| 研究生: |
張鈞筌 Chang, Chun-Chuan |
|---|---|
| 論文名稱: |
困難梭狀桿菌分選酶的受質專一性分子層次之分析 Molecular analysis of substrate specificity of Clostridium difficile sortase |
| 指導教授: |
王淑鶯
Wang, Shu-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 困難梭狀桿菌 、分選酶B 、半胱胺酸蛋白酶 、受質特異性 、螢光共振能量轉移 |
| 外文關鍵詞: | Clostridium difficile, Sortase B, cysteine protease, substrate specificity, FRET |
| 相關次數: | 點閱:170 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
困難梭狀桿菌Clostridium difficile (C. difficile)為革蘭氏陽性、厭氧桿狀菌、並且會產孢子。在醫院中因為抗生素的大量使用,會導致宿主腸道內正常菌叢被破壞。當宿主腸道內的菌叢被破壞後,會使得C. diffcile 更容易附著在宿主腸道內,並且複製。進而引發發炎反應,導致C. diffcile相關疾病的發生(CDAD)。近年來,抗藥性和高度致病性的菌株增加已經成為主要的問題,但目前對於C. diffcile 感染上還缺乏有效的治療。因此,我們需要發展替代性的治療方法,希望能有效控制疾病並且減少病菌產生抗藥性。分選酶(Sortase)為cysteine protease,存在於Gram-positive的細菌中,並且可以將含有毒力因子的表面蛋白嵌入至細菌的細胞壁上,使細菌具有感染能力。Sortase可視為替代性的治療目標,發展抑制劑減緩病菌的感染症狀。C. diffcile只帶有一個sortase,又稱為sortase B (Srt B),C. diffcile的sortase B可以辨認具有(S/P)PXTG序列的表面蛋白,並且催化切割Threonine和glycine之間。在不同種的革蘭氏陽性菌中,sortase B有高度的結構相似性。然而在受質(substrate)上卻辨認不同的序列。在近期研究中,我們實驗室已經成功的解出sortase B蛋白的結晶結構。由於sortase-substrate complex的結構目前仍了解的有限。因此,sortase在受質特異性(substrate specificity)的相關機制,目前仍是不清楚。在之前的研究中發現,sortase上的6-7 loop在substrate的辨認上扮演很重要的角色。除此之外,將金黃色葡萄球菌分選酶A (S. aureus Sortase A)的6-7 loop置換成金黃色葡萄球菌分選酶B (S. aureus Sortase B)的loop,可以改變substrate specificity的形式。我們實驗室也成功模擬出C. difficile SrtB-PPKTG complex的模型。我們比較已知的S. aureus SrtB-NPQT* complex結構和我們C. difficile SrtB-PPKTG complex 模型,在6-7 loop結構表面上的residue。為了瞭解6-7 loop在C. difficile SrtB所扮演的角色。我採用了定位突變(site-directed mutagenesis)、螢光共振能量轉移測定(fluorescence resonance energy transfer) (FRET)、表面等離子共振(surface plasmon resonance) (SPR)去測定這些residue是否參與substrate的辨認。總結而論,我的研究已經顯示6-7 loop在C. difficile SrtB對於substrate辨認上的重要性,並且有利於我們了解分選酶和受質之間的特異性(sortase-substrate specificity),進而用於發展新的藥物來治療C. difficile相關的疾病。
Clostridium difficile (C. difficile) is a Gram-positive, spore forming, and obligate anaerobic bacteria. C. difficile-associated disease (CDAD) is caused by disruption of host microflora through broad-spectrum antibiotic use. The increased numbers of drug-resistant and highly pathogenic strains of C. difficile are major problems nowadays. Therefore, it is necessary to develop alternative therapeutic targets to control the disease. Sortase is a cysteine protease that anchors surface proteins containing virulent factors to cell wall. Thus, sortase is considered for development the inhibitors to block the virulent factors displaying in cell surface. C. difficile has only one sortase (SrtB). For C. difficile, surface proteins containing (S/P)PXTG motif are recognized by SrtB and cleaved between threonine and glycine. The structures of SrtB are highly similar in different Gram-positive bacteria. However, SrtB recognizes different substrates consisting of distinct sorting sequences. Recently, our lab has successfully determined the crystal structure of SrtB protein from C. difficile. Due to the limited available structures of sortase-substrate complex, the molecular mechanism of how sortases achieve substrate specificity remains unclear. In previous studies, the beta6-beta7 loop of sortase plays a critical role in substrate recognition. Moreover, the beta6-beta7 loop in S. aureus SrtA replacing to the correlated loop from S. aureus SrtB can change the substrate specificity profile. Our lab has published a computational model of C. difficile SrtB-PPKTG complex. Thus, we compared the surface-exposed residues of beta6-beta7 loop with that of S. aureus SrtB-NPQT* complex. To assess the role of beta6-beta7 loop in C. difficile SrtB, I have employed the techniques of site-directed mutagenesis, fluorescence resonance energy transfer (FRET)-based assay and surface plasmon resonance (SPR) to identify the residues involved in the substrate cleavage and binding. In summary, my studies have revealed the important role of beta6-beta7 loop of C. difficile SrtB in substrate recognition and contributed to better understanding in sortase-substrate specificity for development of new drugs against CDAD.
1. Leffler, D.A. & Lamont, J.T. Clostridium difficile Infection. The New England journal of medicine 373, 287-288 (2015).
2. Ananthakrishnan, A.N. Clostridium difficile infection: epidemiology, risk factors and management. Nature reviews. Gastroenterology & hepatology 8, 17-26 (2011).
3. Lo Vecchio, A., et al. Clostridium difficile infection in children: epidemiology and risk of recurrence in a low-prevalence country. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology (2016).
4. Lo Vecchio, A. & Zacur, G.M. Clostridium difficile infection: an update on epidemiology, risk factors, and therapeutic options. Current opinion in gastroenterology 28, 1-9 (2012).
5. Butler, M., et al. in Early Diagnosis, Prevention, and Treatment of Clostridium difficile: Update (Rockville (MD), 2016).
6. Voth, D.E. & Ballard, J.D. Clostridium difficile toxins: mechanism of action and role in disease. Clinical microbiology reviews 18, 247-263 (2005).
7. Sebaihia, M., et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature genetics 38, 779-786 (2006).
8. Goudarzi, M., Seyedjavadi, S.S., Goudarzi, H., Mehdizadeh Aghdam, E. & Nazeri, S. Clostridium difficile Infection: Epidemiology, Pathogenesis, Risk Factors, and Therapeutic Options. Scientifica 2014, 916826 (2014).
9. Kyne, L., Warny, M., Qamar, A. & Kelly, C.P. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 357, 189-193 (2001).
10. Borriello, S.P. & Barclay, F.E. Protection of Hamsters against Clostridium-Difficile Ileocaecitis by Prior Colonization with Non-Pathogenic Strains. Journal of Medical Microbiology 19, 339-350 (1985).
11. Elliott, B., et al. New types of toxin A-negative, toxin B-positive strains among clinical isolates of Clostridium difficile in Australia. Journal of Medical Microbiology 60, 1108-1111 (2011).
12. Dillon, S.T., et al. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B. Infection and immunity 63, 1421-1426 (1995).
13. Souza, M.H., et al. The involvement of macrophage-derived tumour necrosis factor and lipoxygenase products on the neutrophil recruitment induced by Clostridium difficile toxin B. Immunology 91, 281-288 (1997).
14. Poxton, I.R., McCoubrey, J. & Blair, G. The pathogenicity of Clostridium difficile. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 7, 421-427 (2001).
15. Vedantam, G., et al. Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut microbes 3, 121-134 (2012).
16. Pothoulakis, C. Pathogenesis of Clostridium difficile-associated diarrhoea. European Journal of Gastroenterology and Hepatology 8, 1041-1047 (1996).
17. Just, I., et al. Glucosylation of Rho-Proteins by Clostridium-Difficile Toxin-B. Nature 375, 500-503 (1995).
18. Just, I., et al. The Enterotoxin from Clostridium-Difficile (ToxA) Monoglucosylates the Rho-Proteins. The Journal of biological chemistry 270, 13932-13936 (1995).
19. Lima, A.A.M., Lyerly, D.M., Wilkins, T.D., Innes, D.J. & Guerrant, R.L. Effects of Clostridium-Difficile Toxin-A and Toxin-B in Rabbit Small and Large-Intestine Invivo and on Cultured-Cells Invitro. Infection and immunity 56, 582-588 (1988).
20. Lima, A.A., Lyerly, D.M., Wilkins, T.D., Innes, D.J. & Guerrant, R.L. Effects of Clostridium difficile toxins A and B in rabbit small and large intestine in vivo and on cultured cells in vitro. Infection and immunity 56, 582-588 (1988).
21. Katyal, R., Vaishnavi, C. & Singh, K. Faecal excretion of brush border membrane enzymes in patients with Clostridium difficile diarrhoea. Indian journal of medical microbiology 20, 178-182 (2002).
22. Hecht, G., Pothoulakis, C., LaMont, J.T. & Madara, J.L. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. The Journal of clinical investigation 82, 1516-1524 (1988).
23. Altaie, S.S., Meyer, P. & Dryja, D. Comparison of two commercially available enzyme immunoassays for detection of Clostridium difficile in stool specimens. Journal of Clinical Microbiology 32, 51-53 (1994).
24. Lyerly, D.M., Saum, K.E., Macdonald, D.K. & Wilkins, T.D. Effects of Clostridium-Difficile Toxins Given Intragastrically to Animals. Infection and immunity 47, 349-352 (1985).
25. Vaishnavi, C. Clinical spectrum & pathogenesis of Clostridium difficile associated diseases. The Indian journal of medical research 131, 487-499 (2010).
26. Goncalves, C., Decre, D., Barbut, F., Burghoffer, B. & Petit, J.C. Prevalence and characterization of a binary toxin (actin-specific ADP-ribosyltransferase) from Clostridium difficile. Journal of Clinical Microbiology 42, 1933-1939 (2004).
27. Schwan, C., et al. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS pathogens 5, e1000626 (2009).
28. Debast, S.B., Bauer, M.P., Kuijper, E.J., European Society of Clinical, M. & Infectious, D. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 20 Suppl 2, 1-26 (2014).
29. Jarrad, A.M., Karoli, T., Blaskovich, M.A., Lyras, D. & Cooper, M.A. Clostridium difficile drug pipeline: challenges in discovery and development of new agents. Journal of medicinal chemistry 58, 5164-5185 (2015).
30. Musher, D.M., et al. Relatively poor outcome after treatment of Clostridium difficile colitis with metronidazole. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 40, 1586-1590 (2005).
31. Vardakas, K.Z., et al. Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole: a systematic review of the evidence. International journal of antimicrobial agents 40, 1-8 (2012).
32. Adler, A., et al. A national survey of the molecular epidemiology of Clostridium difficile in Israel: the dissemination of the ribotype 027 strain with reduced susceptibility to vancomycin and metronidazole. Diagnostic microbiology and infectious disease 83, 21-24 (2015).
33. Perkins, H.R. & Nieto, M. The chemical basis for the action of the vancomycin group of antibiotics. Annals of the New York Academy of Sciences 235, 348-363 (1974).
34. Andrews, J.M. & Tan, M. Probiotics in luminal gastroenterology: the current state of play. Internal medicine journal 42, 1287-1291 (2012).
35. Balakrishnan, M. & Floch, M.H. Prebiotics, probiotics and digestive health. Current opinion in clinical nutrition and metabolic care 15, 580-585 (2012).
36. Ceapa, C., et al. Influence of fermented milk products, prebiotics and probiotics on microbiota composition and health. Best practice & research. Clinical gastroenterology 27, 139-155 (2013).
37. Boirivant, M. & Strober, W. The mechanism of action of probiotics. Current opinion in gastroenterology 23, 679-692 (2007).
38. Surawicz, C.M., et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. The American journal of gastroenterology 108, 478-498; quiz 499 (2013).
39. Borody, T.J. & Khoruts, A. Fecal microbiota transplantation and emerging applications. Nature reviews. Gastroenterology & hepatology 9, 88-96 (2011).
40. Gallo, A., Passaro, G., Gasbarrini, A., Landolfi, R. & Montalto, M. Modulation of microbiota as treatment for intestinal inflammatory disorders: an uptodate. World Journal of Gastroenterology 22, 7186-7202 (2016).
41. Frieri, M., Kumar, K. & Boutin, A. Antibiotic resistance. Journal of infection and public health (2016).
42. He, M., et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nature genetics 45, 109-113 (2013).
43. He, M., et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proceedings of the National Academy of Sciences of the United States of America 107, 7527-7532 (2010).
44. Slimings, C. & Riley, T.V. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. The Journal of antimicrobial chemotherapy 69, 881-891 (2014).
45. Gerding, D.N. Clindamycin, cephalosporins, fluoroquinolones, and Clostridium difficile-associated diarrhea: this is an antimicrobial resistance problem. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 38, 646-648 (2004).
46. Johnson, S., et al. Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. The New England journal of medicine 341, 1645-1651 (1999).
47. Samore, M., et al. Multicenter typing comparison of sporadic and outbreak Clostridium difficile isolates from geographically diverse hospitals. The Journal of infectious diseases 176, 1233-1238 (1997).
48. Bignardi, G.E. Risk factors for Clostridium difficile infection. The Journal of hospital infection 40, 1-15 (1998).
49. Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Therapeutic advances in infectious disease 3, 23-42 (2016).
50. Pechine, S., Janoir, C. & Collignon, A. Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease. Journal of clinical microbiology 43, 5018-5025 (2005).
51. Tasteyre, A., et al. Molecular characterization of fliD gene encoding flagellar cap and its expression among Clostridium difficile isolates from different serogroups. Journal of clinical microbiology 39, 1178-1183 (2001).
52. Savariau-Lacomme, M.P., Lebarbier, C., Karjalainen, T., Collignon, A. & Janoir, C. Transcription and analysis of polymorphism in a cluster of genes encoding surface-associated proteins of Clostridium difficile. Journal of bacteriology 185, 4461-4470 (2003).
53. Merrigan, M.M., et al. Surface-layer protein A (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PloS one 8, e78404 (2013).
54. Sara, M. & Sleytr, U.B. S-Layer proteins. Journal of bacteriology 182, 859-868 (2000).
55. Mazmanian, S.K., Liu, G., Ton-That, H. & Schneewind, O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285, 760-763 (1999).
56. Marraffini, L.A., Dedent, A.C. & Schneewind, O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiology and molecular biology reviews : MMBR 70, 192-221 (2006).
57. Ton-That, H., Marraffini, L.A. & Schneewind, O. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochimica et biophysica acta 1694, 269-278 (2004).
58. Ton-That, H., Mazmanian, S.K., Faull, K.F. & Schneewind, O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates. Journal of biological chemistry 275, 9876-9881 (2000).
59. Maresso, A.W. & Schneewind, O. Sortase as a target of anti-infective therapy. Pharmacological Reviews 60, 128-141 (2008).
60. Spirig, T., Weiner, E.M. & Clubb, R.T. Sortase enzymes in Gram-positive bacteria. Molecular microbiology 82, 1044-1059 (2011).
61. Hendrickx, A.P.A., Budzik, J.M., Oh, S.Y. & Schneewind, O. Architects at the bacterial surface - sortases and the assembly of pili with isopeptide bonds. Nature Reviews Microbiology 9, 166-176 (2011).
62. Clancy, K.W., Melvin, J.A. & McCafferty, D.G. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers 94, 385-396 (2010).
63. Bradshaw, W.J., et al. Molecular features of the sortase enzyme family. The FEBS Journal 282, 2097-2114 (2015).
64. Berger, S.L. An embarrassment of niches: the many covalent modifications of histones in transcriptional regulation. Oncogene 20, 3007-3013 (2001).
65. Comfort, D. & Clubb, R.T. A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infection and immunity 72, 2710-2722 (2004).
66. Marraffini, L.A., DeDent, A.C. & Schneewind, O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiology and Molecular Biology Reviews 70, 192 (2006).
67. Speziale, P., et al. Structural and functional role of Staphylococcus aureus surface components recognizing adhesive matrix molecules of the host. Future microbiology 4, 1337-1352 (2009).
68. Patti, J.M., Allen, B.L., McGavin, M.J. & Hook, M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annual review of microbiology 48, 585-617 (1994).
69. Suree, N., Jung, M.E. & Clubb, R.T. Recent advances towards new anti-infective agents that inhibit cell surface protein anchoring in Staphylococcus aureus and other gram-positive pathogens. Mini reviews in medicinal chemistry 7, 991-1000 (2007).
70. Mazmanian, S.K., Ton-That, H., Su, K. & Schneewind, O. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 99, 2293-2298 (2002).
71. Mazmanian, S.K., et al. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299, 906-909 (2003).
72. Maresso, A.W., Chapa, T.J. & Schneewind, O. Surface protein IsdC and Sortase B are required for heme-iron scavenging of Bacillus anthracis. Journal of bacteriology 188, 8145-8152 (2006).
73. Maresso, A.W. & Schneewind, O. Iron acquisition and transport in Staphylococcus aureus. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 19, 193-203 (2006).
74. Jonsson, I.M., Mazmanian, S.K., Schneewind, O., Bremell, T. & Tarkowski, A. The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes and infection / Institut Pasteur 5, 775-780 (2003).
75. Newton, S.M., et al. The svpA-srtB locus of Listeria monocytogenes: fur-mediated iron regulation and effect on virulence. Molecular microbiology 55, 927-940 (2005).
76. Budzik, J.M., et al. Amide bonds assemble pili on the surface of bacilli. Proceedings of the National Academy of Sciences of the United States of America 105, 10215-10220 (2008).
77. Ton-That, H. & Schneewind, O. Assembly of pili on the surface of Corynebacterium diphtheriae. Molecular microbiology 50, 1429-1438 (2003).
78. Marraffini, L.A. & Schneewind, O. Targeting proteins to the cell wall of sporulating Bacillus anthracis. Molecular microbiology 62, 1402-1417 (2006).
79. Claessen, D., et al. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes & development 17, 1714-1726 (2003).
80. Capstick, D.S., Willey, J.M., Buttner, M.J. & Elliot, M.A. SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. Molecular microbiology 64, 602-613 (2007).
81. Oh, K.B., Oh, M.N., Kim, J.G., Shin, D.S. & Shin, J. Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors. Applied microbiology and biotechnology 70, 102-106 (2006).
82. Liu, B., et al. Quercitrin, an inhibitor of Sortase A, interferes with the adhesion of Staphylococcal aureus. Molecules 20, 6533-6543 (2015).
83. Hu, P., Huang, P. & Chen, M.W. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Archives of oral biology 58, 1343-1348 (2013).
84. Maresso, A.W., et al. Activation of inhibitors by sortase triggers irreversible modification of the active site. Journal of biological chemistry 282, 23129-23139 (2007).
85. Zong, Y., Mazmanian, S.K., Schneewind, O. & Narayana, S.V. The structure of sortase B, a cysteine transpeptidase that tethers surface protein to the Staphylococcus aureus cell wall. Structure 12, 105-112 (2004).
86. Zhang, R., et al. Structures of sortase B from Staphylococcus aureus and Bacillus anthracis reveal catalytic amino acid triad in the active site. Structure 12, 1147-1156 (2004).
87. Kang, H.J., Coulibaly, F., Proft, T. & Baker, E.N. Crystal structure of Spy0129, a Streptococcus pyogenes class B sortase involved in pilus assembly. PloS one 6, e15969 (2011).
88. Jacobitz, A.W., et al. Structural and computational studies of the Staphylococcus aureus sortase B-substrate complex reveal a substrate-stabilized oxyanion hole. Journal of biological chemistry 289, 8891-8902 (2014).
89. Schneewind, O., Mihaylova-Petkov, D. & Model, P. Cell wall sorting signals in surface proteins of gram-positive bacteria. The EMBO journal 12, 4803-4811 (1993).
90. Janulczyk, R. & Rasmussen, M. Improved pattern for genome-based screening identifies novel cell wall-attached proteins in gram-positive bacteria. Infection and immunity 69, 4019-4026 (2001).
91. Donahue, E.H., et al. Clostridium difficile has a single sortase, SrtB, that can be inhibited by small-molecule inhibitors. BMC microbiology 14, 219 (2014).
92. Tulli, L., et al. CbpA: a novel surface exposed adhesin of Clostridium difficile targeting human collagen. Cellular microbiology 15, 1674-1687 (2013).
93. Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS microbiology reviews 32, 259-286 (2008).
94. Mariscotti, J.F., Garcia-del Portillo, F. & Pucciarelli, M.G. The Listeria monocytogenes sortase-B recognizes varied amino acids at position 2 of the sorting motif. Journal of biological chemistry 284, 6140-6146 (2009).
95. Yin, J.-C., et al. Structural Insights into Substrate Recognition by Clostridium difficile Sortase. Frontiers in cellular and infection microbiology 6(2016).
96. Piotukh, K., et al. Directed evolution of sortase A mutants with altered substrate selectivity profiles. Journal of the American Chemical Society 133, 17536-17539 (2011).
97. Bentley, M.L., Gaweska, H., Kielec, J.M. & McCafferty, D.G. Engineering the substrate specificity of Staphylococcus aureus Sortase A. The beta6/beta7 loop from SrtB confers NPQTN recognition to SrtA. Journal of biological chemistry 282, 6571-6581 (2007).
98. Suree, N., et al. The structure of the Staphylococcus aureus sortase-substrate complex reveals how the universally conserved LPXTG sorting signal is recognized. Journal of biological chemistry 284, 24465-24477 (2009).
99. Frankel, B.A., Tong, Y., Bentley, M.L., Fitzgerald, M.C. & McCafferty, D.G. Mutational analysis of active site residues in the Staphylococcus aureus transpeptidase SrtA. Biochemistry 46, 7269-7278 (2007).
100. Graslund, S., et al. The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expres Purif 58, 210-221 (2008).
101. Bornhorst, J.A. & Falke, J.J. Purification of proteins using polyhistidine affinity tags. Method Enzymol 326, 245-254 (2000).
102. Bentley, M.L., Lamb, E.C. & McCafferty, D.G. Mutagenesis studies of substrate recognition and catalysis in the sortase A transpeptidase from Staphylococcus aureus. Journal of biological chemistry 283, 14762-14771 (2008).
103. Ma, H. & Penning, T.M. Conversion of mammalian 3alpha-hydroxysteroid dehydrogenase to 20alpha-hydroxysteroid dehydrogenase using loop chimeras: changing specificity from androgens to progestins. Proceedings of the National Academy of Sciences of the United States of America 96, 11161-11166 (1999).
104. Hedstrom, L., Szilagyi, L. & Rutter, W.J. Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 1249-1253 (1992).
105. Mittl, P.R., Berry, A., Scrutton, N.S., Perham, R.N. & Schulz, G.E. Anatomy of an engineered NAD-binding site. Protein science 3, 1504-1514 (1994).
106. Widersten, M. & Mannervik, B. Glutathione transferases with novel active sites isolated by phage display from a library of random mutants. Journal of molecular biology 250, 115-122 (1995).
107. Wallock-Richards, D.J., et al. Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chemical communications 51, 10483-10485 (2015).
108. Huang, X., et al. Kinetic mechanism of Staphylococcus aureus sortase SrtA. Biochemistry 42, 11307-11315 (2003).
校內:2022-01-25公開