| 研究生: |
温士儁 Wen, Shih-Chun |
|---|---|
| 論文名稱: |
以可見光引發高分子聚合與數位光處理3D列印技術製作電容式感測器 Capacitive type sensors via digital light printing with visible-light-induced polymerization |
| 指導教授: |
游聲盛
Yu, Sheng-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 深共溶劑 、高分子凝膠 、三維列印 、數位光處理 、電容式壓力感測器 、纖維素奈米結晶 |
| 外文關鍵詞: | Deep eutectic solvents, polymeric gel, 3D printing, digital light processing, capacitive type pressure sensor, cellulose nanocrystal |
| 相關次數: | 點閱:160 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來離子凝膠已被廣泛地應用於穿戴式電子裝置,特別是作為電容式感測器的主要材料。電容式感測器通常以具離子導電性的材料包裹介電層而組成的三明治結構為主。當壓力施加於感測器時,感測器的體積變化同時也會造成感測器的電容值改變,並可以此作為感測用的訊號。然而用傳統的模具做法很難製造出高敏感度的壓力感測器,而其他的先進製造方法,如:三維列印,提供了一個簡單的方法來製造穿戴式的感測器。其中數位光處理列印技術利用了局部光聚合來製作高解析度的複雜三維幾何結構,因此數位光處理列印技術很適合用來製作感測器。
在此工作中,我們使用可聚合深共熔溶劑作為數位光處理列印的樹脂墨水。深共溶劑已經被作為新型的溶劑被廣泛的它的應用領域,主要由氫鍵供體與氫鍵受體組成。由於其中強力的氫鍵作用力,深共熔溶劑的熔點比起原本的組成物理想熔點還要低上許多。我們選擇了氯化膽鹼、尿素和丙烯醯胺來作為可聚合的深共熔溶劑。與其它的深共熔溶劑相比,尿素提供的強氫鍵強作用力使得可以在不加入化學交聯劑的情況下以光聚合的方式製備出高強度的離子凝膠。此類材料亦呈現了自修復與快速回復等等特性。另外,離子凝膠的機械強度,可進一步使用可再生的奈米材料,纖維素奈米晶體,來進一步增強。我們後續利用了可見光引發的數位光處理列印與深共溶劑來製作電容式感測器。透過設計離子凝膠表面之微針結構,我們可大幅提升電容式感測器的敏感度。簡而言之,我們設計出了可3D列印的光固化墨水來製備穿戴式電子裝置所需要之高強度、可自修復與可快速回復的離子凝膠材料。
Ionogels have been widely investigated as wearable electronics, especially capacitive sensors that respond to pressure. Typical capacitive sensors are assembled by sandwiching a dielectric with two ionic conducting materials. The volumetric change of the sensors under pressure leads to the change of capacitance as the signals. However, traditional methods such as molding are difficult to prepare sensors with high sensitivity. Advanced manufacturing, such as 3D printing, may provide a simple strategy for constructing functional wearable sensors. In particular, digital light processing (DLP) uses the localized photopolymerization of resins to make geometrically complex 3D structures with high resolution. Therefore, DLP has enormous potential for the manufacturing of sensors.
In this work, we proposed a photo-resin composed of polymerizable deep eutectic solvents (DESs). DESs have been studied as renewable solvents for a wide range of applications. It is a combination of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA). Because of the strong hydrogen bonding, the melting point of DESs becomes lower compared to the individual components. We chose choline chloride, urea, and acrylamide (AAm) to form a polymerizable DES for DLP printing capacitive sensor. Compared with other DESs, the urea-based DES provided strong hydrogen bonding for mechanically robust ionogels without chemical crosslinkers after photopolymerization. These ionogels exhibited self-healing capability and fast self-recovery. The stiffness of the ionogels could be further enhanced by adding renewable fillers such as cellulose nanocrystals (CNCs). Visible-light-induced DLP further led to the rapid fabrication of ionogels with complex structures. We demonstrated that the sensitivity of the capacitive sensors could be significantly enhanced by 3D printed microneedle arrays on the surface of the ionogels. In short, this work provided 3D printable ionogels with high toughness, excellent efficiency of self-healing, and fast self-recovery for wearable electronics.
1. Dawood, A., et al., 3D Printing in Dentistry. British dental journal 2015, 219 (11), 521-529.
2. Frka‐Petesic, B., et al., Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets. Advanced Materials 2017, 29 (32), 1701469.
3. Sekine, T., et al., Microporous Induced Fully Printed Pressure Sensor for Wearable Soft Robotics Machine Interfaces. Advanced Intelligent Systems 2020, 2 (12).
4. Mannsfeld, S. C., et al., Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers. Nature Materials 2010, 9 (10), 859-64.
5. Palaniappan, V., et al., Laser-Assisted Fabrication of a Highly Sensitive and Flexible Micro Pyramid-Structured Pressure Sensor for E-Skin Applications. IEEE Sensors Journal 2020, 20 (14), 7605-7613.
6. Liu, X., et al., A Low Cost and Palm-Size Analyzer for Rapid and Sensitive Protein Detection by AC Electrokinetics Capacitive Sensing. Biosensors and Bioelectronics 2017, 90, 83-90.
7. Ruth, S. R. A., et al., Microengineering Pressure Sensor Active Layers for Improved Performance. Advanced Functional Materials 2020, 30 (39).
8. Li, J., et al., Recent Progress in Flexible Pressure Sensor Arrays: From Design to Applications. Journal of Materials Chemistry C 2018, 6 (44), 11878-11892.
9. Chen, W.; Yan, X., Progress in Achieving High-Performance Piezoresistive and Capacitive Flexible Pressure Sensors: A Review. Journal of Materials Science & Technology 2020, 43, 175-188.
10. Puers, R., Capacitive Sensors: When and How to Use Them. Sensors and Actuators A: Physical 1993, 37, 93-105.
11. Mishra, R. B., et al., Recent Progress on Flexible Capacitive Pressure Sensors: From Design and Materials to Applications. Advanced Materials Technologies 2021, 6 (4).
12. Hammock, M., A. Chortos, Bc-K. Tee, Jb-H. Tok, Z. Bao, 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials 2013, 25 (42), 5997-6038.
13. Park, J., et al., Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins. ACS Nano 2014, 8 (5), 4689-4697.
14. Shi, J., et al., Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Small 2018, 14 (27), 1800819.
15. Wu, Y., et al., Piezoelectric Materials for Flexible and Wearable Electronics: A Review. Materials & Design 2021, 211, 110164.
16. Yang, C.; Suo, Z., Hydrogel Ionotronics. Nature Reviews Materials 2018, 3 (6), 125-142.
17. Tokita, M.; Nishinari, K., Gels: Structures, Properties, and Functions. Surface and Colloid Science 2004, 129, 95-104.
18. Ahmed, E. M., Hydrogel: Preparation, Characterization, and Applications: A Review. Journal of Advanced Research 2015, 6 (2), 105-21.
19. Hamidi, M., et al., Hydrogel Nanoparticles in Drug Delivery. Advanced drug delivery reviews 2008, 60 (15), 1638-1649.
20. Tejo-Otero, A., et al., Soft-Tissue-Mimicking Using Hydrogels for the Development of Phantoms. Gels 2022, 8 (1).
21. Li, X.; Su, X., Multifunctional Smart Hydrogels: Potential in Tissue Engineering and Cancer Therapy. Journal of Materials Chemistry B 2018, 6 (29), 4714-4730.
22. Labus, K., et al., Comparative Study on Enzyme Immobilization Using Natural Hydrogel Matrices—Experimental Studies Supported by Molecular Models Analysis. Catalysts 2020, 10 (5).
23. Yue, S., et al., Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review. Nanomaterials (Basel) 2020, 10 (8).
24. Welton, T., Ionic Liquids in Catalysis. Coordination Chemistry Reviews 2004, 248 (21-24), 2459-2477.
25. Aparicio, S., et al., Thermophysical Properties of Pure Ionic Liquids: Review of Present Situation. Industrial & Engineering Chemistry Research 2010, 49 (20), 9580-9595.
26. Ghandi, K., A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry 2014, 2014.
27. Marr, P. C.; Marr, A. C., Ionic Liquid Gel Materials: Applications in Green and Sustainable Chemistry. Green Chemistry 2016, 18 (1), 105-128.
28. Zhao, D., et al., Toxicity of Ionic Liquids. Clean–soil, Air, Water 2007, 35 (1), 42-48.
29. Smith, E. L., et al., Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews 2014, 114 (21), 11060-11082.
30. El Achkar, T., et al., Basics and Properties of Deep Eutectic Solvents: A Review. Environmental Chemistry Letters 2021, 19 (4), 3397-3408.
31. Shahbaz, K., et al., Using Deep Eutectic Solvents Based on Methyl Triphenyl Phosphunium Bromide for the Removal of Glycerol from Palm-Oil-Based Biodiesel. Energy & Fuels 2011, 25 (6), 2671-2678.
32. Abbott, A. P., et al., Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. Journal of Chemical & Engineering Data 2006, 51 (4), 1280-1282.
33. Abbott, A. P., et al., Cationic Functionalisation of Cellulose Using a Choline Based Ionic Liquid Analogue. Green Chemistry 2006, 8 (9), 784-786.
34. Li, C.-Y.; Yu, S.-S., Efficient Visible-Light-Driven RAFT Polymerization Mediated by Deep Eutectic Solvents under an Open-to-Air Environment. Macromolecules 2021, 54 (21), 9825-9836.
35. Płotka-Wasylka, J., et al., Deep Eutectic Solvents vs Ionic Liquids: Similarities and Differences. Microchemical Journal 2020, 159, 105539.
36. Liu, Y., et al., Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. Journal of Natural Products 2018, 81 (3), 679-690.
37. Holzmann, P., et al., User Entrepreneur Business Models in 3D Printing. Journal of Manufacturing Technology Management 2017, 28 (1), 75-94.
38. Ngo, T. D., et al., Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Composites Part B: Engineering 2018, 143, 172-196.
39. Pieterse, F.; Nel, A. L. In The Advantages of 3D Printing in Undergraduate Mechanical Engineering Research, 2016 IEEE Global Engineering Education Conference (EDUCON), IEEE: 2016; pp 25-31.
40. Ambrosi, A.; Pumera, M., 3d-Printing Technologies for Electrochemical Applications. Chemical Society Reviews 2016, 45 (10), 2740-2755.
41. Awad, A., et al., Fused Deposition Modelling: Advances in Engineering and Medicine. In 3D Printing of Pharmaceuticals, Springer: 2018; pp 107-132.
42. Solomon, I. J., et al., A Review on the Various Processing Parameters in FDM. Materials Today: Proceedings 2021, 37, 509-514.
43. Torres, J., et al., Mechanical Property Optimization of FDM PLA in Shear with Multiple Objectives. The Journal of The Minerals, Metals & Materials Society 2015, 67 (5), 1183-1193.
44. Montero, M., et al., Material Characterization of Fused Deposition Modeling (Fdm) Abs by Designed Experiments. Society of Manufacturing Engineers 2001, 10 (13552540210441166), 1-21.
45. Mostafa, K. G., et al., Strength to Cost Ratio Analysis of FDM Nylon 12 3D Printed Parts. Procedia Manufacturing 2018, 26, 753-762.
46. Masood, S. H., et al. In Tensile Properties of Processed FDM Polycarbonate Material, Trans Tech Publ: 2010; pp 2556-2559.
47. Saadi, M., et al., Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Advanced Materials 2022, 2108855.
48. Lewis, J. A., Direct Ink Writing of 3D Functional Materials. Advanced Functional Materials 2006, 16 (17), 2193-2204.
49. Solís Pinargote, N. W., et al., Direct Ink Writing Technology (3D Printing) of Graphene-based Ceramic Nanocomposites: A Review. Nanomaterials 2020, 10 (7), 1300.
50. Chen, T., et al., Rheological Behavior of Titania Ink and Mechanical Properties of Titania Ceramic Structures by 3D Direct Ink Writing Using High Solid Loading Titania Ceramic Ink. Journal of Alloys and Compounds 2019, 783, 321-328.
51. Robles Martinez, P., et al., The History, Developments and Opportunities of Stereolithography. In 3D Printing of Pharmaceuticals, Springer: 2018; pp 55-79.
52. Quan, H., et al., Photo-Curing 3d Printing Technique and Its Challenges. Bioactive materials 2020, 5 (1), 110-115.
53. Jacobs, P. F., Stereolithography and Other RP&M Technologies: From Rapid Prototyping to Rapid Tooling. Society of Manufacturing Engineers: 1995.
54. Bove, A., et al., Photopolymerization of Ceramic Resins by Stereolithography Process: A Review. Applied Sciences 2022, 12 (7), 3591.
55. Hornbeck, L. J. In Digital Light Processing and MEMS: An Overview, Digest IEEE/Leos 1996 Summer Topical Meeting. Advanced Applications of Lasers in Materials and Processing, IEEE: 1996; pp 7-8.
56. Ekstrand, L.; Zhang, S., Autoexposure for Three-Dimensional Shape Measurement Using a Digital-Light-Processing Projector. Optical Engineering 2011, 50 (12), 123603.
57. Ge, Q., et al., Projection Micro Stereolithography Based 3D Printing and Its Applications. International Journal of Extreme Manufacturing 2020, 2 (2), 022004.
58. Tumbleston, J. R., et al., Continuous Liquid Interface Production of 3D Objects. Science 2015, 347 (6228), 1349-1352.
59. Walker, D. A., et al., Rapid, Large-Volume, Thermally Controlled 3D Printing Using a Mobile Liquid Interface. Science 2019, 366 (6463), 360-364.
60. Caprioli, M., et al., 3d-Printed Self-Healing Hydrogels via Digital Light Processing. Nature communications 2021, 12 (1), 1-9.
61. Wang, M., et al., Polymer‐Derived Silicon Nitride Ceramics by Digital Light Processing Based Additive Manufacturing. Journal of the American Ceramic Society 2019, 102 (9), 5117-5126.
62. Zhao, T., et al., Superstretchable and Processable Silicone Elastomers by Digital Light Processing 3D Printing. ACS Applied Materials & Interfaces 2019, 11 (15), 14391-14398.
63. Bae, S.-U.; Kim, B.-J., Effects of Cellulose Nanocrystal and Inorganic Nanofillers on the Morphological and Mechanical Properties of Digital Light Processing (DLP) 3D-Printed Photopolymer Composites. Applied Sciences 2021, 11 (15), 6835.
64. Hoeng, F., et al., Use of Nanocellulose in Printed Electronics: A Review. Nanoscale 2016, 8 (27), 13131-13154.
65. Yang, J., et al., Synthesis and Characterization of Mechanically Flexible and Tough Cellulose Nanocrystals–Polyacrylamide Nanocomposite Hydrogels. Cellulose 2013, 20 (1), 227-237.
66. Lagerwall, J. P., et al., Cellulose Nanocrystal-Based Materials: From Liquid Crystal Self-Assembly and Glass Formation to Multifunctional Thin Films. NPG Asia Materials 2014, 6 (1), e80-e80.
67. Dong, X. M., et al., Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose. Cellulose 1998, 5 (1), 19-32.
68. Nascimento, D. M., et al., Nanocellulose Nanocomposite Hydrogels: Technological and Environmental Issues. Green Chemistry 2018, 20 (11), 2428-2448.
69. De France, K. J., et al., Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials 2017, 29 (11), 4609-4631.
70. Shao, C., et al., Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chemistry of Materials 2018, 30 (9), 3110-3121.
71. Mota-Morales, J. D., et al., Free-Radical Polymerizations of and in Deep Eutectic Solvents: Green Synthesis of Functional Materials. Progress in Polymer Science 2018, 78, 139-153.
72. Joseph, J.; Jemmis, E. D., Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation. Journal of the American Chemical Society 2007, 129 (15), 4620-4632.