簡易檢索 / 詳目顯示

研究生: 蔡岳霖
Tsai, Yueh-Lin
論文名稱: 以三變數Copula聯結函數探討雨型對淹水風險之影響
Analyzing the Influence of Rainfall Hyetograph on Flood Risk using Trivariate Copula
指導教授: 張駿暉
Jang, Jiun-Huei
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 多元聯結函數頻率分析淹水風險設計雨型淹水模擬
外文關鍵詞: Multivariate Copula, Frequency analysis, Flooding risk, Rainfall pattern, Flooding simulation
相關次數: 點閱:61下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 淹水事件是世界上最頻繁發生的自然災害之一,可能導致嚴重的的社會經濟影響。近年來,台灣的降雨型態在氣候變遷影響下出現了時間和空間分佈極端化,造成許多地區的淹水頻率提高,淹水風險分析成了水利工程師設計防洪構造物與排水系統至關重要的考量因素;因此,如何量化淹水風險是評估淹水潛勢的關鍵。本研究採用多變數聯結函數,探討雨型變化對三爺溪淹水風險的影響。首先,採用三變數聯結函數耦合臺南雨量站歷史降雨事件的尖峰時刻、總延時及總雨量三者特徵;其次,透過聯結函數蒙地卡羅取樣法隨機生成1000筆降雨的特徵變數值,將隨機降雨特徵資料經均勻雨型法、三角雨型法及簡單尺度不變性馬可夫雨型分配降雨場次;接者,藉由二維水動力模型模擬演算研究區域的平均淹水深度;最後,利用累積分佈函數定義三種雨型條件下的平均淹水深,以作為真實的淹水機率。為了驗證三變數聯結函數對於降雨的模擬能力,本研究另以雙變數聯結函數結果作為對照組,僅考慮總延時及總雨量二者特徵的耦合關係,探討兩者所產製出的降雨變數於推估淹水風險的正確性。研究結果顯示,三變數聯結函數之蒙地卡羅法產製的變數結果比使用雙變數的產製結果更適合描述受到氣候變遷影響的極端降雨狀況;此外,三種雨型當中又以馬可夫雨型方法的淹水機率最符合歷史降雨紀錄的淹水機率趨勢,這些結果不僅證明了三變數聯結函數應用於氣象水文領域的分析可行性,更說明了選擇雨型對於淹水模擬的重要程度。故本研究之方法可應用於多數台灣易淹水地區,更準確的預測未來多變降雨型態產生的淹水風險。

    In recent years, extreme rainfalls have increased the flood risk in urban areas without adequate drainage systems. In this study, a new approach has been proposed to analyze the influence of rainfall hyetographs on flood risk using hydraulic simulation and multivariate copulas. First, a joint probability distribution function (PDF) was established using trivariate copula theory to account for the correlation among rainfall depth, duration, and peak time based on historical events in Sanye river basin, Taiwan. Second, the Monte Carlo simulation was adopted based on the established PDF to generate 1,000 random rainfall events. Third, the random events were translated into rainfall hytegraphs with uniform, triangle, and Gauss-marlov shapes based on the characteristics of rainfall depth, duration, and peak time. Finally, the 1,000 rainfall events were input into a two-dimensional hydrodynamic model to simulated the average flood depths for cumulative distribution function (CDF) estimation. In addition to the trivariate copulas, bivariate copulas using rainfall depth and duration as variables were adopted in this research for comparison following the same procedure. The results show that the simulation rainfall data of trivariate copula is more suitable for describing extreme rainfall hyetographs. The flood risks calculated by Gauss-marlov rainfall pattern have the best matches with historical flood risks. This study highlighted the importance of considering correlation among rain variables in flood risk estimation. In the future, this method can be applied in flood-prone areas for disaster management based on frequency analysis.

    中文摘要 I 誌謝 VIII 目錄 IX 圖目錄 XII 表目錄 XIV 第一章 緒論 1 1.1 研究目的 1 1.2 文獻回顧 1 1.2.1 降雨雨型產製 1 1.2.2 降雨雨型對淹水之影響 4 1.2.3 淹水風險分析 5 1.2.4 聯結函數水文應用 5 1.3 論文架構 7 第二章 研究區域與資料 9 2.1 區域介紹 9 2.2 降雨資料 10 第三章 研究方法 15 3.1 單變數機率密度函數 16 3.2 聯合機率函數 17 3.2.1 聯結函數基本定理 17 3.2.2 阿基米德聯結函數 20 3.2.3 參數推估 23 3.2.4 適合度檢定 25 3.2.5 最佳機率函數選取 26 3.3 降雨資料產製 27 3.3.1 蒙地卡羅取樣法(Monte Carlo method) 27 3.3.2 雨型設計 28 3.4 淹水風險分析 37 3.4.1 淹水模式 37 3.4.2 淹水機率量化 39 3.4.3 淹水機率累積分佈函數 40 3.4.4 同質性檢定 41 第四章 研究結果與討論 45 4.1 邊際分佈選取 45 4.2 三變數聯結函數之聯合分析 48 4.2.1 IFM參數推估 48 4.2.2 最佳聯結函數選取 50 4.2.3 三變數聯結函數3D圖 51 4.3 雙變數聯結函數之聯合分析 53 4.3.1 IFM參數推估 54 4.3.2 最佳聯結函數選取 55 4.4 蒙地卡羅模擬降雨 56 4.5 淹水風險分析 59 4.5.1 淹水機率量化結果 60 4.5.2 同質性檢定結果 64 第五章 結論與建議 72 5.1 結論 72 5.2 建議 73 第六章 參考文獻 74 附錄一 三變數聯結函數遞增條件式推求 82 附錄二 三變數關聯函數之結構模型推導 85 附錄三 統計檢定臨界值 89

    1. Abdul Rauf, U. F., & Zeephongsekul, P. (2014). Copula based analysis of rainfall severity and duration: a case study. Theoretical and applied climatology, 115(1), 153-166.
    2. Ariff, N. M., Jemain, A. A., Ibrahim, K., & Zin, W. W. (2012). IDF relationships using bivariate copula for storm events in Peninsular Malaysia. Journal of Hydrology, 470, 158-171.
    3. Back, Á. J. (2011). Time distribution of heavy rainfall events in Urussanga, Santa Catarina State, Brazil. Acta Scientiarum. Agronomy, 33(4), 583-588.
    4. Capello, M., Cutroneo, L., Ferretti, G., Gallino, S., & Canepa, G. (2016). Changes in the physical characteristics of the water column at the mouth of a torrent during an extreme rainfall event. Journal of Hydrology, 541, 146-157.
    5. Cheng, K. S., Hueter, I., Hsu, E. C., & Yeh, H. C. (2001a). A SCALE‐INVARIANT GAUSS‐MARKOV MODEL FOR DESIGN STORM HYETOGRAPHS 1. JAWRA Journal of the American Water Resources Association, 37(3), 723-735.
    6. Chukwuma, G. O., & Schwab, G. O. (1983). Procedure for developing design hyetographs for small watersheds. Transactions of the ASAE, 26(5), 1386-1389.
    7. Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141-151.
    8. Cook, R. D., & Johnson, M. E. (1981). A family of distributions for modelling non‐elliptically symmetric multivariate data. Journal of the Royal Statistical Society: Series B (Methodological), 43(2), 210-218.
    9. Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A., & Hancock, G. R. (2013). Integrating the LISFLOOD‐FP 2D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution. Earth Surface Processes and Landforms, 38(15), 1897-1906.
    10. Cramér, H. (1928). On the composition of elementary errors: First paper: Mathematical deductions. Scandinavian Actuarial Journal, 1928(1), 13-74.
    11. Daneshkhah, A., Remesan, R., Chatrabgoun, O., & Holman, I. P. (2016). Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model. Journal of Hydrology, 540, 469-487.
    12. De Michele, C., & Salvadori, G. (2003). A generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐copulas. Journal of Geophysical Research: Atmospheres, 108(D2).
    13. De Michele, C., Salvadori, G., Canossi, M., Petaccia, A., & Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10(1), 50-57.
    14. Eagleson, P. S. (1970). Dynamic hydrology.
    15. Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., & Ambenje, P. (2000). Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 81(3), 417-426.
    16. Favre, A. C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas. Water resources research, 40(1).
    17. Frank, M. J. (1979). On the simultaneous associativity ofF (x, y) andx+ y− F (x, y). Aequationes mathematicae, 19(1), 194-226.
    18. Ghassabi, Z., Meshkatee, A. H., Hajam, S., & Javaheri, N. (2016). Time distribution of heavy rainfall events in south west of Iran. Journal of Atmospheric and Solar-Terrestrial Physics, 145, 53-60.
    19. Grimaldi, S., & Serinaldi, F. (2006). Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29(8), 1155-1167.
    20. Grimaldi, S., & Serinaldi, F. (2006). Design hyetograph analysis with 3-copula function. Hydrological Sciences Journal, 51(2), 223-238.
    21. Grimaldi, S., & Serinaldi, F. (2006). Design hyetograph analysis with 3-copula function. Hydrological Sciences Journal, 51(2), 223-238.
    22. Guoping, C. E. N., Jin, S. H. E. N., & Rongsheng, F. A. N. (1998). Research on rainfall pattern of urban design storm. 水科学进展, 9(1), 41-46.
    23. Hougaard, P. (1986). A class of multivanate failure time distributions. Biometrika, 73(3), 671-678.
    24. Huff, F. A. (1967). Time distribution of rainfall in heavy storms. Water resources research, 3(4), 1007-1019.
    25. Jang, J. H., & Chang, T. H. (2022). Flood risk estimation under the compound influence of rainfall and tide. Journal of Hydrology, 127446.
    26. Jaworski, P., Durante, F., Hardle, W. K., & Rychlik, T. (2010). Copula theory and its applications (Vol. 198). Berlin: Springer.
    27. Jia, G. W., Zhan, T. L., Chen, Y. M., & Fredlund, D. G. (2010). Influence of rainfall pattern on the infiltration into landfill earthen final cover. In Advances in Environmental Geotechnics (pp. 641-645). Springer, Berlin, Heidelberg.
    28. Jingming, H. O. U., Kaihua, G. U. O., Zhili, W. A. N. G., Haixiao, J. I. N. G., & Donglai, L. I. (2017). Numerical simulation of design storm pattern effects on urban flood inundation. 水科学进展, 28(6), 820-828.
    29. Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC press.
    30. Jun, C., Qin, X., & Lu, W. (2018, September). Temporal pattern analysis of rainstorm events for supporting rainfall design in a tropical city. In International Conference on Urban Drainage Modelling (pp. 380-384). Springer, Cham.
    31. Keifer, C. J., & Chu, H. H. (1957). Synthetic storm pattern for drainage design. Journal of the hydraulics division, 83(4), 1332-1.
    32. Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., & Senior, C. A. (2014). Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Climate Change, 4(7), 570-576.
    33. Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari, Giorn., 4, 83-91.
    34. Koutsoyiannis, D., & Foufoula‐Georgiou, E. (1993). A scaling model of a storm hyetograph. Water Resources Research, 29(7), 2345-2361.
    35. Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics, 6(6), 386-392.
    36. Lian, J. J., Xu, K., & Ma, C. (2013). Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study of Fuzhou City, China. Hydrology and Earth System Sciences, 17(2), 679-689.
    37. Ling, C. H. (1965). Representation of associative functions. Publ. Math. Debrecent, 12, 189-212.
    38. Luo, P., He, B., Duan, W., Takara, K., & Nover, D. (2018). Impact assessment of rainfall scenarios and land‐use change on hydrologic response using synthetic Area IDF curves. Journal of Flood Risk Management, 11, S84-S97.
    39. Maidment, D. R. (1993). Handbook of Hydrology (No. 631.587). McGraw-Hill,.
    40. Marien, J. L., & Vandewiele, G. L. (1986). A point rainfall generator with internal storm structure. Water Resources Research, 22(4), 475-482.
    41. McNeil, A. J., & Nešlehová, J. (2009). Multivariate Archimedean copulas, d-monotone functions and ℓ1-norm symmetric distributions. The Annals of Statistics, 37(5B), 3059-3097.
    42. Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew, R. A., & Sanders, B. F. (2019). Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries. Advances in Water Resources, 128, 28-38.
    43. Mu, D., Luo, P., Lyu, J., Zhou, M., Huo, A., Duan, W., ... & Zhao, X. (2021). Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. Journal of Flood Risk Management, 14(1), e12668.
    44. Nelsen, R. B. (1986). Properties of a one-parameter family of bivariate distributions with specified marginals. Communications in statistics-Theory and methods, 15(11), 3277-3285.
    45. Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.
    46. Pilgrim, D. H., & Cordery, I. (1975). Rainfall temporal patterns for design floods. Journal of the Hydraulics Division, 101(1), 81-95.
    47. Saharia, A. M., Zhu, Z., & Atkinson, J. F. (2021). Compound flooding from lake seiche and river flow in a freshwater coastal river. Journal of Hydrology, 603, 126969.
    48. Salvadori, G., & De Michele, C. (2004). Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water resources research, 40(12).
    49. Salvadori, G., & De Michele, C. (2006). Statistical characterization of temporal structure of storms. Advances in Water Resources, 29(6), 827-842.
    50. Schweizer, B., & Sklar, A. (2011). Probabilistic metric spaces. Courier Corporation.
    51. Schweizer, B., & Sklar, A. Probabilistic Metric Spaces.(1983). New York: North-Hoiland.
    52. Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8, 229-231.
    53. Smith, M. D. (2003). Modelling sample selection using Archimedean copulas. The Econometrics Journal, 6(1), 99-123.
    54. Subyani, A. M. (2011). Hydrologic behavior and flood probability for selected arid basins in Makkah area, western Saudi Arabia. Arabian Journal of Geosciences, 4(5), 817-824.
    55. Terranova, O. G., & Iaquinta, P. (2011). Temporal properties of rainfall events in Calabria (southern Italy). Natural hazards and earth system sciences, 11(3), 751-757.
    56. Vandenberghe, S., Verhoest, N. E. C., & De Baets, B. (2010). Fitting bivariate copulas to the dependence structure between storm characteristics: A detailed analysis based on 105 year 10 min rainfall. Water resources research, 46(1).
    57. Varga, C., Ball, J. E., & Babister, M. (2009). A hydroinformatic approach to development of design temporal patterns of rainfall. IAHS-AISH Publication.
    58. Von Mises, R. (1928). Statistik und wahrheit. Julius Springer, 20
    59. Von Neumann, J., & Ulam, S. (1951). Monte carlo method. National Bureau of Standards Applied Mathematics Series, 12(1951), 36.
    60. Wahl, T., Jain, S., Bender, J., Meyers, S. D., & Luther, M. E. (2015). Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nature Climate Change, 5(12), 1093-1097.
    61. Wei, W., Chen, L., Fu, B., Huang, Z., Wu, D., & Gui, L. (2007). The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology, 335(3-4), 247-258.
    62. Wu, S. J., Yang, J. C., & Tung, Y. K. (2006). Identification and stochastic generation of representative rainfall temporal patterns in Hong Kong territory. Stochastic environmental research and risk assessment, 20(3), 171-183.
    63. Yen, B. C., & Chow, V. T. (1980). Design hyetographs for small drainage structures. Journal of the Hydraulics Division, 106(6), 1055-1076.
    64. Yuan, W., Liu, M., & Wan, F. (2019). Study on the impact of rainfall pattern in small watersheds on rainfall warning index of flash flood event. Natural Hazards, 97(2), 665-682.
    65. Zellou, B., & Rahali, H. (2019). Assessment of the joint impact of extreme rainfall and storm surge on the risk of flooding in a coastal area. Journal of Hydrology, 569, 647-665.
    66. Zhang, L., & Singh, V. P. (2007). Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology, 332(1-2), 93-109.
    67. Zhang, L., & Singh, V. P. (2007). Gumbel–Hougaard copula for trivariate rainfall frequency analysis. Journal of Hydrologic engineering, 12(4), 409-419.
    68. Zhang, L., & Singh, V. P. (2007). Trivariate flood frequency analysis using the Gumbel–Hougaard copula. Journal of Hydrologic Engineering, 12(4), 431-439.
    69. Zhang, X., Zwiers, F. W., Li, G., Wan, H., & Cannon, A. J. (2017). Complexity in estimating past and future extreme short-duration rainfall. Nature Geoscience, 10(4), 255-259.
    70. Zheng, F., Westra, S., & Sisson, S. A. (2013). Quantifying the dependence between extreme rainfall and storm surge in the coastal zone. Journal of Hydrology, 505, 172-187.
    71. 余濬 (1988),「降雨設計雨型之研究」,台灣大學土木工程研究所碩士論文。
    72. 葉弘德、韓洪元 (1990),「台北市暴雨雨型之研究」, 台灣水利,第 38 卷,第 3 期,第 36−49 頁。
    73. 林國峰、張守陽、林民生 (1991),「台灣地區雨型之初步研究」,國立台灣大學水工試驗所研究報告第118 號。
    74. 林國峰、張守陽、李汴軍 (1992),「台灣地區雨型之研究(一)」,國立台灣大學水工試驗所研究報告第144 號。
    75. 林國峰、張守陽、李汴軍 (1993),「台灣地區雨型之研究(二)」,國立台灣大學水工試驗所研究報告第163 號。
    76. 林國峰、張守陽、蕭長庚 (1994),「台灣地區雨型之研究(三)」,國立台灣大學水工試驗所研究報告第193 號。
    77. 經濟部水資源局 (2001),「水文設計應用手冊」。
    78. 陳晉琪、李明熹、詹錢登 (2003). 土石流設計流量之可靠性分析. 中華水土保持學報, 34(1), 83-93.
    79. 連育成 (2021),「以聯結函數補遺日懸浮載輸砂量」,國立成功大學水利工程研究所碩士論文。

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE