| 研究生: |
陳思安 Chen, Szu-An |
|---|---|
| 論文名稱: |
以珊瑚碎屑製備之高純度霰石與高治療準確度碳酸鈣抗癌藥物載體 Preparation of High Purity Aragonite and High-Precision CaCO3 Anticancer Drug Carriers from Coral Remains |
| 指導教授: |
陳偉聖
Chen, Wei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 珊瑚碎屑 、生物鈣 、霰石 、球霰石 、藥物載體 |
| 外文關鍵詞: | Coral Remains, Bio-Calcium Carbonate, Aragonite, Vaterite, Drug Carriers |
| 相關次數: | 點閱:32 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
珊瑚碎屑作為一種潔淨的生物鈣資源,卻因為堆積而成為沿海地區十分困擾的議題,本研究的主要目的即爲解決此一環境問題。
珊瑚碎屑主要由碳酸鈣組成,本研究先將珊瑚碎屑經過前處理,接著是一系列的純化與改質,製備出霰石和球霰石兩種碳酸鈣常見的介穩態晶相。
在製備霰石晶相時,發現溫度和過飽和度會對碳酸鈣整體的晶相比例產生影響。霰石傾向於在 50℃以上且過飽和度較低的環境下生成,本研究發現在70℃、反應 120 分鐘及 450rpm 的攪拌速度下,可合成出霰石比例最高的碳酸鈣晶體,經 XRD 數據計算過後,得到霰石佔比高達 99.1%。這樣的結果已經可媲美以 Mg2+離子合成霰石之技術 ,且其純度、白度及鹽酸不容物分析結果皆符合工業標準。
在製備球霰石晶相時,因為此晶相的不穩定性,其粒徑與晶相比例容易受到環境變化影響。本實驗將碳酸鈉溶液(Na2CO3)加入到氯化鈣溶液(CaCl2)中、轉速 1150rpm、85%乙二醇、反應 60 分鐘、鹽類濃度比為 1M 氯化鈣與 0.05M碳酸鈉及 4ml 反應容量,成功合成出平均粒徑為 337nm 之球霰石晶體,並使用螢光光譜儀計算出其標記藥物之承載容量達 9.6wt.%,高於使用商用藥物載體——微脂體(liposome)承載相同標記藥物之容量,證明球霰石可作為合格的藥物載體,且有商業化之可能性。
This research is dedicated to solving the issues resulting from “coral remains,” a clean and potential bio-calcium carbonate resource in Penghu. One of the most important objectives of this research is to develop technology for recovering coral remains. We used coral remains to synthesize two metastable phases of CaCO3: aragonite and vaterite. Therefore, this research was divided into two sections, synthesis of aragonite and vaterite.
In the aragonite synthesis section, we obtained high-purity aragonite up to 99.1% with an aspect ratio of 14.21 using a novel method. Furthermore, no other chemical additives were involved in this section, which reduced the use of chemicals and costs.
In the vaterite synthesis section, the average size of vaterite particles was only 337nm, which was smaller than most of the research. We also conducted drug loading experiments and achieved a loading capacity of 9.6wt.% by loading the labeling drug TRITC-Dextran into CaCO3 carriers, which outperformed similar research.
In this study, we synthesized high-quality aragonite and vaterite from coral remains, indicating that coral remains is a promising raw material for many industries.
[1] S.A. Stel’makh, E.M. Shcherban’, A.N. Beskopylny, L.R. Mailyan, B. Meskhi, N. Beskopylny, N.y. Dotsenko, M. Kotenko, Nanomodified Concrete with Enhanced Characteristics Based on River Snail Shell Powder, Applied Sciences 12(15) (2022) 7839.
[2] O.J. Gbadeyan, B. Sithole, S. Adali, G. Bright, Process optimization of nano-calcium carbonate produced from snail shell using supermasscollider, Particulate Science and Technology 42(4) (2024) 659-667.
[3] A. Amibo¹, B. Bayu, Calcium carbonate synthesis, optimization and characterization from egg shell, 2020.
[4] P. Puspitasari, D.M. Utomo, H.F.N. Zhorifah, A.A. Permanasari, R.W. Gayatri, Physicochemical determination of Calcium Carbonate (CaCO3) from chicken eggshell, Key Engineering Materials 840 (2020) 478-483.
[5] T. Silva, J. Mesquita-Guimarães, B. Henriques, F. Silva, M. Fredel, The potential use of oyster shell waste in new value-added by-product. Resources, 8 (1), 1–15, 2019.
[6] B. Hasse, H. Ehrenberg, J.C. Marxen, W. Becker, M. Epple, Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata, Chemistry–A European Journal 6(20) (2000) 3679-3685.
[7] K. Saruwatari, T. Matsui, H. Mukai, H. Nagasawa, T. Kogure, Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata, Biomaterials 30(16) (2009) 3028-3034.
[8] Z. Hu, M. Shao, H. Li, Q. Cai, C. Zhong, Z. Xianming, Y. Deng, Synthesis of needle-like aragonite crystals in the presence of magnesium chloride and their application in papermaking, Advanced composite materials 18(4) (2009) 315-326.
[9] J.S. Han, S.Y. Jung, D.S. Kang, Y.B. Seo, Development of flexible calcium carbonate for papermaking filler, ACS Sustainable Chemistry & Engineering 8(24) (2020) 8994-9001.
[10] Simple Life Tables Analysis of 2020, in: R.O.C.T. Ministry of the Interior (Ed.) 2020, p. 5.
[11] B.S. Chhikara, K. Parang, Global Cancer Statistics 2022: the trends projection analysis, Chemical Biology Letters 10(1) (2023) 451-451.
[12] Z. Hami, A brief review on advantages of nano-based drug delivery systems, Annals of Military and Health Sciences Research 19(1) (2021).
[13] S. Singh, Nanomedicine–nanoscale drugs and delivery systems, Journal of nanoscience and nanotechnology 10(12) (2010) 7906-7918.
[14] Q. Zhao, N. Cheng, X. Sun, L. Yan, W. Li, The application of nanomedicine in clinical settings, Frontiers in Bioengineering and Biotechnology 11 (2023).
[15] O.A. Jimoh, K.S. Ariffin, H.B. Hussin, A.E. Temitope, Synthesis of precipitated calcium carbonate: a review, Carbonates and Evaporites 33 (2018) 331-346.
[16] Y. Wen, L. Xiang, Y. Jin, Synthesis of plate-like calcium carbonate via carbonation route, Materials Letters 57(16-17) (2003) 2565-2571.
[17] J. Chen, M. Jiang, M. Su, J. Han, S. Li, Q. Wu, Mineralization of calcium carbonate induced by egg substrate and an electric field, Chemical Engineering & Technology 42(7) (2019) 1525-1532.
[18] K. Doelle, J.J. Amaya, Application of calcium carbonate for uncoated digital printing paper from 100% eucalyptus pulp, Tappi journal 11(1) (2012) 51-59.
[19] J. Wang, P. Wei, P. Liu, W. Sun, Identifying appropriate conditions for producing spindle-like causticizing precipitated calcium carbonate for paper filler applications, BioResources 7(4) (2012) 5894-5903.
[20] F. Karakaş, B.V. Hassas, M.S. Celik, Effect of precipitated calcium carbonate additions on waterborne paints at different pigment volume concentrations, Progress in Organic Coatings 83 (2015) 64-70.
[21] Y. Mori, A. Isogai, T. Enomae, Application of vaterite-type calcium carbonate prepared by ultrasound for ink jet paper, Journal of Imaging Science and Technology 54(2) (2010) 20504-1-20504-6.
[22] M. Mohamed, S. Yusup, S. Maitra, Decomposition study of calcium carbonate in cockle shell, Journal of Engineering Science and Technology 7(1) (2012) 1-10.
[23] S. Wenyu, L. Qingfeng, H. Enguang, C. Shoutian, Study on properties of polymers packed by aragonite whisker, Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials (Cat. No. 00CH36347), IEEE, 2000, pp. 431-434.
[24] H. Saulat, M. Cao, M.M. Khan, M. Khan, M.M. Khan, A. Rehman, Preparation and applications of calcium carbonate whisker with a special focus on construction materials, Construction and Building Materials 236 (2020) 117613.
[25] Y. Ahn, J.H. Jeon, J.-H. Park, T. Thenepalli, J.W. Ahn, C. Han, Effects of modified LDPE on physico-mechanical properties of HDPE/CaCO 3 composites, Korean Journal of Chemical Engineering 33 (2016) 3258-3266.
[26] M.A. Hubbe, R.A. Gill, Fillers for papermaking: a review of their properties, usage practices, and their mechanistic role, BioResources 11(1) (2016) 2886-2963.
[27] C.Y. Tai, F.B. Chen, Polymorphism of CaCO3, precipitated in a constant‐composition environment, AIChE Journal 44(8) (1998) 1790-1798.
[28] S. El-Sherbiny, S.M. El-Sheikh, A. Barhoum, Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application, Powder Technology 279 (2015) 290-300.
[29] A. Barhoum, H. Rahier, R.E. Abou-Zaied, M. Rehan, T. Dufour, G. Hill, A. Dufresne, Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating, ACS applied materials & interfaces 6(4) (2014) 2734-2744.
[30] L. Brečević, D. Kralj, On calcium carbonates: from fundamental research to application, Croatica Chemica Acta 80(3-4) (2007) 467-484.
[31] A.-J. Xie, Y.-H. Shen, C.-Y. Zhang, Z.-W. Yuan, X.-M. Zhu, Y.-M. Yang, Crystal growth of calcium carbonate with various morphologies in different amino acid systems, Journal of Crystal Growth 285(3) (2005) 436-443.
[32] A. Becker, A. Ziegler, M. Epple, The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate, Dalton Transactions (10) (2005) 1814-1820.
[33] M.B. Toffolo, The significance of aragonite in the interpretation of the microscopic archaeological record, Geoarchaeology 36(1) (2021) 149-169.
[34] R. Demichelis, P. Raiteri, J.D. Gale, R. Dovesi, The multiple structures of vaterite, Crystal growth & design 13(6) (2013) 2247-2251.
[35] G. Friedman, D. Schultz, Precipitation of vaterite (CaCO3) during oil field drilling, Mineralogical Magazine 58(392) (1994) 401-408.
[36] P. Bots, L.G. Benning, J.-D. Rodriguez-Blanco, T. Roncal-Herrero, S. Shaw, Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC), Crystal Growth & Design 12(7) (2012) 3806-3814.
[37] Z. Zhang, B. Yang, H. Tang, X. Chen, B. Wang, High-yield synthesis of vaterite CaCO 3 microspheres in ethanol/water: structural characterization and formation mechanisms, Journal of Materials Science 50 (2015) 5540-5548.
[38] W.K. Park, S.-J. Ko, S.W. Lee, K.-H. Cho, J.-W. Ahn, C. Han, Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate, Journal of crystal growth 310(10) (2008) 2593-2601.
[39] Z. Zhang, Y. Xie, X. Xu, H. Pan, R. Tang, Transformation of amorphous calcium carbonate into aragonite, Journal of Crystal Growth 343(1) (2012) 62-67.
[40] L. Xiang, Y. Xiang, Z. Wang, Y. Jin, Influence of chemical additives on the formation of super-fine calcium carbonate, Powder Technology 126(2) (2002) 129-133.
[41] J. Yu, M. Lei, B. Cheng, X. Zhao, Effects of PAA additive and temperature on morphology of calcium carbonate particles, Journal of Solid State Chemistry 177(3) (2004) 681-689.
[42] R.S. Lam, J.M. Charnock, A. Lennie, F.C. Meldrum, Synthesis-dependant structural variations in amorphous calcium carbonate, CrystEngComm 9(12) (2007) 1226-1236.
[43] R. Isopescu, C. Mateescu, M. Mihai, G. Dabija, The effects of organic additives on induction time and characteristics of precipitated calcium carbonate, Chemical Engineering Research and Design 88(11) (2010) 1450-1454.
[44] F. Meldrum, Calcium carbonate in biomineralisation and biomimetic chemistry, International Materials Reviews 48(3) (2003) 187-224.
[45] L. Habte, M.D. Khan, N. Shiferaw, A. Farooq, M.-h. Lee, S.-h. Jung, J.W. Ahn, Synthesis, characterization and mechanism study of green aragonite crystals from waste biomaterials as calcium supplement, Sustainability 12(12) (2020) 5062.
[46] M.S. Hashim, S.E. Kaczmarek, The transformation of aragonite to calcite in the presence of magnesium: Implications for marine diagenesis, Earth and Planetary Science Letters 574 (2021) 117166.
[47] S. Fermani, B.N. Džakula, M. Reggi, G. Falini, D. Kralj, Effects of magnesium and temperature control on aragonite crystal aggregation and morphology, CrystEngComm 19(18) (2017) 2451-2455.
[48] F.C. Meldrum, S.T. Hyde, Morphological influence of magnesium and organic additives on the precipitation of calcite, Journal of crystal growth 231(4) (2001) 544-558.
[49] Z. Hu, Y. Deng, Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants, Journal of colloid and interface science 266(2) (2003) 359-365.
[50] G.-T. Zhou, C.Y. Jimmy, X.-C. Wang, L.-Z. Zhang, Sonochemical synthesis of aragonite -type calcium carbonate with different morphologies, New Journal of Chemistry 28(8) (2004) 1027-1031.
[51] H. Holland, M. Borcsik, J. Munoz, U. Oxburgh, The coprecipitation of Sr+ 2 with aragonite and of Ca+ 2 with strontianite between 90 and 100 C, Geochimica et Cosmochimica Acta 27(9) (1963) 957-977.
[52] D.J. Kinsman, H.D. Holland, The co-precipitation of cations with CaCO3—IV. The co-precipitation of Sr2+ with aragonite between 16° and 96° C, Geochimica et Cosmochimica Acta 33(1) (1969) 1-17.
[53] E. Altay, T. Shahwan, M. Tanoğlu, Morphosynthesis of CaCO3 at different reaction temperatures and the effects of PDDA, CTAB, and EDTA on the particle morphology and polymorph stability, Powder Technology 178(3) (2007) 194-202.
[54] H. Konno, Y. Nanri, M. Kitamura, Effect of NaOH on aragonite precipitation in batch and continuous crystallization in causticizing reaction, Powder technology 129(1-3) (2003) 15-21.
[55] C. Ramakrishna, T. Thenepalli, C. Han, J.-W. Ahn, Synthesis of aragonite -precipitated calcium carbonate from oyster shell waste via a carbonation process and its applications, Korean Journal of Chemical Engineering 34 (2017) 225-230.
[56] H. Konno, Y. Nanri, M. Kitamura, Crystallization of aragonite in the causticizing reaction, Powder Technology 123(1) (2002) 33-39.
[57] A. Samanta, S. Podder, M. Kumarasamy, C.K. Ghosh, D. Lahiri, P. Roy, S. Bhattacharjee, J. Ghosh, A.K. Mukhopadhyay, Au nanoparticle-decorated aragonite microdumbbells for enhanced antibacterial and anticancer activities, Materials Science and Engineering: C 103 (2019) 109734.
[58] S. Teir, S. Eloneva, R. Zevenhoven, Production of precipitated calcium carbonate from calcium silicates and carbon dioxide, Energy Conversion and Management 46(18-19) (2005) 2954-2979.
[59] T. Thriveni, C. Ramakrishna, Y. Jegal, J. Ahn, aragonite precipitated calcium carbonate: Filler for light weight plastics, Schol J Eng Technol A 33 (2015) 207-211.
[60] J. Seo, J.G. Lee, T. Thriveni, C.S. Baek, J.-W. Ahn, Improving recycled fiber by applying in-situ aragonite calcium carbonate formation process, Materials transactions 55(2) (2014) 378-382.
[61] I. Ghosh, C. Sharma, R. Tandon, Structural evaluation of chitosan-modified precipitated calcium carbonate composite fillers for papermaking applications, SN Applied Sciences 2(9) (2020) 1577.
[62] T. Thenepalli, A.Y. Jun, C. Han, C. Ramakrishna, J.W. Ahn, A strategy of precipitated calcium carbonate (CaCO 3) fillers for enhancing the mechanical properties of polypropylene polymers, Korean Journal of Chemical Engineering 32 (2015) 1009-1022.
[63] A. Vikulina, D. Voronin, R. Fakhrullin, V. Vinokurov, D. Volodkin, Naturally derived nano-and micro-drug delivery vehicles: Halloysite, vaterite and nanocellulose, New Journal of Chemistry 44(15) (2020) 5638-5655.
[64] H. Ohgushi, M. Okumura, T. Yoshikawa, K. Inboue, N. Senpuku, S. Tamai, E.C. Shors, Bone formation processin porous calcium carbonate and hydroxyapatite, Journal of biomedical materials research 26(7) (1992) 885-895.
[65] C. Ramakrishna, T. Thenepalli, J.W. Ahn, Evaluation of various synthesis methods for calcite-precipitated calcium carbonate (PCC) formation, Korean Chemical Engineering Research 55(3) (2017) 279-286.
[66] E. Tolba, W.E. Müller, B.M. Abd El-Hady, M. Neufurth, F. Wurm, S. Wang, H.C. Schröder, X. Wang, High biocompatibility and improved osteogenic potential of amorphous calcium carbonate/ vaterite, Journal of Materials Chemistry B 4(3) (2016) 376-386.
[67] D.B. Trushina, T.V. Bukreeva, M.N. Antipina, Size-controlled synthesis of vaterite calcium carbonate by the mixing method: aiming for nanosized particles, Crystal growth & design 16(3) (2016) 1311-1319.
[68] D.V. Volodkin, A.I. Petrov, M. Prevot, G.B. Sukhorukov, Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation, Langmuir 20(8) (2004) 3398-3406.
[69] E.M. Flaten, M. Seiersten, J.-P. Andreassen, Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing, Journal of Crystal Growth 312(7) (2010) 953-960.
[70] B.V. Parakhonskiy, A. Haase, R. Antolini, Sub‐micrometer vaterite containers: synthesis, substance loading, and release, Angewandte Chemie 124(5) (2012) 1221-1223.
[71] E.M. Flaten, M. Seiersten, J.-P. Andreassen, Polymorphism and morphology of calcium carbonate precipitated in mixed solvents of ethylene glycol and water, Journal of Crystal Growth 311(13) (2009) 3533-3538.
[72] J.S. Chawla, M.M. Amiji, Biodegradable poly (ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, International journal of pharmaceutics 249(1-2) (2002) 127-138.
[73] I.F. Tannock, D. Rotin, Acid pH in tumors and its potential for therapeutic exploitation, Cancer research 49(16) (1989) 4373-4384.
[74] Y. Svenskaya, B. Parakhonskiy, A. Haase, V. Atkin, E. Lukyanets, D. Gorin, R. Antolini, Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer, Biophysical chemistry 182 (2013) 11-15.
[75] J.-L. Wu, C.-Q. Wang, R.-X. Zhuo, S.-X. Cheng, Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy, Colloids and Surfaces B: Biointerfaces 123 (2014) 498-505.
[76] C. Devos, T. Van Gerven, S. Kuhn, A review of experimental methods for nucleation rate determination in large-volume batch and microfluidic crystallization, Crystal growth & design 21(4) (2021) 2541-2565.
[77] E.M. Flaten, M. Seiersten, J.-P. Andreassen, Induction time studies of calcium carbonate in ethylene glycol and water, Chemical Engineering Research and Design 88(12) (2010) 1659-1668.
[78] K.-J. Westin, Å.C. Rasmuson, Nucleation of calcium carbonate in presence of citric acid, DTPA, EDTA and pyromellitic acid, Journal of colloid and interface science 282(2) (2005) 370-379.
[79] Y.I. Svenskaya, H. Fattah, O.A. Inozemtseva, A.G. Ivanova, S.N. Shtykov, D.A. Gorin, B.V. Parakhonskiy, Key parameters for size-and shape-controlled synthesis of vaterite particles, Crystal Growth & Design 18(1) (2018) 331-337.
[80] N.M. Elbaz, A. Owen, S. Rannard, T.O. McDonald, Controlled synthesis of calcium carbonate nanoparticles and stimuli-responsive multi-layered nanocapsules for oral drug delivery, International Journal of Pharmaceutics 574 (2020) 118866.
[81] N. Qiu, H. Yin, B. Ji, N. Klauke, A. Glidle, Y. Zhang, H. Song, L. Cai, L. Ma, G. Wang, Calcium carbonate microspheres as carriers for the anticancer drug camptothecin, Materials Science and Engineering: C 32(8) (2012) 2634-2640.
[82] Y.I. Svenskaya, N. Navolokin, A. Bucharskaya, G. Terentyuk, A. Kuz’mina, M. Burashnikova, G. Maslyakova, E. Lukyanets, D. Gorin, Calcium carbonate microparticles containing a photosensitizer Photosens: preparation, ultrasound stimulated dye release, and in vivo application, Nanotechnologies in Russia 9(7-8) (2014) 398-409.
[83] C. Yang, J. Zhang, W. Li, S. Shang, C. Guo, Synthesis of aragonite CaCO3 nanocrystals by reactive crystallization in a high shear mixer, Crystal Research and Technology 52(5) (2017) 1700002.
[84] C.G. Kontoyannis, N.V. Vagenas, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst 125(2) (2000) 251-255.
[85] J. Ma, Y. Tang, M. Yaseen, L. Qin, X. Chen, S. Xiong, D. Liao, Z. Tong, Hollow spherical vaterite calcium carbonate prepared by spray-bubble template method for immobilization of papain, Separation and Purification Technology 322 (2023) 124278.
[86] T. Zheng, X. Zhang, H. Yi, Spherical vaterite microspheres of calcium carbonate synthesized with poly (acrylic acid) and sodium dodecyl benzene sulfonate, Journal of Crystal Growth 528 (2019) 125275.
[87] J. Chen, L. Xiang, Controllable synthesis of calcium carbonate polymorphs at different temperatures, Powder technology 189(1) (2009) 64-69.
[88] D.B. Trushina, T.N. Borodina, S. Belyakov, M.N. Antipina, Calcium carbonate vaterite particles for drug delivery: Advances and challenges, Materials Today Advances 14 (2022) 100214.
[89] D.A. Skoog, F.J. Holler, S.R. Crouch, Textbook “principles of instrumental analysis”, Cengage learning (2019).
[90] K.S. Karunadasa, C. Manoratne, H. Pitawala, R. Rajapakse, Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction, Journal of Physics and Chemistry of solids 134 (2019) 21-28.
[91] B.A. Haley, B. Hales, E.L. Brunner, K. Kovalchik, G.G. Waldbusser, Mechanisms to explain the elemental composition of the initial aragonite shell of larval oysters, Geochemistry, Geophysics, Geosystems 19(4) (2018) 1064-1079.
[92] G.A. Farfan, A. Apprill, A. Cohen, T.M. DeCarlo, J.E. Post, R.G. Waller, C.M. Hansel, Crystallographic and chemical signatures in coral skeletal aragonite, Coral Reefs 41(1) (2022) 19-34.
[93] J. Huang, C. Liu, L. Xie, R. Zhang, Amorphous calcium carbonate: a precursor phase for aragonite in shell disease of the pearl oyster, Biochemical and biophysical research communications 497(1) (2018) 102-107.
[94] I. Galan, F.P. Glasser, C. Andrade, Calcium carbonate decomposition, Journal of Thermal Analysis and Calorimetry 111 (2013) 1197-1202.
[95] T. Thriveni, U.N. Il, J.W. Ahn, aragonite precipitated calcium carbonate: a new versatile functional filler for light weight plastic, Proceedings of the 8 th Pacific Rim International Congress on Advanced Materials and Processing, Springer, 2016, pp. 243-253.
[96] C. Ramakrishna, T. Thenepalli, J.-H. Huh, J.W. Ahn, C. Ramakrishna, T. Thenepalli, J.-H. Huh, J.W. Ahn, Precipitated calcium carbonate synthesis by simultaneous injection to produce nano whisker aragonite, Journal of the Korean Ceramic Society 53(2) (2016) 222-226.
[97] Y. Guan, X. Wang, W. Cao, G. Zhou, Controlled synthesis and microstructure of metastable flower-like vaterite, Materials 11(11) (2018) 2300.
[98] G. Yan, L. Wang, J. Huang, The crystallization behavior of calcium carbonate in ethanol/water solution containing mixed nonionic/anionic surfactants, Powder Technology 192(1) (2009) 58-64.
[99] J.-W. Ahn, J.-H. Kim, H.-S. Park, J.-A. Kim, C. Han, H. Kim, Synthesis of single phase aragonite precipitated calcium carbonate in Ca(OH)2-Na2CO3-NaOH reaction system, Korean Journal of Chemical Engineering 22 (2005) 852-856.
[100] M. Ryu, H. Kim, M. Lim, K. You, J. Ahn, Comparison of dissolution and surface reactions between calcite and aragonite in L-glutamic and L-aspartic acid solutions, Molecules 15(1) (2010) 258-269.
[101] I. Udrea, C. Capat, E.A. Olaru, R. Isopescu, M. Mihai, C.D. Mateescu, C. Bradu, vaterite synthesis via gas–liquid route under controlled pH conditions, Industrial & engineering chemistry research 51(24) (2012) 8185-8193.
[102] D. Konopacka-Łyskawa, Synthesis methods and favorable conditions for spherical vaterite precipitation: A review, Crystals 9(4) (2019) 223.
[103] L. Zhang, L.-H. Yue, F. Wang, Q. Wang, Divisive effect of alcohol− water mixed solvents on growth morphology of calcium carbonate crystals, The Journal of Physical Chemistry B 112(34) (2008) 10668-10674.
[104] J. Jiang, Y. Wu, C. Chen, X. Wang, H. Zhao, S. Xu, C. Yang, B. Xiao, A novel route to prepare the metastable vaterite phase of CaCO3 from CaCl2 ethanol solution and Na2CO3 aqueous solution, Advanced Powder Technology 29(10) (2018) 2416-2422.
[105] X. Song, C. Weng, Y. Cao, H. Kong, X. Luo, Facile synthesis of pure vaterite using steamed ammonia liquid waste and ammonium carbonate without additives via simple mechanical mixing, Powder Technology 386 (2021) 361-371.
[106] J.-P. Andreassen, E.M. Flaten, R. Beck, A.E. Lewis, Investigations of spherulitic growth in industrial crystallization, Chemical Engineering Research and Design 88(9) (2010) 1163-1168.
[107] Q. Li, Y. Ding, F. Li, B. Xie, Y. Qian, Solvothermal growth of vaterite in the presence of ethylene glycol, 1, 2-propanediol and glycerin, Journal of crystal growth 236(1-3) (2002) 357-362.
[108] M. Ryu, J. Ahn, K. You, S. Goto, H. Kim, Synthesis of calcium carbonate in ethanol-ethylene glycol solvent, Journal of the Ceramic Society of Japan 117(1361) (2009) 106-110.
[109] J. Jiang, S. Xu, H. Xiao, C. Tao, C. Chen, Q. Li, R. Shi, The synthesis of long-term stable amorphous calcium carbonate in water-free ethylene glycol system without any phase stabilizer, Advanced Powder Technology 33(6) (2022) 103607.
[110] F. Persano, C. Nobile, C. Piccirillo, G. Gigli, S. Leporatti, Monodisperse and nanometric-sized calcium carbonate particles synthesis optimization, Nanomaterials 12(9) (2022) 1494.
[111] S. Donatan, A. Yashchenok, N. Khan, B. Parakhonskiy, M. Cocquyt, B.-E. Pinchasik, D. Khalenkow, H. Möhwald, M. Konrad, A. Skirtach, Loading capacity versus enzyme activity in anisotropic and spherical calcium carbonate microparticles, ACS applied materials & interfaces 8(22) (2016) 14284-14292.
[112] X. Huang, M. Li, R. Bruni, P. Messa, F. Cellesi, The effect of thermosensitive liposomal formulations on loading and release of high molecular weight biomolecules, International journal of pharmaceutics 524(1-2) (2017) 279-289.