, T., Nagawa, H., and Hamada, H. (2003). 5-Fluorouracil efficiently enhanced apoptosis induced by adenovirus-mediated transfer of caspase-8 in DLD-1 colon cancer cells. J Gene Med 5, 287-299.
Varfolomeev, E. E., Schuchmann, M., Luria, V., Chiannilkulchai, N., Beckmann, J. S., Mett, I. L., Rebrikov, D., Brodianski, V. M., Kemper, O. C., Kollet, O., et al. (1998). Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267-276.
Vaux, D. L., Haecker, G., and Strasser, A. (1994). An evolutionary perspective on apoptosis. Cell 76, 777-779.
Verhagen, A. M., Coulson, E. J., and Vaux, D. L. (2001). Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2, REVIEWS3009.
Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J., and Vaux, D. L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53.
Walker, J. R., Corpina, R. A., and Goldberg, J. (2001). Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607-614.
Wang, K., Yin, X. M., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Keck, C. L., Zimonjic, D. B., Popescu, N. C., and Korsmeyer, S. J. (1998). BID, a proapoptotic BCL-2 family member, is localized to mouse chromosome 6 and human chromosome 22q11. Genomics 53, 235-238.
Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev 15, 2922-2933.
Warnatz, K., Kyburz, D., Brinson, D. C., Lee, D. J., Von Damm, A., Engelhart, M., Corr, M., Carson, D. A., and Tighe, H. (1999). Rheumatoid factor B cell tolerance via autonomous Fas/FasL-independent apoptosis. Cell Immunol 191, 69-73.
Watabe, M., Machida, K., and Osada, H. (2000). MT-21 is a synthetic apoptosis inducer that directly induces cytochrome c release from mitochondria. Cancer Res 60, 5214-5222.
Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., Thompson, C. B., and Korsmeyer, S. J. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14, 2060-2071.
Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727-730.
Williams, G. T., and Smith, C. A. (1993). Molecular regulation of apoptosis: genetic controls on cell death. Cell 74, 777-779.
Winkler, R., Wittmer, A., and Heusermann, U. (2002). [Cancer and Crohn's disease]. Z Gastroenterol 40, 569-576.
Wolf, B. B., Schuler, M., Echeverri, F., and Green, D. R. (1999). Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 274, 30651-30656.
Wolter, K. G., Hsu, Y. T., Smith, C. L., Nechushtan, A., Xi, X. G., and Youle, R. J. (1997). Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139, 1281-1292.
Woo, M., Hakem, R., Soengas, M. S., Duncan, G. S., Shahinian, A., Kagi, D., Hakem, A., McCurrach, M., Khoo,
W., Kaufman, S. A., et al. (1998). Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12, 806-819.
Wu, G., Chai, J., Suber, T. L., Wu, J. W., Du, C., Wang, X., and Shi, Y. (2000). Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008-1012.
Wyllie, A. H., Kerr, J. F., and Currie, A. R. (1980). Cell death: the significance of apoptosis. Int Rev Cytol 68, 251-306.
Yang, Y. L., and Li, X. M. (2000). The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res 10, 169-177.
Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641-652.
Zamzami, N., and Kroemer, G. (2001). The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2, 67-71.
Zha, J., Harada, H., Osipov, K., Jockel, J., Waksman, G., and Korsmeyer, S. J. (1997). BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J Biol Chem 272, 24101-24104.
Zhang, D. L., Liu, S. G., Yan, L. F., Li, L. J., Huang, G. S., Fang, F. D., Xia, G. T., He, X. Y., Gao, B. X., Bai, X. H., et al. (2001a). Carcinogenesis or tumourigenicity testing of animal cell lines for vaccine preparation by colony formation on soft agar and by agglutination under plant lectins. Cell Biol Int 25, 997-1002.
Zhang, X. D., Zhang, X. Y., Gray, C. P., Nguyen, T., and Hersey, P. (2001b). Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by smac/DIABLO release from mitochondria. Cancer Res 61, 7339-7348.
Zheng, Z. M., Huynen, M., and Baker, C. C. (1998). A pyrimidine-rich exonic splicing suppressor binds multiple RNA splicing factors and inhibits spliceosome assembly. Proc Natl Acad Sci U S A 95, 14088-14093.
Zhivotovsky, B., Hanson, K. P., and Orrenius, S. (1998). Back to the future: the role of cytochrome c in cell death. Cell Death Differ 5, 459-460.
Zhou, P., Lugovskoy, A. A., McCarty, J. S., Li, P., and Wagner, G. (2001). Solution structure of DFF40 and DFF45 N-terminal domain complex and mutual chaperone activity of DFF40 and DFF45. Proc Natl Acad Sci U S A 98, 6051-6055.
Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413.